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We establish new results concerning endomorphisms of a finite chain, if the cardinality of the image of such endomorphism is no
more than some fixed number. The semiring of all such endomorphisms can be seen as a simplex whose vertices are the constant
endomorphisms. We explore the properties of these simplices.

1. Introduction and Preliminaries

It is well known that each simplicial complex has a geometric
(continuous) interpretation as a convex set spanned by 𝑘

geometrically independent points in some Euclidean space.
Here, we present an algebraic (discrete) interpretation of

simplicial complex as a subsemiring, containing (in some
sense spanned by) 𝑘 constant endomorphisms of the endo-
morphism semiring ÊC

𝑛

of a finite chain.The endomorphism
semiring of a finite semilattice is well studied in [1–10].

The paper is organized as follows. After the introduction
and preliminaries, in Section 2, we give basic definitions and
obtain some elementary properties of simplices. Although
we do not speak about any distance here, we define discrete
neighborhoods with respect to any vertex of the simplex. In
Section 3, we study discrete neighborhoods, left ideals, and
right ideals of a simplex.Themain results areTheorems 9 and
12, where we find two right ideals of simplex. In Section 4,
Theorem 15 is the main result of the paper, where we show
that important objects (idempotents, 𝑎-nilpotent elements,
left ideals, and right ideals) of simplex (big semiring) can be
constructed using similar objects of coordinate simplex (little
semiring).

Since the terminology for semirings is not completely
standardized, we say what our conventions are. An algebra
𝑅 = (𝑅, +, ⋅), with two binary operations + and ⋅ on𝑅, is called
a semiring if:

(i) (𝑅, +) is a commutative semigroup;
(ii) (𝑅, ⋅) is a semigroup;

(iii) both distributive laws hold 𝑥 ⋅ (𝑦 + 𝑧) = 𝑥 ⋅ 𝑦 + 𝑥 ⋅ 𝑧

and (𝑥 + 𝑦) ⋅ 𝑧 = 𝑥 ⋅ 𝑧 + 𝑦 ⋅ 𝑧, for any 𝑥, 𝑦, 𝑧 ∈ 𝑅.
Let𝑅 = (𝑅, +, ⋅) be a semiring. If a neutral element 0 of the

semigroup (𝑅, +) exists and 0𝑥 = 0 or 𝑥0 = 0, it is called a left
or a right zero, respectively, for all 𝑥 ∈ 𝑅. If 0 ⋅𝑥 = 𝑥⋅0 = 0, for
all 𝑥 ∈ 𝑅, then it is called zero. An element 𝑒 of a semigroup
(𝑅, ⋅) is called a left (right) identity provided that 𝑒𝑥 = 𝑥 or
𝑥𝑒 = 𝑥, respectively, for all 𝑥 ∈ 𝑅. If a neutral element 1 of the
semigroup (𝑅, ⋅) exists, it is called identity.

A nonempty subset 𝐼 of 𝑅 is called an ideal if 𝐼 + 𝐼 ⊆ 𝐼,
𝑅𝐼 ⊆ 𝐼, and 𝐼𝑅 ⊆ 𝐼.

The facts concerning semirings can be found in [1].
For a join-semilattice (M, ∨), set EM of the endomor-

phisms of M to be a semiring with respect to the addition
and multiplication defined as follows:

(i) ℎ = 𝑓 + 𝑔, when ℎ(𝑥) = 𝑓(𝑥) ∨ 𝑔(𝑥), for all 𝑥 ∈ M;
(ii) ℎ = 𝑓 ⋅ 𝑔, when ℎ(𝑥) = 𝑓(𝑔(𝑥)), for all 𝑥 ∈ M.

This semiring is called the endomorphism semiring ofM.
In this paper, all semilattices are finite chains. Following

[2], we fix a finite chainC
𝑛
= ({0, 1, . . . , 𝑛 − 1}, ∨) and denote

the endomorphism semiring of this chain with ÊC
𝑛

. We do
not assume that 𝛼(0) = 0 for arbitrary 𝛼 ∈ ÊC

𝑛

. So, there
is not a zero in endomorphism semiring ÊC

𝑛

. Subsemirings
E
(𝑎)

C
𝑛

, where 𝑎 ∈ C
𝑛
, of the semiring ÊC

𝑛

, consisting of all
endomorphisms 𝛼 with fixed point 𝑎, are considered in [3].

If 𝛼 ∈ ÊC
𝑛

such that 𝑓(𝑘) = 𝑖
𝑘
, for any 𝑘 ∈ C

𝑛
,

we denote 𝛼 as an ordered 𝑛-tuple ≀𝑖
0
, 𝑖
1
, 𝑖
2
, . . . , 𝑖

𝑛−1
≀. Note

Hindawi Publishing Corporation
Algebra
Volume 2014, Article ID 263605, 10 pages
http://dx.doi.org/10.1155/2014/263605
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that the mappings will be composed accordingly, although
we shall usually give preference to writing mappings on the
right, so that 𝛼 ⋅ 𝛽 means “first 𝛼, then 𝛽”. The identity i =

≀0, 1, . . . , 𝑛−1≀ and all constant endomorphisms 𝑘 = ≀𝑘, . . . , 𝑘≀

are obviously (multiplicatively) idempotents.
Let 𝑎 ∈ C

𝑛
. For every endomorphism 𝑎 = ≀𝑎𝑎 . . . 𝑎≀, the

elements of

N
[𝑎]

𝑛
= {𝛼 | 𝛼 ∈ ÊC

𝑛

,

𝛼
𝑛
𝑎 = 𝑎 for some natural number 𝑛

𝑎
}

(1)

are called 𝑎-nilpotent endomorphisms. An important result
for 𝑎-nilpotent endomorphisms is as follows.

