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Two-phase magnetohydrodynamic convective flow of electrically conducting fluid through an inclined channel is studied under
the action of a constant transverse magnetic field in a rotating system. The fluids in the two phases are steady, incompressible,
laminar, immiscible, and electrically conducting, having different densities, viscosities, and thermal and electrical conductivities.
The transport properties of both the fluids are assumed constant. The bounding infinite inclined parallel plates are maintained
at different constant temperatures, making an angle 𝜙 with the horizontal. Approximate solutions for velocity and temperature
distributions are obtained by using a straightforward regular perturbation technique. An in-depth study has been done on the
effects of rotation parameter, Hartmann number, inclination angle, the ratio of electrical conductivities, and viscosities of two
fluids on the flow. It is observed that the effect of increasing rotation is to decrease the primary velocity. Further it is noticed that
as the rotation increases, the secondary velocity increases for smaller rotation, while for larger rotation it decreases. It is also found
that the temperature distribution decreases as the rotation increases.

1. Introduction

The study of convective Hartmann flow and heat transfer
between two parallel plates is receiving considerable interest
in the current literature. Shail [1] studied the problemofHart-
mann flow of a conducting fluid in a horizontal channel of
insulated plates with a layer of nonconducting fluid overlying
a conducting fluid in a two-fluid flow. Rudraiah et al. [2] and
Umavathi [3] have done a detailed analysis on free and forced
convective heat transfer to an electrically conducting fluid
in a channel. Lohrasbi and Sahai [4], Malashetty and Leela
[5, 6], and Raju and Murty [7] have studied the Hartmann
flow characteristics of two fluids in a horizontal channel. Seth
et al. [8] have presented the detailed analysis on Hartmann
flow in a rotating system in the presence of inclinedmagnetic
field with Hall effects. Chauhan and Rastogi [9, 10] have
considered Hall current and heat transfer effects on MHD
flow andMHD Couette flow in a channel partially filled with
a porous medium in a rotating system.

Numerous publications dealing with both the experi-
mental and the theoretical aspects of the two-phase flow

systems with or without considering the heat transfer prob-
lems associated with MHD power generators, MHD devices,
and thermonuclear power generations have appeared in the
literature. Abdul Mateen [11, 12] has studied the magne-
tohydrodynamic flow and transient magnetohydrodynamic
flow of two immiscible fluids through a horizontal channel.
Raju and Nagavalli [13] have studied the MHD two-layered
unsteady flow and heat transfer through a horizontal channel
in the presence of applied magnetic and electric fields in a
rotating system. Recently, Murty and Linga Raju [14] have
investigated magnetohydrodynamic two-phase flow and heat
transfer between two parallel porous walls in a rotating
system.

Basically, the inclined geometry has enormous applica-
tions in the heat transfer technology like solar collector.
Though such problems with inclined geometry are close to
realistic practical situations, much attention has not been
given to handling them except the studies by Malashetty and
Umavathi [15], Malashetty et al. [16], S. Daniel and Y. S.
Daniel [17], and Murty and Prakash [18]. Therefore, in this
paper, we have studied two-phase magnetohydrodynamic
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convective flow of electrically conducting fluid through an
inclined channel under the action of a constant transverse
magnetic field when rotated by an angular velocity about an
axis perpendicular to the plates.

2. Mathematical Formulation

A steady laminar and fully developed two-phase magnetohy-
drodynamic convective flow driven by a common constant
pressure gradient (−𝜕𝑝/𝜕𝑥) and temperature gradient Δ𝑇 =
(𝑇
𝑤1
−𝑇
𝑤2
) has been considered in the presence of a constant

magnetic field applied transversely to the direction of the
flow. The physical configuration is shown in Figure 1, which
consists of two infinite inclined parallel plates maintained
at different constant temperatures, extending in the 𝑥 and
𝑧 directions, making an angle 𝜙 with the horizontal. The
regions 0 ≤ 𝑦 ≤ ℎ

1
and −ℎ

2
≤ 𝑦 ≤ 0 are occupied

by two different electrically conducting incompressible fluids
having density 𝜌

𝑖
, viscosity 𝜇

𝑖
, electrical conductivity 𝜎

𝑖
, and

thermal conductivity𝐾
𝑖
. The whole system is rotated with an

angular velocity Ω in a counterclockwise direction about 𝑦-
axis perpendicular to the plates. The transport properties of
both the fluids are assumed constant. The suffix 𝑖 (𝑖 = 1, 2)
represents the values for phases I and II, respectively.

