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An analysis is carried out to study the steady two-dimensional flow of an incompressible viscous fluid past a porous deformable
sheet, which is stretched in its own plane with a velocity proportional to the distance from the fixed point subject to uniform suction
or blowing. A uniform shear flow of strain rate 8 is considered over the stretching sheet. The analysis of the result obtained shows
that the magnitude of the wall shear stress increases with the increase of suction velocity and decreases with the increase of blowing
velocity and this effect is more pronounced for suction than blowing. It is seen that the horizontal velocity component (at a fixed
streamwise position along the plate) increases with the increase in the ratio of shear rate  and stretching rate (c) (i.e., $/c) and
there is an indication of flow reversal. It is also observed that this flow reversal region increases with the increase in /c.

1. Introduction

Suction or injection (blowing) of a fluid through the bound-
ing surface can significantly change the flow field and
consequently affects the heat transfer rate from the surface.
Injection or withdrawal of fluid through a porous bounding
heated/cooled wall is of great general interest in practical
problems such as cooling of films, cooling of wires, and coat-
ing of polymer fiber. The process of suction or blowing has
its importance in many engineering and industrial activities
such as in the design of thrust bearing and radial diffusers
and thermal oil recovery. Suction is also applied to chemical
processes to remove reactants whereas blowing is used to add
reactants, prevent corrosion or scaling, and reduce the drag.

During the last decades, the study of flow over a stretching
surface has attracted much more interest of the researchers
due to its various industrial applications such as extrusion of
polymer sheets, continuous stretching, manufacturing plastic
films, and artificial fibers. In a melt-spinning process, the
extrudate from the die is generally drawn and simultaneously
stretched into a sheet which is then solidified through
quenching or gradual cooling by direct contact with the

water. The mechanical properties of the final product depend
crucially on the rate of cooling/heating along the surface
while being stretched. Sakiadas [1] was the first to study
boundary layer flow due to a rigid flat continuous surface
moving in its own plane. Erickson et al. [2] analyzed the
boundary layer flow due to the motion of a porous flat
plate when the transverse velocity at the surface is nonzero.
A detailed analysis of the boundary layer flow due to a
stretching sheet has been carried out by Danberg and Fansler
[3].

Later, Crane [4] gave an exact similarity solution in
closed analytical form for steady boundary layer flow of an
incompressible viscous fluid caused solely by the stretching
of an elastic flat sheet which moves in its own plane with
a velocity varying linearly with distance from a fixed point.
Wang [5] investigated a uniform shear flows over a quiescent
liquid and he showed that an interfacial boundary layer
develops both in the air and the liquid. P. S. Gupta and
A. S. Gupta [6] investigated the heat and mass transfer
corresponding to the similarity solution for the boundary
layer flow over a stretching sheet subject to uniform suction
or blowing. Rajagopal et al. [7] studied the boundary layer



flow over a stretching surface for second-order fluid and
obtained similarity solutions of the boundary layer equations.
Dandapat and Gupta [8] extended the same problem with
heat transfer and found exact analytical solutions.

Shear driven flows, namely, wall driven Couette flow,
wind driven Ekman flow, and so forth are the classical topics
of fluid mechanics. Due to their wide range of applications
shear driven flows attract the attention of the researchers.
The study of boundary layer flow driven by uniform shear is
seen to have fewer contributors in fluid mechanics. Rajagopal
et al. [9] studied the nonsimilar boundary layer flow of a
second-order fluid over a stretching sheet in the presence of a
uniform shear flow. Weidman et al. [10] reported a similarity
solution of the boundary layer flow over a flat impermeable
plate with free shear flows driven by rotational velocities.
The extension of the same problem to a permeable flat plate
was analyzed by Magyari et al. [11]. Cossali [12] gave the
similarity solutions of the energy and momentum boundary
layer equations for a power-law shear driven flow over a
semi-infinite flat plate. The thermal boundary layer beneath
an external uniform shear flow was considered by Magyari
and Weidman [13]. Weidman et al. [14] also investigated
the effects of plate extension and transpiration on uniform
shear flow over a semi-infinite flat plate by considering the
boundary layer approximations. Due to the presence of shear
in the free stream, the free stream is no longer rotation-free.
As a result the flow behaviours are quite different from the
rotation-free flow. In most of the works the flat surface was
kept stationary. But the interaction of shear flow and wall
stretching affects the flow significantly. Fang [15] analyzed
the heat transfer characteristics for boundary layer flow past
a stretching sheet in presence of uniform shear-free stream.
Xu [16] obtained the analytic solution in case of boundary
layer flow driven by power-law shear. Very recently, the heat
transfer characteristics of a viscous incompressible fluid over
a stretching/shrinking sheet in a uniform shear flow with
a convective surface boundary condition were analyzed by
Aman et al. [17].