Theorem 1 (see [4, Theorem 3.3]). For any natural 𝑛, 𝑛 ≥ 2,
and 𝑎 ∈ C

𝑛
, the set of 𝑎-nilpotent endomorphisms N[𝑎]

𝑛
is a

subsemiring of ÊC
𝑛

. The order of this semiring is |N[𝑘]
𝑛
| = 𝐶
𝑘
⋅

𝐶
𝑛−𝑘−1

, where 𝐶
𝑘
is the 𝑘th Catalan number.

Another useful result is as follows.

Theorem 2 (see [5, Theorem 9]). The subset of ÊC
𝑛

, 𝑛 ≥ 3, of
all idempotent endomorphisms with 𝑠 fixed points 𝑘

1
, . . . , 𝑘

𝑠
,

1 ≤ 𝑠 ≤ 𝑛 − 1 is a semiring of order∏𝑠−1
𝑚=1

(𝑘
𝑚+1

− 𝑘
𝑚
).

For definitions and results concerning simplices, we refer
the reader to [6, 7].

2. The Simplex 𝜎
(𝑛)

{𝑎
0
,. . .,𝑎
𝑘−1

}

Let us fix elements 𝑎
0
, . . . , 𝑎

𝑘−1
∈ C
𝑛
, where 𝑘 ≤ 𝑛, 𝑎

0
< ⋅ ⋅ ⋅ <

𝑎
𝑘−1

, and let𝐴 = {𝑎
0
, . . . , 𝑎

𝑘−1
}. We consider endomorphisms

𝛼 ∈ ÊC
𝑛

such that Im(𝛼) ⊆ 𝐴. We denote this set by
𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}.

Let {𝑏
0
, . . . , 𝑏

ℓ−1
} ⊆ {𝑎

0
, . . . , 𝑎

𝑘−1
} and consider the set

𝜎
(𝑛)

{𝑏
0
, . . . , 𝑏

ℓ−1
} = {𝛽 | 𝛽 ∈ 𝜎

(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
} ,

Im (𝛽) = {𝑏
0
, . . . , 𝑏

ℓ−1
} } .

(2)

For𝛽
1
, 𝛽
2
∈ 𝜎
(𝑛)

{𝑏
0
, . . . , 𝑏

𝑘−1
}, let𝛽

1
∼ 𝛽
2
, if and only if the

sets Im(𝛽
1
) and Im(𝛽

2
) have a common least element. In this

way, we define an equivalence relation. Any equivalence class
can be identified with its least element which is the constant
endomorphism 𝑏

𝑚
= ≀𝑏
𝑚
, . . . , 𝑏

𝑚
≀, where𝑚 = 0, . . . ℓ − 1.

Now take a simplicial complex Δ with vertex set 𝑉 =

{𝑎
0
, . . . , 𝑎

𝑘−1
}. The subset {𝑏

0
, . . . , 𝑏

ℓ−1
} is a face of Δ. Hence,

we can consider the set 𝜎
(𝑛)

{𝑏
0
, . . . , 𝑏

ℓ−1
} as a face of Δ.

In particular, when the simplicial complex Δ consists of
all subsets of 𝑉, it is called a simplex (see [6]) and Δ =

𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}.

It is easy to see that Im(𝛼) ⊆ 𝐴 and Im(𝛽) ⊆ 𝐴 imply
Im(𝛼 + 𝛽) ⊆ 𝐴 and Im(𝛼 ⋅ 𝛽) ⊆ 𝐴, and so we have proved the
following.

Proposition 3. For any set 𝐴 = {𝑎
0
, . . . , 𝑎

𝑘−1
} ⊆ C

𝑛
, the

simplex 𝜎(𝑛){𝑎
0
, . . . , 𝑎

𝑘−1
} is a subsemiring of ÊC

𝑛

.

The number 𝑘 is called a dimension of simplex
𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}. Any simplex 𝜎

(𝑛)

{𝑏
0
, 𝑏
1
, . . . , 𝑏

ℓ−1
}, where

𝑏
0
, . . . , 𝑏

ℓ−1
∈ 𝐴, is a face of simplex 𝜎(𝑛){𝑎

0
, . . . , 𝑎

𝑘−1
}. If ℓ < 𝑘,

face 𝜎(𝑛){𝑏
0
, 𝑏
1
, . . . , 𝑏

ℓ−1
} is called a proper face.

The proper faces of simplex 𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
} are as

follows:

(i) 0-simplices are vertices 𝑎
0
, . . . , 𝑎

𝑘
;

(ii) 1-simplices are called strings; they are denoted by
STR(𝑛){𝑎, 𝑏}, where 𝑎, 𝑏 ∈ 𝐴;

(iii) 2-simplices are called triangles; they are denoted by
Δ
(𝑛)

{𝑎, 𝑏, 𝑐}, where 𝑎, 𝑏, 𝑐 ∈ 𝐴;
(iv) 3-simplices are called tetrahedra; they are denoted by

TETR(𝑛){𝑎, 𝑏, 𝑐, 𝑑}, where 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝐴;
(v) the last proper faces are simplices 𝜎(𝑛)

𝑘−1
{𝑏
0
, . . . , 𝑏

𝑘−2
},

where {𝑏
0
, . . . , 𝑏

𝑘−2
} ⊂ 𝐴.