With these assumptions, the governing equations of
motion and energy for Boussinesq fluids as in Malashetty
et al. [16] for both phases are

𝜇
𝑖
(
𝑑2𝑢
𝑖

𝑑𝑦2
) + 𝜌
𝑖
𝑔𝛽
𝑖
(𝑇
𝑖
− 𝑇
𝑤2
) sin𝜙 − 𝜎

𝑖
𝐵
2

0
𝑢
𝑖

= (
𝜕𝑝

𝜕𝑥
) + 2Ω𝜌

𝑖
𝑤
𝑖
,

𝜇
𝑖
(
𝑑2𝑤
𝑖

𝑑𝑦2
) − 𝜎
𝑖
𝐵
2

0
𝑤
𝑖
= −2Ω𝜌

𝑖
𝑢
𝑖
,

(
𝑑2𝑇
𝑖

𝑑𝑦2
) + (

𝜇
𝑖

𝐾
𝑖

){(
𝑑𝑢
𝑖

𝑑𝑦
)
2

+ (
𝑑𝑤
𝑖

𝑑𝑦
)
2

}

+ [
𝜎
𝑖
𝐵2
0
(𝑢2
𝑖
+ 𝑤2
𝑖
)

𝐾
𝑖

] = 0,

(1)

where 𝑢
𝑖
and 𝑤

𝑖
are the primary and secondary velocity

components along 𝑥 and 𝑧 directions, respectively, 𝑇
𝑖
is

the temperature, 𝛽
𝑖
is the coefficient of thermal expansion,

and 𝑔 is the acceleration due to gravity. The fluid and
the thermometric boundary conditions are unchanged by
the addition of electromagnetic field. The no-slip condition
requires that the velocity must be vanishing at the wall. In
addition, the fluid velocity, shear stress, temperature, and heat
flux must be continuous across the interface.

Phase I

Phase II

B0

y

x

y = h1

y = −h2

Ω

T = Tw1

T = Tw2
→
g

𝜙

Figure 1: Physical configuration.

The boundary and interface conditions are

𝑢
1
(ℎ
1
) = 0,

𝑤
1
(ℎ
1
) = 0;

𝑢
1
(0) = 𝑢

2
(0) ,

𝑤
1
(0) = 𝑤

2
(0) ;

𝑢
2
(−ℎ
2
) = 0,

𝑤
2
(−ℎ
2
) = 0,

𝜇
1
(
𝑑𝑢
1

𝑑𝑦
) = 𝜇

2
(
𝑑𝑢
2

𝑑𝑦
) ,

𝜇
1
(
𝑑𝑤
1

𝑑𝑦
) = 𝜇

2
(
𝑑𝑤
2

𝑑𝑦
) ,

at 𝑦 = 0,

𝑇
1
(ℎ
1
) = 𝑇
𝑤1
,

𝑇
1
(0) = 𝑇

2
(0) ,

𝑇
2
(−ℎ
2
) = 𝑇
𝑤2
,

𝐾
1
(
𝑑𝑇
1

𝑑𝑦
) = 𝐾

2
(
𝑑𝑇
2

𝑑𝑦
) at 𝑦 = 0.