Motivated by the above investigations, in this paper,
the steady, two-dimensional incompressible viscous fluid
flow past a porous stretching sheet in presence of uniform
suction/blowing has been investigated. A uniform shear flow
of strain rate 8 is considered over the stretching surface. The
behaviours of the horizontal component of the flow velocity
are explained and it is seen that there is a flow reversal in case
of suction or blowing at the sheet.

2. Flow Analysis

Consider the steady two-dimensional flow of a viscous fluid
towards a stretching surface coinciding with the plane y = 0,
the flow being confined to the region y > 0. We choose the
coordinate system such that the x-axis is along the sheet, y-
axis is normal to the sheet, and the origin of the coordinate
system is located at a finite position on the sheet. Two equal
and opposing forces are applied on the stretching surface
along the x-axis so that the surface is stretched keeping the
origin fixed. Here we consider a uniform shear flow of strain
rate f3 over the stretching surface. The free stream velocity is
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FIGURE I: A sketch of the physical problem and the coordinate
system involved.

uniform shear and the surface is subject to uniform suction
or blowing. It is to be noted that, due to the presence of
blowing or suction, a streamwise pressure gradient is required
to maintain the flow. The flow configuration is shown in
Figure 1.

The inviscid version of the present steady flow is given in
terms of the stream function v, as

%Zﬁ)’<§_81)+52x> 1)

where 8, and 6, are two constants. Here &, is the displacement
thickness arising out of the boundary layer on the stretching
surface and §, is the parameter which controls the horizon-
tal pressure gradient that produces the shear flow. So the
parameters §; and &, have some effects on the flow field (see
Drazin and Riley [18]). The velocity components along x and
y directions, respectively, for the flow described by (1) are

U =B(y-46,),

The boundary conditions at the stretching surface are

V, = -6,. (2)
u = cx, v=v, aty=0, (3)

where ¢ > 01is a constant. The boundary conditions at infinity
are

u—U(xy), v—Vi(xy) asy — oo, (4)

where U, and V; are given by (2). Near the stretching surface,
we take the stream function in the form:

L—er(n)+wn), ®
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where

v

=(9)"

and v is the kinematic viscosity. The velocity components u
and v, along x and y directions, are given by

_ %y _ %
u—ay, v = 3 7)

Hence the dimensionless velocity components U and V are
obtained from (5) and (6) as

U =&F () + W' ()
V= -F(n),

(8)

where U = u/ (cv)l/ ZandV = v/ (cv)l/ 2, Substituting (8) into
the Navier-Stokes equations we get

_1@_fgf“
pox  \v

% [E (FIZ _ FFII _ FIII) + (FIWI _ FWII _ WIII)]

1% _ v2<%)3/2 [FF' + F"],
)

where a prime denotes differentiation with respect to #.
Eliminating p between (9) and equating the coefficients of £°
and &', we get upon integration

FIZ _ FFII _ FIII — Cl,
(10)

"

Fw' -Fw" -w" =c,,

where C, and C, are the constants of integration.
The boundary conditions (3) and (4) become

F'(0) =1,

F(0) = -V, F'(c0)=0, (11)

W (0) =0, w'(0) =0,
(12)