The boundary of the simplex 𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
} is a union

of all its proper faces and is denoted by 𝜕(𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}).

The set

INT (𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
})

= 𝜎
(𝑛)

𝑘
(𝐴) \ 𝜕 (𝜎

(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
})

(3)

is called an interior of simplex 𝜎(𝑛){𝑎
0
, . . . , 𝑎

𝑘−1
}.

It follows that the interior of simplex 𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}

consists of endomorphisms 𝛼, such that Im(𝛼) = {𝑎
0
, 𝑎
1
,

. . . , 𝑎
𝑘−1

}. So, we have the following.

Proposition 4. The interior INT(𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}) is an

additive semigroup.

Proposition 5. Any face of simplex 𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
} is a left

ideal.

Proof. Let 𝜎
(𝑛)

{𝑏
0
, . . . , 𝑏

ℓ−1
} be a face of simplex

𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}. Obviously the face is a subsemiring of

𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}. Let 𝛼 ∈ 𝜎

(𝑛)

{𝑏
0
, . . . , 𝑏

ℓ−1
} and 𝛽 ∈ 𝜎

(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}. Since for any 𝑖 ∈ C

𝑛
we have 𝜑(𝑖) ∈ {𝑎

0
,

. . . , 𝑎
𝑘−1

}, then (𝜑 ⋅ 𝛼)(𝑖) ∈ {𝑏
0
, . . . , 𝑏

ℓ−1
}. Thus 𝜑 ⋅ 𝛼 ∈ 𝜎

(𝑛)

{𝑏
0
, . . . , 𝑏

ℓ−1
}. Hence, 𝜎(𝑛){𝑏

0
, . . . , 𝑏

ℓ−1
} is a left ideal of simplex

𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}.

Note that any face of some simplex is not a right
ideal of the simplex. For instance, take the vertex 𝑎

𝑚
∉

𝜎
(𝑛)

{𝑏
0
, . . . , 𝑏

ℓ−1
}. Then, 𝑏

𝑠
⋅ 𝑎
𝑚

= 𝑎
𝑚

∉ 𝜎
(𝑛)

{𝑏
0
, . . . , 𝑏

ℓ−1
}, for

all 𝑠 = 0, . . . , ℓ − 1. From the last proposition consider the
following.

Corollary 6. The boundary 𝜕(𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}) is a multi-

plicative semigroup.
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The boundary and the interior of a simplex are, in general,
not semirings.

For any natural 𝑛, endomorphism semiring ÊC
𝑛

is a
simplex with vertices 0, . . . , 𝑛 − 1.The interior of this simplex
consists of endomorphisms 𝛼, such that Im(𝛼) = C

𝑛
. Since

the latter is valid only for identity i = ≀0, 1, . . . , 𝑛−1≀, it follows
thatINT(ÊC

𝑛

) = i.
There is a following partial ordering of the faces of

dimension 𝑘 − 1 of simplex 𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}: least face does

not contain the vertex 𝑎
𝑘−1

and biggest face does not contain
the vertex 𝑎

0
.

The biggest face of the simplex ÊC
𝑛

is the simplex
𝜎
(𝑛)

{1, . . . , 𝑛 − 1}. Now ÊC
𝑛

\ 𝜎
(𝑛)

{1, . . . , 𝑛 − 1} = E
(0)

C
𝑛

which
is a subsemiring of ÊC

𝑛

. Similarly, the least face of ÊC
𝑛

is
𝜎
(𝑛)

{0, . . . , 𝑛 − 2}. Then, ÊC
𝑛

\ 𝜎
(𝑛)

{0, . . . , 𝑛 − 2} = E
(𝑛−1)

C
𝑛

which is also a subsemiring of ÊC
𝑛

. The other faces of ÊC
𝑛

,
where 𝑛 ≥ 3, do not have this property. Indeed, one middle
face is 𝜎(𝑛){0, . . . , 𝑘 − 1, 𝑘 + 1, . . . , 𝑛 − 1}. But set 𝑅 = ÊC

𝑛

\

𝜎
(𝑛)

{0, . . . , 𝑘−1, 𝑘+1, . . . , 𝑛−1} is not a semiring because, for
any 𝑛 ≥ 3 and any 𝑘 ∈ {1, . . . , 𝑛 − 2}, if 𝛼 = ≀0, . . . , 0, 𝑘≀ ∈ 𝑅,
then 𝛼

2

= 0 ∉ 𝑅.
Let us fix vertex 𝑎

𝑚
, where 𝑚 = 0, . . . , 𝑘 − 1 of

simplex 𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}. The set of all endomorphisms

𝛼 ∈ 𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
} such that 𝛼(𝑖) = 𝑎

𝑚
just for 𝑠

elements 𝑖 ∈ C
𝑛
is called 𝑠th layer of the simplex with

respect to 𝑎
𝑚
, where 𝑠 = 0, . . . , 𝑛 − 1. We denote the 𝑠th

layer of the simplex 𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
} with respect to 𝑎

𝑚
by

L𝑠
𝑎
𝑚

(𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}). So, the 0-layer with respect to any

vertex of the simplex 𝜎(𝑛){𝑎
0
, . . . , 𝑎

𝑘−1
} is a face of the simplex;

hence, it is a semiring. In the general case, the 𝑠th layer
L𝑠
𝑎
𝑚

(𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}), where 𝑠 ∈ C

𝑛
, 𝑠 = 1, . . . , 𝑛 − 2, is

not a subsemiring of simplex 𝜎(𝑛){𝑎
0
, . . . , 𝑎

𝑘−1
}.