(2)

In making these equations dimensionless, the following
transformations are used:

𝑢
∗

𝑖
=
𝑢
𝑖

𝑢
1

,

𝑦
∗

𝑖
=
𝑦
𝑖

ℎ
𝑖

,

𝜃 =
(𝑇 − 𝑇

𝑤2
)

Δ𝑇
,

𝑚 =
𝜇
1

𝜇
2

,

𝐾 =
𝐾
1

𝐾
2

,
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ℎ =
ℎ
2

ℎ
1

,

𝑛 =
𝜌
2

𝜌
1

,

𝑏 =
𝛽
2

𝛽
1

,

𝑠 =
𝜎
2

𝜎
1

,

Gr =
(𝑔𝛽
1
ℎ3
1
Δ𝑇)

]2
1

,

𝑀 = 𝐵
0
ℎ
1
√
𝜎
1

𝜇
1

,

Pr =
𝜇
1
𝐶
𝑝

𝐾
1

,

Ec =
𝑢2
1

𝐶
𝑝
Δ𝑇

,

Re =
(𝑢
1
ℎ
1
)

]
1

,

𝑃 = (
ℎ2
1

𝜇
1
𝑢
1

)(
𝜕𝑝

𝜕𝑥
) ,

𝑅
2

=
Ωℎ2
1

]
.

(3)

With the above nondimensional quantities, the governing
equations (1) become

(
𝑑2𝑢
𝑖

𝑑𝑦2
) + (

Gr
Re
)𝐴 sin𝜙𝜃

𝑖
− 𝐵𝑀

2

𝑢
𝑖
= CP + 2𝑅2𝑤

𝑖
,

(
𝑑2𝑤
𝑖

𝑑𝑦2
) − 𝐵𝑀

2

𝑤
𝑖
= −2𝑅

2

𝑢
𝑖
,

(
𝑑2𝜃
𝑖

𝑑𝑦2
) + PrEc𝐷[(

𝑑𝑢
𝑖

𝑑𝑦
)
2

+ (
𝑑𝑤
𝑖

𝑑𝑦
)
2

]

+ PrEc𝐹𝑀2 (𝑢2
𝑖
+ 𝑤
2

𝑖
) = 0,

(4)

where 𝐴 = 𝑏𝑚𝑛ℎ2, 𝐵 = 𝑚𝑠ℎ2, 𝐶 = 𝑚ℎ2, 𝐷 = (𝐾/𝑚), 𝐹 =
𝐾ℎ2𝑠 , and 𝐴, 𝐵, 𝐶,𝐷, and 𝐹 are all equal to 1 for phase I.

The nondimensional forms of the boundary and interface
conditions (2) become

𝑢
1
(1) = 0,

𝑤
1
(1) = 0;

𝑢
1
(0) = 𝑢

2
(0) ,

𝑤
1
(0) = 𝑤

2
(0) ;

𝑢
2
(−1) = 0,

𝑤
2
(−1) = 0,

(
𝑑𝑢
1

𝑑𝑦
) = (

1

𝑚ℎ
)(

𝑑𝑢
2

𝑑𝑦
) ,

(
𝑑𝑤
1

𝑑𝑦
) = (

1

𝑚ℎ
)(

𝑑𝑤
2

𝑑𝑦
) at 𝑦 = 0,

𝜃
1
(1) = 1,

𝜃
1
(0) = 𝜃

2
(0) ,

𝜃
2
(−1) = 0,

(
𝑑𝜃
1

𝑑𝑦
) = (

1

𝐾ℎ
)(

𝑑𝜃
2

𝑑𝑦
) at 𝑦 = 0.