Wi =Ld) asn—

where V,, = vw/(cv)l/2 and d, = (c/v)l/zél. It is to be noted
that the boundary condition W(0) = 0 is taken due to the
steam function. Let us assume that F(y§) — d, asy — oo,
whered, =6,/ (cv)'/?. Here d, is the dimensionless shear rate
parameter linked to the shear flow and d, is the dimensionless
displacement thickness parameter. The constants C; and C,
are now obtained from (10) using (11) and (12) as C, = 0 and
C, = —(B/c)d,. Hence (10) becomes

1"

F?-FF" - F" =y, (13)

Fw —-Fw" -w" = —Edz. (14)
C

Here the dimensionless shear rate parameter d, is
obtained by integrating (13) numerically by using the bound-
ary condition (11). When (13) and (14) are substituted into (9),
we get the dimensionless pressure distribution P(, %) after
integration as

B

1
_p= E132 + F' — d, & + constant, (15)
c

where P = p(x, y)/(pcv). The dimensionless wall shear stress
T is given as

T =¢F"(0)+W" (0). (16)

The dimensionless stream function for the flow can be
obtained as

vEn =8 [ W @)

where £ is the dimensionless distance along the surface.

3. Method of Numerical Solution

In the absence of an analytic solution of a problem, a numeri-
cal solution is indeed an obvious and natural choice. Thus the
governing equations (13) and (14) along with the boundary
conditions (11)-(12) are solved numerically by fourth-order
Runge-Kutta method with shooting technique. To do this, we
first transform the nonlinear differential equation (13) to a
system of three first-order differential equations as

= H=ye Vi=yi-yom ()
where y, = F(%), y, = F' (1), y; = F" (1), and a prime denotes
differentiation with respect to the independent variable 7. The
boundary conditions (11) become

atn =0,

==V =1

(19)
y, — 0 asn — oo.
For a given value of V,, the values of y, and y, are known at
the starting point # = 0. Now the value of y, asy — oo is
replaced by y, at a finite value 5 = 7, to be determined later.
The value of y, at # = 0 is guessed in order to initiate the
integration scheme. Starting from the given values of y, and
y, at 7 = 0 and the guessed value of y; at # = 0, we integrate
the system of first-order equations (18) by using a fourth-
order Runge-Kutta method up to the end-point # = 7. The
computed value of y, at § = 7, is then compared with y,
at 1 = 1. The absolute difference between these two values
should be as small as possible. To this end we use a Newton-
Raphson iteration procedure to assure quadratic convergence
of the iterations. The value of 7, is then increased till y,
attains the value zero asymptotically.

Using the numerical values of F(#) obtained from the
solutions of (11) and (13), (14) along with the boundary
conditions (12) is solved numerically using the same method
as described above to obtain W (#).
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FIGURE 2: Variation of wall shear stress with f3/c for several values
of Vy(< 0) (i.e., suction at the plate) when & = 1.0 and d, = 1.0.
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FIGURE 3: Variation of wall shear stress with f3/c for several values
of Vo (= 0) (i.e., blowing at the plate) when & = 1.0 and d, = 1.0.

4. Results and Discussion

Figures 2 and 3 show the variation of dimensionless wall shear
stress with f3 for several values of V, keeping the values of the
other parameters fixed. Note that V, = 0 corresponds to the
case when there is no suction or blowing at the sheet, V; < 0
corresponds to suction, and V; > 0 corresponds to blowing
at the sheet. Figure 2 reveals that as the suction velocity
increases, the magnitude of the wall shear stress increases. On
the other hand, Figure 3 indicates that with the increase of
blowing velocity at the plate, the magnitude of the wall shear
stress decreases. From these figures, it is also noticed that the
effect of wall shear stress is more pronounced for suction than
blowing at the stretching sheet.

Figure 4 shows the variation of U(£,#), the horizontal
component of velocity, with # for several values of f/c when
there is no suction or blowing velocity at the sheet. Figure 5
shows the same behaviour for suction (V, = -2.0) at the
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FIGURE 4: Variation of U(&, #) with # for several values of 3/c with
£=1.0,d, =3.0,and V, = 0 (i.e., no suction or blowing at the plate).