On the other hand, sinceL𝑠
𝑎
𝑚

(𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}) consists

of all endomorphisms 𝛼, such that 𝛼(𝑖) = 𝑎
𝑚

just for 𝑠

elements 𝑖 ∈ C
𝑛
, it follows that this 𝑠th layer is closed under

the addition. Hence, we have the following.

Proposition 7. Any layer L𝑠
𝑎
𝑚

(𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}) of simplex

𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
} is an additive semigroup.

Let 𝑎
𝑚
be an arbitrary vertex of simplex 𝜎(𝑛){𝑎

0
, . . . , 𝑎

𝑘−1
}.

From a topological point of view, the set DN1
𝑚

= {𝑎
𝑚
} ∪

L𝑛−1
𝑎
𝑚

(𝜎
(𝑛)

{𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑘−1
}) is a discrete neighborhood con-

sisting of the “nearest points to point 𝑎
𝑚
.” Similarly, we define

DN2
𝑚
= DN1

𝑚
∪L𝑛−2
𝑎
𝑚

(𝜎
(𝑛)

{𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑘−1
}). More generally

DN
𝑡

𝑚
= {𝑎
𝑚
} ∪

𝑛−1

⋃

ℓ=𝑛−𝑡

L
ℓ

𝑎
𝑚

(𝜎
(𝑛)

{𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑘−1
}) , (4)

where 𝑚 = 0, . . . , 𝑘 − 1 and 𝑡 = 1, . . . , 𝑛 is called discrete 𝑡-
neighborhood of the vertex 𝑎

𝑚
.

3. Subsemirings and Ideals of the Simplex
𝜎
(𝑛)

{𝑎
0
,. . .,𝑎
𝑘−1

}

Lemma 8. Let 𝑎
𝑚
, where 𝑚 = 0, . . . , 𝑘 − 1, be a vertex of the

simplex 𝜎
(𝑛)

{𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑘−1
} and L𝑛−1

𝑎
𝑚

(𝜎
(𝑛)

{𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑘−1
})

be the (𝑛 − 1)th layer of the 𝑘-simplex with respect to 𝑎
𝑚
. Then,

the set DN1
𝑚

= {𝑎
𝑚
} ∪ L𝑛−1

𝑎
𝑚

(𝜎
(𝑛)

{𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑘−1
}), where

𝑚 = 0, . . . , 𝑘 − 1, is a subsemiring of 𝜎(𝑛){𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑘−1
}.

Proof. We consider three cases.

Case 1. Let 𝑚 = 0. Then, elements of DN1
0
are endomor-

phisms:

𝑎
0
, (𝑎
0
)
𝑛−1

𝑎
1
= ≀𝑎
0
, . . . , 𝑎

0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛−1

, 𝑎
1
≀, . . . , (𝑎

0
)
𝑛−1

𝑎
𝑘−1

= ≀𝑎
0
, . . . , 𝑎

0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛−1

, 𝑎
𝑘−1

≀ .

(5)

Since 𝑎
0
< (𝑎
0
)
𝑛−1

𝑎
1
< ⋅ ⋅ ⋅ < (𝑎

0
)
𝑛−1

𝑎
𝑘−1

, it follows that set
DN1
0
is closed under the addition.

We find (𝑎
0
)
𝑛−1

𝑎
𝑖
⋅ 𝑎
0
= 𝑎
0
⋅ (𝑎
0
)
𝑛−1

𝑎
𝑖
= 𝑎
0
, for all 𝑖 =

1, . . . , 𝑘 − 1. Also we have (𝑎
0
)
𝑛−1

𝑎
𝑖
⋅ (𝑎
0
)
𝑛−1

𝑎
𝑗
= (𝑎
0
)
𝑛−1

𝑎
𝑗
⋅

(𝑎
0
)
𝑛−1

𝑎
𝑖
= 𝑎
0
, for all 𝑖, 𝑗 ∈ {1, . . . , 𝑘 − 1}, with the only

exception when 𝑎
𝑘−1

= 𝑛 − 1. Now ((𝑎
0
)
𝑛−1

(𝑛 − 1))
2

=

(𝑎
0
)
𝑛−1

(𝑛 − 1), (𝑎
0
)
𝑛−1

(𝑛 − 1) ⋅ (𝑎
0
)
𝑛−1

𝑎
𝑖

= (𝑎
0
)
𝑛−1

𝑎
𝑖
, and

(𝑎
0
)
𝑛−1

𝑎
𝑖
⋅ (𝑎
0
)
𝑛−1

(𝑛 − 1) = 𝑎
0
. Hence, DN1

0
is a semiring.

Case 2. Let 𝑚 = 𝑘 − 1. Then, elements of DN1
𝑘−1

are
endomorphisms:

𝑎
0
(𝑎
𝑘−1

)
𝑛−1

= ≀𝑎
0
, 𝑎
𝑘−1

, . . . , 𝑎
𝑘−1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛−1

≀, . . . , 𝑎
𝑘−2

(𝑎
𝑘−1

)
𝑛−1

= ≀𝑎
𝑘−2

, 𝑎
𝑘−1

, . . . , 𝑎
𝑘−1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛−1

≀, 𝑎
𝑘−1

.