(5)

The asterisks have been dropped for simplicity. Further
writing 𝑞

1
= 𝑢
1
+ 𝑖𝑤
1
and 𝑞
2
= 𝑢
2
+ 𝑖𝑤
2
, (4) can be written in

complex form as

(
𝑑2𝑞
𝑖

𝑑𝑦2
) + (

Gr
Re
)𝐴 sin𝜙𝜃

𝑖
− 𝐵𝑀

2

𝑞
𝑖
= CP − 2𝑖𝑅2𝑞

𝑖
, (6)

(
𝑑2𝜃
𝑖

𝑑𝑦2
) + PrEc𝐷[(

𝑑𝑞
𝑖

𝑑𝑦
)(

𝑑𝑞
𝑖

𝑑𝑦
)]

+ PrEc𝐹𝑀2 (𝑞
𝑖
𝑞
𝑖
) = 0

(7)

which are to be solved subject to the boundary and interface
conditions:

𝑞
1
(1) = 0,

𝑞
1
(0) = 𝑞

2
(0) ,

𝑞
2
(−1) = 0,

(
𝑑𝑞
1

𝑑𝑦
) = (

1

𝑚ℎ
)(

𝑑𝑞
2

𝑑𝑦
) at 𝑦 = 0,

𝜃
1
(1) = 1,

𝜃
1
(0) = 𝜃

2
(0) ,

𝜃
2
(−1) = 0,

(
𝑑𝜃
1

𝑑𝑦
) = (

1

𝐾ℎ
)(

𝑑𝜃
2

𝑑𝑦
) at 𝑦 = 0.

(8)

3. Solutions

The governing equations of momentum (6) along with the
energy equations (7) are to be solved subject to the boundary
and interface conditions (8) for the velocity and temperature
distributions. Here, we consider the Eckert number very
small. Hence, the product PrEc (= 𝜀) is very small and can
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be exploited to use the regular perturbation method. The
solutions are assumed in the form

(𝑞
𝑖
, 𝜃
𝑖
) = (𝑞

𝑖0
, 𝜃
𝑖0
) + 𝜀 (𝑞

𝑖1
, 𝜃
𝑖1
) + ⋅ ⋅ ⋅ , (9)

where 𝑞
𝑖0
, 𝜃
𝑖0
are solutions for the case 𝜀 equal to zero. 𝑞

𝑖1
, 𝜃
𝑖1

are perturbed quantities relating to 𝑞
𝑖0
, 𝜃
𝑖0
, respectively. Sub-

stituting the above solution in (6) and (7) and equating the
coefficients of similar powers of 𝜀 to zero, we get the zeroth
and the first order equations as follows.

Zeroth order equations:

(
𝑑2𝑞
𝑖0

𝑑𝑦2
) + (

Gr
Re
)𝐴 sin𝜙𝜃

𝑖0
− 𝐵𝑀

2

𝑞
𝑖0

= CP − 2𝑖𝑅2𝑞
𝑖0
,

(
𝑑2𝜃
𝑖0

𝑑𝑦2
) = 0.

(10)

First order equations:

(
𝑑2𝑞
𝑖1

𝑑𝑦2
) + (

Gr
Re
)𝐴 sin𝜙𝜃

𝑖1
− 𝐵𝑀

2

𝑞
𝑖1

= −2𝑖𝑅
2

𝑞
𝑖1
,

(
𝑑2𝜃
𝑖1

𝑑𝑦2
) + 𝐷[(

𝑑𝑞
𝑖0

𝑑𝑦
)(

𝑑𝑞
𝑖0

𝑑𝑦
)] + 𝐹𝑀

2

(𝑞
𝑖0
𝑞
𝑖0
)

= 0.

(11)

The corresponding Boundary conditions (8) reduce to

𝑞
10
(1) = 0,

𝑞
10
(0) = 𝑞

20
(0) ,

𝑞
20
(−1) = 0,

(
𝑑𝑞
10

𝑑𝑦
) = (

1

𝑚ℎ
)(

𝑑𝑞
20

𝑑𝑦
) at 𝑦 = 0,

𝜃
10
(1) = 1,

𝜃
10
(0) = 𝜃

20
(0) ,

𝜃
20
(−1) = 0,

(
𝑑𝜃
10

𝑑𝑦
) = (

1

𝐾ℎ
)(

𝑑𝜃
20

𝑑𝑦
) at 𝑦 = 0,

(12)

𝑞
11
(1) = 0,

𝑞
11
(0) = 𝑞

21
(0) ,

𝑞
21
(−1) = 0,

(
𝑑𝑞
11

𝑑𝑦
) = (

1

𝑚ℎ
)(

𝑑𝑞
21

𝑑𝑦
) at 𝑦 = 0,

𝜃
11
(1) = 0,

𝜃
11
(0) = 𝜃

21
(0) ,

𝜃
21
(−1) = 0,

(
𝑑𝜃
11

𝑑𝑦
) = (

1

𝐾ℎ
)(

𝑑𝜃
21

𝑑𝑦
) at 𝑦 = 0.