FIGURE 5: Variation of U(&, i) with # for several values of 3/c with
£=1.0,d, =3.0,and V, = 2.0 (i.e., for suction at the plate).

stretching sheet and Figure 6 shows for blowing (V, = 2.0)
at the stretching sheet keeping other parameters fixed. From
these figures it is observed that U(&,#) increases with the
increase of 3/c except in a small region near the sheet. The
figures indicate that there is a flow reversal very near the
sheet. This region of flow reversal gradually increases with the
increase of /c.

Figures 7 and 8 show the variation of U(&,#) with #
for several values of the suction and blowing at the plate,
respectively. Figure 7 reveals that as |V,| increases (i.e.,
suction velocity increases), the horizontal velocity at a point
decreases except in a small region near the sheet. Figure 8
shows that as the blowing velocity increases, velocity at a
point increases. Notice that there is an indication of flow
reversal. From these two figures, it can also be concluded that,
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FIGURE 6: Variation of U(&, ) with # for several values of 3/c with
£=1.0,d, =3.0,and V;, = 2.0 (i.e., for blowing at the plate).
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FIGURE 7: Variation of U(&, 1) with 7 for several values of V(< 0)
(i-e., suction at the plate) when f/c = 2.0,& = 1.0, and d, = 1.0.

with the increase of V;, (magnitude), the flow reversal region
increases.

Figure 9 shows the variation of U(&, ) with # for several
values of the shear rate parameter d; in the absence of suction
or blowing at the sheet. Figure 10 shows the same for suction
and Figure 11 stands for blowing at the sheet for the same
set of parameters. From these figures it is seen that, with the
increase of shear rate parameter d,, the region of flow reversal
increases. The tendency of flow reversal is more prominent
in case of suction than blowing. It is also observed that as
the shear rate parameter d; increases, velocity at a point also
increases. Figure 12 depicts the variation of the horizontal
component of velocity, U(E, %), with # for several values of &
(negative, zero, and positive) in the presence of blowing at the
sheet. The figure reveals that as £ increases, velocity at a point
decreases.
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FIGURE 8: Variation of U(&,#) with # for several values of V,(> 0)
(i.e., blowing at the plate) when /¢ =2.0,& = 1.0,and d, = 1.0.
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FIGURE 9: Variation of U(&,#) with # for several values of d; with
& =10,8/c =20,and V;, = 0 (i.e., no suction or blowing at the
plate).

Presentation of full stability analysis is beyond the scope
of the present work since a stability analysis requires an
unsteady flow, whereas our problem is a steady one. But as
we know that, in boundary layer flow, the reverse profiles
suggest temporal instability so one can expect that, in the case
of full Navier-Stokes solution, the same feature holds good.
This can be verified using the stability analysis by adopting
the techniques of Merkin [19] and Mahapatra et al. [20].

5. Concluding Remark

We have investigated the steady two-dimensional flow of
incompressible viscous fluid past a porous deformable sheet
which is stretched in its own plane with velocity cx, x
being the distance along the sheet from the fixed point
with uniform suction or blowing. A uniform shear flow of
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FIGURE 10: Variation of U(&, i) with # for several values of d; with
&=1.0,B/c =2.0,and V, = 2.0 (i.e., for suction at the plate).
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FIGURE 11: Variation of U(&, i) with # for several values of d, with
& =1.0, B/c =2.0,and V, = 2.0 (i.e., for blowing at the plate).

strain rate f3 is considered here over the stretching surface.
It is seen that the magnitude of wall skin friction increases
with the increase of suction velocity (magnitude) but it
decreases with the increase of blowing velocity and this effect
is more pronounced in suction than blowing. The horizontal
component of velocity at a fixed point increases with the
increase of 3/c and there is a flow reversal. This region of
flow reversal increases with the increase of 3/c. The behaviour
of the horizontal velocity component is shown for different
parameters.
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FIGURE 12: Variation of U(&,#) with # for several values of & with
d, = 1.0, f/c = 2.0,and V; = -0.5 (i.e., for suction at the plate).
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