(6)

Since 𝑎
0
(𝑎
𝑘−1

)
𝑛−1

< ⋅ ⋅ ⋅ < 𝑎
𝑘−2

(𝑎
𝑘−1

)
𝑛−1

< 𝑎
𝑘−1

, it follows that
the setDN1

𝑘−1
is closed under the addition.

We find 𝑎
𝑖
(𝑎
𝑘−1

)
𝑛−1

⋅ 𝑎
𝑘−1

= 𝑎
𝑘−1

⋅ 𝑎
𝑖
(𝑎
𝑘−1

)
𝑛−1

=

𝑎
𝑘−1

, for all 𝑖 = 1, . . . , 𝑘 − 1. Also we have 𝑎
𝑖
(𝑎
𝑘−1

)
𝑛−1

⋅

𝑎
𝑗
(𝑎
𝑘−1

)
𝑛−1

= 𝑎
𝑗
(𝑎
𝑘−1

)
𝑛−1

⋅ 𝑎
𝑖
(𝑎
𝑘−1

)
𝑛−1

= 𝑎
𝑘−1

, for all 𝑖, 𝑗 ∈

{0, . . . , 𝑘 − 2}, with also the only exception when 𝑎
0

= 0.
We have (0(𝑎

𝑘−1
)
𝑛−1

)
2

= 0(𝑎
𝑘−1

)
𝑛−1

, 0(𝑎
𝑘−1

)
𝑛−1

⋅ 𝑎
𝑖
(𝑎
𝑘−1

)
𝑛−1

=

𝑎
𝑖
(𝑎
𝑘−1

)
𝑛−1

, and 𝑎
𝑖
(𝑎
𝑘−1

)
𝑛−1

⋅0(𝑎
𝑘−1

)
𝑛−1

= 𝑎
𝑘−1

. Hence,DN1
𝑘−1

is a semiring.

Case 3. Let 0 < 𝑚 < 𝑘 − 1. Then elements of DN1
𝑚
are

endomorphisms:

𝑎
0
(𝑎
𝑚
)
𝑛−1

= ≀𝑎
0
, 𝑎
𝑚
, . . . , 𝑎

𝑚⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛−1

≀, . . . , 𝑎
𝑚−1

(𝑎
𝑚
)
𝑛−1

= ≀𝑎
𝑚−1

, 𝑎
𝑚
, . . . , 𝑎

𝑚⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛−1

≀, 𝑎
𝑚
,

(𝑎
𝑚
)
𝑛−1

𝑎
𝑚+1

= ≀𝑎
𝑚
, . . . , 𝑎

𝑚⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛−1

, 𝑎
𝑚+1

≀, . . . , (𝑎
𝑚
)
𝑛−1

𝑎
𝑘−1

= ≀𝑎
𝑚
, . . . , 𝑎

𝑚⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛−1

, 𝑎
𝑘−1

≀ .

(7)
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Since 𝑎
0
(𝑎
𝑚
)
𝑛−1

< ⋅ ⋅ ⋅ < 𝑎
𝑚−1

(𝑎
𝑚
)
𝑛−1

< 𝑎
𝑚

< (𝑎
𝑚
)
𝑛−1

𝑎
𝑚+1

<

⋅ ⋅ ⋅ < (𝑎
𝑚
)
𝑛−1

𝑎
𝑘−1

, it follows that setDN1
𝑚
is closed under the

addition.
Now there are four possibilities.
(1) Let 0 < 𝑎

0
and 𝑎
𝑘−1

< 𝑛 − 1. Then

𝑎
𝑖
(𝑎
𝑚
)
𝑛−1

⋅ 𝑎
𝑗
(𝑎
𝑚
)
𝑛−1

= 𝑎
𝑗
(𝑎
𝑚
)
𝑛−1

⋅ 𝑎
𝑖
(𝑎
𝑚
)
𝑛−1

= 𝑎
𝑚

for any 𝑖, 𝑗 = 0, . . . , 𝑚 − 1,

(𝑎
𝑚
)
𝑛−1

𝑎
𝑖
⋅ (𝑎
𝑚
)
𝑛−1

𝑎
𝑗
= (𝑎
𝑚
)
𝑛−1

𝑎
𝑗
⋅ (𝑎
𝑚
)
𝑛−1

𝑎
𝑖
= 𝑎
𝑚

for any 𝑖, 𝑗 = 𝑚 + 1, . . . , 𝑘 − 1,

𝑎
𝑖
(𝑎
𝑚
)
𝑛−1

⋅ (𝑎
𝑚
)
𝑛−1

𝑎
𝑗
= (𝑎
𝑚
)
𝑛−1

𝑎
𝑗
⋅ 𝑎
𝑖
(𝑎
𝑚
)
𝑛−1

= 𝑎
𝑚

for any 𝑖 = 0, . . . , 𝑚 − 1, 𝑗 = 𝑚 + 1, . . . , 𝑘 − 1.

(8)

Since 𝑎
𝑖
(𝑎
𝑚
)
𝑛−1

⋅𝑎
𝑚
= 𝑎
𝑚
⋅𝑎
𝑖
(𝑎
𝑚
)
𝑛−1

= 𝑎
𝑚
, for 𝑖 = 1, . . . , 𝑚−

1, and, in a similar way, (𝑎
𝑚
)
𝑛−1

𝑎
𝑗
⋅ 𝑎
𝑚
= 𝑎
𝑚
⋅ (𝑎
𝑚
)
𝑛−1

𝑎
𝑗
= 𝑎
𝑚
,

for 𝑗 = 𝑚 + 1, . . . , 𝑘 − 1, and also (𝑎
𝑚
)
2

= 𝑎
𝑚
, it follows that

DN1
𝑚
is a commutative semiring.