(13)

We observe that (10) and (11) are linear and coupled and
therefore can be solved exactly. Here, we consider 𝑞

10
= 𝑢
10
+

𝑖𝑤
10
, 𝑞
20
= 𝑢
20
+ 𝑖𝑤
20
, 𝑞
11
= 𝑢
11
+ 𝑖𝑤
11
, and 𝑞

21
= 𝑢
21
+ 𝑖𝑤
21
.

Solutions of the zeroth order equations (10) using bound-
ary conditions (12) are

𝜃
10
=
(𝑦 + 𝐾ℎ)

(1 + 𝐾ℎ)
,

𝜃
20
=
(1 + 𝑦)𝐾ℎ

(1 + 𝐾ℎ)
,

(14)

𝑢
10
= [(𝑐
1
𝑒
𝐴
5
𝑦

+ 𝑐
2
𝑒
−𝐴
5
⋅𝑦

) cos (𝐴
6
𝑦) + 𝐴

14
+ 𝐴
12
𝑦] ,

𝑤
10

= − [(𝑐
1
𝑒
𝐴
5
𝑦

− 𝑐
2
𝑒
−𝐴
5
⋅𝑦

) sin (𝐴
6
𝑦) − 𝐴

15
− 𝐴
13
𝑦] ,

𝑢
20
= [(𝑐
3
𝑒
𝐴
23
𝑦

+ 𝑐
4
𝑒
−𝐴
23
⋅𝑦

) cos (𝐴
24
𝑦) + 𝐴

30
+ 𝐴
32
𝑦] ,

𝑤
20
= − [(𝑐

3
𝑒
𝐴
23
𝑦

− 𝑐
4
𝑒
−𝐴
23
⋅𝑦

) sin (𝐴
24
𝑦) − 𝐴

31
− 𝐴
33
𝑦] .

(15)