(2) Let 𝑎
0
= 0 and 𝑎

𝑘−1
< 𝑛 − 1. Then, (0(𝑎

𝑚
)
𝑛−1

)
2

=

0(𝑎
𝑚
)
𝑛−1

,

0(𝑎
𝑚
)
𝑛−1

⋅ 𝑎
𝑖
(𝑎
𝑚
)
𝑛−1

= 𝑎
𝑖
(𝑎
𝑚
)
𝑛−1

,

𝑎
𝑖
(𝑎
𝑚
)
𝑛−1

⋅ 0(𝑎
𝑚
)
𝑛−1

= 𝑎
𝑚

for any 𝑖 = 1, . . . , 𝑚 − 1,

0(𝑎
𝑚
)
𝑛−1

⋅ (𝑎
𝑚
)
𝑛−1

𝑎
𝑗
= (𝑎
𝑚
)
𝑛−1

𝑎
𝑗
⋅ 0(𝑎
𝑚
)
𝑛−1

= 𝑎
𝑚

for any 𝑗 = 𝑚 + 1, . . . , 𝑘 − 1.

(9)

We also observe that 𝑎
𝑚
⋅ 0(𝑎
𝑚
)
𝑛−1

= 0(𝑎
𝑚
)
𝑛−1

⋅ 𝑎
𝑚
= 𝑎
𝑚
.

All the other equalities between the products of the elements
ofDN1

𝑚
are the same as in (1).

(3) Let 𝑎
0
> 0 and 𝑎

𝑘−1
= 𝑛 − 1. Then, ((𝑎

𝑚
)
𝑛−1

(𝑛 − 1))
2

=

(𝑎
𝑚
)
𝑛−1

(𝑛 − 1),

(𝑎
𝑚
)
𝑛−1

(𝑛 − 1) ⋅ 𝑎
𝑖
(𝑎
𝑚
)
𝑛−1

= 𝑎
𝑖
(𝑎
𝑚
)
𝑛−1

⋅ (𝑎
𝑚
)
𝑛−1

(𝑛 − 1) = 𝑎
𝑚

for any 𝑖 = 1, . . . 𝑚 − 1,

(𝑎
𝑚
)
𝑛−1

(𝑛 − 1) ⋅ (𝑎
𝑚
)
𝑛−1

𝑎
𝑗
= (𝑎
𝑚
)
𝑛−1

𝑎
𝑗
,

(𝑎
𝑚
)
𝑛−1

𝑎
𝑗
⋅ (𝑎
𝑚
)
𝑛−1

(𝑛 − 1) = 𝑎
𝑚

for any 𝑗 = 𝑚 + 1, . . . , 𝑘 − 1.

(10)

We also observe that 𝑎
𝑚
⋅ (𝑎
𝑚
)
𝑛−1

(𝑛 − 1) = (𝑎
𝑚
)
𝑛−1

(𝑛 − 1) ⋅

𝑎
𝑚
= 𝑎
𝑚
. All the other equalities between the products of the

elements ofDN1
𝑚
are the same as in (1).

(4) Let 𝑎
0
= 0 and 𝑎

𝑘−1
= 𝑛−1. Now all equalities between

the products of the elements of DN1
𝑚
are the same as in (1),

(2), and (3). So,DN1
𝑚
is a semiring.

Theorem 9. The union 𝐽 = ⋃
𝑘−1

𝑚=0
DN1
𝑚

of the discrete
1-neighborhoods with respect to all vertices of the simplex
𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
} is a right ideal of the simplex.

Proof. Let 𝛼 ∈ DN1
𝑚
. Then, 𝛼 = 𝑎

𝑚
, 𝛼 = 𝑎

𝑖
(𝑎
𝑚
)
𝑛−1

, or 𝛼 =

(𝑎
𝑚
)
𝑛−1

𝑎
𝑗
, where 𝑖 = 0, . . . , 𝑚 − 1 and 𝑗 = 𝑚 + 1, . . . , 𝑛 − 1.

Let 𝛽 ∈ DN1
𝑠
. Then 𝛽 = 𝑎

𝑠
, 𝛽 = 𝑎

𝑝
(𝑎
𝑠
)
𝑛−1

, or 𝛽 = (𝑎
𝑠
)
𝑛−1

𝑎
𝑞
,

where 𝑝 = 0, . . . , 𝑠 − 1 and 𝑞 = 𝑠 + 1, . . . , 𝑛 − 1.
Suppose that 𝑠 > 𝑚. Then, we find 𝛼 + 𝛽 = 𝑎

𝑠
or 𝛼 + 𝛽 =

(𝑎
𝑠
)
𝑛−1

𝑎
𝑡
, where 𝑡 = max(𝑗, 𝑞). So, in all cases 𝛼 + 𝛽 ∈ 𝐽, what

means that 𝐽 is closed under the addition.
Let 𝛼 ∈ 𝐽 and 𝜑 ∈ 𝜎

(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}. Then, 𝛼 ∈ DN1

𝑚
, for

some𝑚 = 0, . . . , 𝑘 − 1.
If𝛼 = 𝑎

𝑚
and𝜑(𝑎

𝑚
) = 𝑎
𝑠
, then it follows that𝛼⋅𝜑 = 𝑎

𝑠
∈ 𝐽.