Solutions of the first order equations (11) using boundary
conditions (13) are

𝜃
11
= {𝑐
5
𝑦 + 𝑐
6
+ 𝐵
56
𝑒
2𝐴
5
𝑦

+ 𝐵
57
cos 2𝐴

6
𝑦

+ 𝐵
58
𝑒
−2𝐴
5
𝑦

+ 𝐵
132
𝑒
𝐴
5
𝑦 sin𝐴

6
𝑦 + 𝐵
98
𝑦
2

+ 𝐵
133
𝑒
𝐴
5
𝑦 cos𝐴

6
𝑦 + 𝐵
134
𝑒
−𝐴
5
𝑦 sin𝐴

6
𝑦

+ 𝐵
135
𝑒
−𝐴
5
𝑦 cos𝐴

6
𝑦 + 𝐵
136
𝑒
𝐴
5
𝑦

𝑦 cos𝐴
6
𝑦

+ 𝐵
137
𝑒
𝐴
5
𝑦

𝑦 sin𝐴
6
𝑦 + 𝐵
138
𝑒
−𝐴
5
𝑦

𝑦 cos𝐴
6
𝑦

+ 𝐵
139
𝑒
−𝐴
5
𝑦

𝑦 sin𝐴
6
𝑦 + 𝐵
96
𝑦
3

+ 𝐵
97
𝑦
4

}

+ 𝑖 {𝐵
99
sin 2𝐴

6
𝑦 + 𝐵
140
𝑒
𝐴
5
𝑦 sin𝐴

6
𝑦

+ 𝐵
141
𝑒
𝐴
5
𝑦 cos𝐴

6
𝑦 + 𝐵
142
𝑒
−𝐴
5
𝑦 sin𝐴

6
𝑦
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+ 𝐵
143
𝑒
−𝐴
5
𝑦 cos𝐴

6
𝑦 + 𝐵
144
𝑒
𝐴
5
𝑦

𝑦 cos𝐴
6
𝑦

+ 𝐵
145
𝑒
𝐴
5
𝑦

𝑦 sin𝐴
6
𝑦 + 𝐵
146
𝑒
−𝐴
5
𝑦

𝑦 cos𝐴
6
𝑦

+ 𝐵
147
𝑒
−𝐴
5
𝑦

𝑦 sin𝐴
6
𝑦} ,

𝜃
21
= {𝑐
7
𝑦 + 𝑐
8
+ 𝐸
67
𝑒
2𝐴
23
𝑦

+ 𝐸
68
cos 2𝐴

24
𝑦

+ 𝐸
69
𝑒
−2𝐴
23
𝑦

+ 𝐸
135
𝑒
𝐴
23
𝑦 sin𝐴

24
𝑦

+ 𝐸
136
𝑒
𝐴
23
𝑦 cos𝐴

24
𝑦 + 𝐸
137
𝑒
−𝐴
23
𝑦 sin𝐴

24
𝑦

+ 𝐸
138
𝑒
−𝐴
23
𝑦 cos𝐴

24
𝑦 − 𝐸
107
𝑦
4

− 𝐸
108
𝑦
3

+ 𝐸
139
𝑒
𝐴
23
𝑦

𝑦 cos𝐴
24
𝑦 + 𝐸
140
𝑒
𝐴
23
𝑦

𝑦 sin𝐴
24
𝑦

+ 𝐸
141
𝑒
−𝐴
23
𝑦

𝑦 cos𝐴
24
𝑦 − 𝐸
109
𝑦
2
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(16)

The constants appearing in (15) and (16) are not given for
the sake of brevity. Since the problem contains too many
nondimensional parameters, for the sake of conciseness, we
fix 𝑃 = −5.0, 𝑏 = 1.0, Re = 5.0, 𝑛 = 1.5, and 𝐾 = 1.0. In the
figures, all the other parameters except the varying one are
chosen from the set (𝑀, Gr, 𝜙,𝑚, ℎ, 𝑠, 𝑅) = (2.0, 5.0, 30∘, 0.5,
1.0, 2.0, 2.0).

4. Results and Discussion

Two-phase magnetohydrodynamic convective flow between
two infinite inclined parallel plates in a rotating system is
studied analytically. The resulting differential equations are
solved using perturbation method to obtain approximate
solutions for temperature distribution and primary and
secondary velocity distributions. Here, we note that when
𝑅 = 0, that is, in the absence of rotation, these results are
in agreement with that of Malashetty et al. [16].

The effect of rotation parameter 𝑅 on primary velocity 𝑢
and secondary velocity𝑤 is shown in Figures 2 and 3, respec-
tively. From Figure 2, it is observed that the primary velocity
𝑢 decreases with the increase in the rotation parameter. The
rotation parameter 𝑅 defines the relative magnitude of the
Coriolis force and the viscous force in the regime. As the high
magnitude Coriolis forces oppose the buoyancy force, the
velocity will be decreased. From Figure 3, it is concluded that
as the rotation parameter 𝑅 increases in (0, 2), the secondary
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Figure 2: Primary velocity profiles for different values of rotation
parameter 𝑅.

y

w

R = 0.1

R = 0.5

R = 1.5

R = 2

R = 3

R = 4

−1

−0.8

−0.6

−0.4

−0.2
−0.01

0.2

0.4

0.6

0.8

1

0
0.04 0.09 0.14 0.19 0.24 0.29 0.34 0.39

Figure 3: Secondary velocity profiles for different values of rotation
parameter 𝑅.

velocity𝑤 also increases but outside this range as𝑅 increases,
it decreases. Therefore, by increasing the rotation parameter
𝑅, the secondary flow becomes oscillatory.

Figures 4 and 5 show the effect of the angle of inclination𝜙
on primary velocity 𝑢 and secondary velocity𝑤, respectively.
As the angle of inclination 𝜙 increases, both the primary
and secondary velocities increase because the magnitude of
the buoyancy force increases with increase in the inclination
angle. The effect of the ratio of the viscosities 𝑚 on primary
and secondary velocities is shown in Figures 6 and 7,
respectively.The smaller the value of the viscosity of the fluid
in the lower phase compared to the fluid in the upper phase,
the larger the primary and secondary flow fields.

Figures 8 and 9 represent the effect of the ratio of heights
ℎ on primary and secondary velocities, respectively. The
smaller the height of the upper phase compared to the lower
phase, the larger the primary as well as secondary flow fields.
The effect of the ratio of the electrical conductivity 𝑠 on
primary velocity 𝑢 and secondary velocity 𝑤 is shown in
Figures 10 and 11, respectively. We have observed that as the
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Figure 4: Primary velocity profiles for different values of inclination
angle 𝜙.
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Figure 5: Secondary velocity profiles for different values of inclina-
tion angle 𝜙.

ratio of the electrical conductivity 𝑠 increases, the primary
velocity 𝑢 increases but the secondary velocity 𝑤 decreases.

Figures 12 and 13 show the effect of Hartmann number𝑀
on primary and secondary velocities, respectively. The effect
of increasing Hartmann number 𝑀 is to decrease both the
primary and secondary velocities.This is because an increase
in applied magnetic field strength causes greater interaction
between the fluid motion and the magnetic field, therefore,
an increase in the Lorentz force. Since this force opposes
the buoyancy force, both the velocities will be decreased.
The effect of Grashof number Gr on primary and secondary
velocities is shown in Figures 14 and 15, respectively. We find
that an increase in the value of Grashof number Gr increases
both the primary and secondary velocities.

The effect of rotation parameter on temperature 𝜃 can
be seen in Figure 16. From the figure, it is evident that
the temperature decreases with the increase in the rotation
parameter 𝑅. The rotation parameter 𝑅 (𝑅2 = Ωℎ2

𝑖
/]) defines

the relative magnitude of the Coriolis force and the viscous
force in the regime. As the high magnitude Coriolis forces
oppose the buoyancy force, the velocity will be decreased
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Figure 6: Primary velocity profiles for different values of ratio of
viscosities𝑚.
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Figure 7: Secondary velocity profiles for different values of ratio of
viscosities𝑚.
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Figure 8: Primary velocity profiles for different values of ratio of
heights ℎ.
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Figure 9: Secondary velocity profiles for different values of ratio of
heights ℎ.
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Figure 10: Primary velocity profiles for different values of ratio of
electrical conductivities 𝑠.
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Figure 11: Secondary velocity profiles for different values of ratio of
electrical conductivities 𝑠.
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Figure 12: Primary velocity profiles for different values ofHartmann
number𝑀.
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Figure 13: Secondary velocity profiles for different values of Hart-
mann number𝑀.

leading to a reduction in the viscous and Joule dissipation and
so to a reduction in the temperature.

Figure 17 shows the effect of the angle of inclination 𝜙 on
temperature 𝜃. As the angle of inclination 𝜙 increases, the
temperature 𝜃 also increases because the magnitude of the
buoyancy force increases with the increase in the inclination
angle. The effect of the ratio of viscosities 𝑚 on the temper-
ature 𝜃 is shown in Figure 18. From the figure, it is observed
that the less viscous fluid in the lower phase adds the heat
transfer. Figure 19 exhibits the effect of the ratio of heights ℎ
on the temperature 𝜃. From the figure, it is noticed that the
smaller the height of the upper phase compared to the lower
phase, the larger the magnitude of the temperature. Figure 20
shows the effect of the ratio of electrical conductivities 𝑠 on
the temperature 𝜃. From the figure, it is concluded that as the
ratio of electrical conductivities 𝑠 increases, the temperature
also increases.

Figure 21 represents the effect of Hartmann number 𝑀
on the temperature 𝜃. From the figure, it is clear that the
effect of increasing 𝑀 is to decrease the temperature. This
is because an increase in the applied magnetic field strength
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Figure 14: Primary velocity profiles for different values of Grashof
number Gr.
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Figure 15: Secondary velocity profiles for different values of Grashof
number Gr.
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Figure 16: Temperature profiles for different values of rotation
parameter 𝑅.
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Figure 17: Temperature profiles for different values of inclination
angle 𝜙.
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Figure 18: Temperature profiles for different values of ratio of
viscosities𝑚.
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Figure 19: Temperature profiles for different values of ratio of
heights ℎ.
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Figure 20: Temperature profiles for different values of ratio of
electrical conductivities 𝑠.
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Figure 21: Temperature profiles for different values of Hartmann
number𝑀.

causes greater interaction between the fluid motion and the
magnetic field, therefore, an increase in the Lorentz force.
Since this force opposes the buoyancy force, the temperature
will be decreased. The effect of Grashof number Gr on
temperature 𝜃 is shown in Figure 22; we observe from this
figure that an increase in the value of Grashof number Gr
increases the temperature 𝜃.

Nomenclature

𝐵
0
: Magnetic field strength

𝑏: Ratio of the coefficients of thermal
expansion (𝛽

2
/𝛽
1
)

𝐶
𝑝
: Specific heat at constant pressure

Ec: Eckert number [(𝑢
1
)2/(𝐶
𝑝
Δ𝑇)]

𝑔: Acceleration due to gravity
ℎ: Ratio of the heights of the two phases

(ℎ
2
/ℎ
1
)

Gr: Grashof number [𝑔𝛽
1
ℎ3
1
Δ𝑇/]2
1
]

𝐾: Ratio of the thermal conductivities
(𝐾
1
/𝐾
2
)
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Figure 22: Temperature profiles for different values of Grashof
number Gr.

𝐾
1
, 𝐾
2
: Thermal conductivities of phases I and II,

respectively
𝑀: Hartmann number [𝐵

0
ℎ
1
√(𝜎
1
/𝜇
1
)]

𝑚: Ratio of the viscosities (𝜇
1
/𝜇
2
)

𝑛: Ratio of the densities (𝜌
2
/𝜌
1
)

𝑃: Nondimensional pressure gradient
[ℎ2
1
(𝜕𝑝/𝜕𝑥)/𝜇

1
𝑢
1
]

Pr: Prandtl number [(𝜇
1
𝐶
𝑝
/𝐾
1
)]

Re: Reynolds number [(𝑢
1
ℎ
1
/]
1
)]

𝑅: Rotation parameter [ℎ
1
√Ω/]]

𝑠: Ratio of the electrical conductivities (𝜎
2
/𝜎
1
)

𝑇: Temperature
𝑇
𝑤1
, 𝑇
𝑤2
: Temperature of the boundaries

𝑢: Primary velocity
𝑤: Secondary velocity
𝑢
1
: Average velocity

𝑥, 𝑦, 𝑧: Space coordinates.

Greek Symbols

𝛽: Coefficient of thermal expansion
𝜎: Electrical conductivity
𝜙: Angle of inclination
𝜌: Density
]: Kinematic viscosity
𝜇: Viscosity
𝜀: Product of Prandtl number and Eckert

number (Pr ⋅Ec)
Δ𝑇: Difference in temperature [𝑇

𝑤1
− 𝑇
𝑤2
]

𝜃: Nondimensional temperature
[(𝑇 − 𝑇

𝑤2
)/Δ𝑇]

Ω: Angular velocity.

Subscript

𝑖: Value for phase.
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