If 𝛼 = 𝑎
𝑖
(𝑎
𝑚
)
𝑛−1

, where 𝑖 = 0, . . . , 𝑚 − 1, 𝜑(𝑎
𝑚
) = 𝑎
𝑠
, and

𝜑(𝑎
𝑖
) = 𝑎
𝑝
, then 𝛼 ⋅ 𝜑 = 𝑎

𝑝
(𝑎
𝑠
)
𝑛−1

∈ 𝐽.
If 𝛼 = (𝑎

𝑚
)
𝑛−1

𝑎
𝑗
, where 𝑗 = 𝑚 + 1, . . . , 𝑘 − 1, 𝜑(𝑎

𝑚
) = 𝑎
𝑠
,

and 𝜑(𝑎
𝑗
) = 𝑎
𝑞
, it follows that 𝛼 ⋅ 𝜑 = (𝑎

𝑠
)
𝑛−1

𝑎
𝑞
∈ 𝐽.

Hence, in all cases 𝛼 ⋅ 𝜑 ∈ 𝐽.

Any simplex 𝜎
(𝑛)

{𝑏
0
, . . . , 𝑏

ℓ−1
} which is a face of sim-

plex 𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
} is called internal of the simplex

𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}, if 𝑎

0
∉ 𝜎
(𝑛)

{𝑏
0
, . . . , 𝑏

ℓ−1
} and 𝑎

𝑘−1
∉

𝜎
(𝑛)

{𝑏
0
, . . . , 𝑏

ℓ−1
}.

Similarly simplex 𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}, which is a face

of 𝑛-simplex ÊC
𝑛

, is called internal simplex, if 0 ∉

𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
} and 𝑛 − 1 ∉ 𝜎

(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}.

Immediately from the proof of Proposition 4 consider the
following.

Corollary 10. For any internal simplex 𝜎
(𝑛)

{𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑘−1
},

semirings DN1
𝑚
are commutative and all their elements are

𝑎
𝑚
-nilpotent, where𝑚 = 0, . . . , 𝑘 − 1.

Lemma 11. Let 𝑎
𝑚
, where 𝑚 = 0, . . . , 𝑘 − 1, be a vertex

of internal simplex 𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}. Then, the set DN2

𝑚
=

DN1
𝑚
∪L𝑛−2
𝑎
𝑚

(𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}), where𝑚 = 0, . . . , 𝑘 − 1, is a

subsemiring of 𝜎(𝑛){𝑎
0
, . . . , 𝑎

𝑘−1
}.

Proof. Since DN2
𝑚

= DN1
𝑚

∪ L𝑛−2
𝑎
𝑚

(𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}), it

follows that the elements ofDN2
𝑚
are endomorphisms:

𝑎
𝑚

𝑎
𝑖
(𝑎
𝑚
)
𝑛−1

, where 𝑖 = 0, . . . , 𝑚 − 1,

(𝑎
𝑚
)
𝑛−1

𝑎
𝑗
, where 𝑗 = 𝑚 + 1, . . . , 𝑘 − 1,

𝑎
𝑝
𝑎
𝑞
(𝑎
𝑚
)
𝑛−2

, where 𝑝, 𝑞 = 0, . . . , 𝑚 − 1, 𝑝 ≤ 𝑞,

(𝑎
𝑚
)
𝑛−2

𝑎
𝑟
𝑎
𝑠
, where 𝑟, 𝑠 = 𝑚 + 1, . . . , 𝑘 − 1, 𝑟 ≤ 𝑠,

𝑎
𝑝
(𝑎
𝑚
)
𝑛−2

𝑎
𝑠
, where 𝑝 = 0, . . . , 𝑚 − 1,

𝑠 = 𝑚 + 1, . . . , 𝑘 − 1.

(11)

From Lemma 8, we know that the discrete 1-
neighborhood DN1

𝑚
is closed under the addition. From

Proposition 7, it follows that the layer L𝑛−2
𝑎
𝑚

(𝜎
(𝑛)

{𝑎
0
, . . .,

𝑎
𝑘−1

}) also is closed under the addition. Hence, in order to
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prove that DN2
𝑚
is closed under the addition, we calculate

the following:

𝑎
𝑖
(𝑎
𝑚
)
𝑛−1

+ 𝑎
𝑝
𝑎
𝑞
(𝑎
𝑚
)
𝑛−2

= {
𝑎
𝑝
𝑎
𝑞
(𝑎
𝑚
)
𝑛−2

, if 𝑖 ≤ 𝑝,

𝑎
𝑖
𝑎
𝑞
(𝑎
𝑚
)
𝑛−2

, if 𝑖 > 𝑝,

𝑎
𝑖
(𝑎
𝑚
)
𝑛−1

+ (𝑎
𝑚
)
𝑛−2

𝑎
𝑟
𝑎
𝑠
= (𝑎
𝑚
)
𝑛−2

𝑎
𝑟
𝑎
𝑠
,

(𝑎
𝑚
)
𝑛−1

𝑎
𝑗
+ (𝑎
𝑚
)
𝑛−2

𝑎
𝑟
𝑎
𝑠
= {

(𝑎
𝑚
)
𝑛−2

𝑎
𝑟
𝑎
𝑠
, if 𝑗 ≤ 𝑠,

(𝑎
𝑚
)
𝑛−2

𝑎
𝑟
𝑎
𝑗
, if 𝑗 > 𝑠,

(𝑎
𝑚
)
𝑛−1

𝑎
𝑗
+ 𝑎
𝑝
𝑎
𝑞
(𝑎
𝑚
)
𝑛−2

= (𝑎
𝑚
)
𝑛−1

𝑎
𝑗
,

𝑎
𝑖
(𝑎
𝑚
)
𝑛−1

+ 𝑎
𝑝
(𝑎
𝑚
)
𝑛−2

𝑎
𝑠
= {

𝑎
𝑝
(𝑎
𝑚
)
𝑛−2

𝑎
𝑠
, if 𝑖 ≤ 𝑝,

𝑎
𝑖
(𝑎
𝑚
)
𝑛−2

𝑎
𝑠
, if 𝑖 > 𝑝,

(𝑎
𝑚
)
𝑛−1

𝑎
𝑗
+ 𝑎
𝑝
(𝑎
𝑚
)
𝑛−2

𝑎
𝑠
= {

𝑎
𝑝
(𝑎
𝑚
)
𝑛−2

𝑎
𝑠
, if 𝑗 ≤ 𝑠,

𝑎
𝑝
(𝑎
𝑚
)
𝑛−2

𝑎
𝑗
, if 𝑗 > 𝑠,

𝑎
𝑚
+ 𝑎
𝑝
𝑎
𝑞
(𝑎
𝑚
)
𝑛−2

= 𝑎
𝑚
,

𝑎
𝑚
+ (𝑎
𝑚
)
𝑛−2

𝑎
𝑟
𝑎
𝑠
= (𝑎
𝑚
)
𝑛−2

𝑎
𝑟
𝑎
𝑠
,

𝑎
𝑚
+ 𝑎
𝑝
(𝑎
𝑚
)
𝑛−2

𝑎
𝑠
= (𝑎
𝑚
)
𝑛−1

𝑎
𝑠
,

(12)

where 𝑖, 𝑝, 𝑞 = 0, 1, . . . , 𝑚 − 1, 𝑝 ≤ 𝑞, 𝑗, 𝑟, 𝑠 = 𝑚 + 1, . . . , 𝑘 −

1, and 𝑟 ≤ 𝑠. So, we prove that the discrete 2-neighborhood
DN2
𝑚
is closed under the addition.

Now we consider six cases, where, for the indices, the
upper restrictions are fulfilled.

Case 1. Let 𝑎
𝑚
= 1. We shall show that all endomorphisms of

DN2
1
are 1-nilpotent with the only exception when 𝑎

𝑘−1
=

𝑛 − 2. When 𝑎
𝑘−1

< 𝑛 − 2, since 1 is the least image of
any endomorphism, there are only a few equalities: 1

𝑛−2
𝑎
𝑟
𝑎
𝑠
⋅

1
𝑛−2

𝑎
𝑟
0

𝑎
𝑠
0

= 1,

1
𝑛−1

𝑎
𝑗
⋅ 1
𝑛−2

𝑎
𝑟
𝑎
𝑠
= 1
𝑛−2

𝑎
𝑟
𝑎
𝑠
⋅ 1
𝑛−1

𝑎
𝑗
= 1,

1 ⋅ 1
𝑛−2

𝑎
𝑟
𝑎
𝑠
= 1
𝑛−2

𝑎
𝑟
𝑎
𝑠
⋅ 1 = 1.

(13)

Hence, it follows that DN2
1
is a commutative semiring with

trivial multiplication.
If 𝑎
𝑘−1

= 𝑛 − 2, it is easy to see that endomorphism
1
𝑛−2

(𝑛−2)
2
is the unique idempotent ofDN2

1
(see [5]). Now,

we find 1
𝑛−2

(𝑛 − 2)
2
⋅ 1
𝑛−2

𝑎
𝑟
𝑎
𝑠
= 1
𝑛−2

(𝑎
𝑟
)
2
, 1
𝑛−1

(𝑛 − 2) ⋅

1
𝑛−2

𝑎
𝑟
𝑎
𝑠
= 1
𝑛−1

𝑎
𝑟
, and 1

𝑛−2
𝑎
𝑟
𝑎
𝑠
⋅ 1
𝑛−1

(𝑛 − 2) = 1. Hence,
DN2
1
is a semiring.

Case 2. Let 𝑎
𝑚

= 𝑛 − 2. We shall show that all the
endomorphisms of DN2

𝑛−2
are 1-nilpotent with the only

exception when 𝑎
0
= 1. When 𝑎

0
> 1, we find

𝑎
𝑝
𝑎
𝑞
(𝑛 − 2)

𝑛−2
⋅ 𝑎
𝑝
0

𝑎
𝑞
0

(𝑛 − 2)
𝑛−2

= 𝑛 − 2,

𝑎
𝑖
(𝑛 − 2)

𝑛−1
⋅ 𝑎
𝑝
𝑎
𝑞
(𝑛 − 2)

𝑛−2

= 𝑎
𝑝
𝑎
𝑞
(𝑛 − 2)

𝑛−2
⋅ 𝑎
𝑖
(𝑛 − 2)

𝑛−1
= 𝑛 − 2,

𝑛 − 2 ⋅ 𝑎
𝑝
𝑎
𝑞
(𝑛 − 2)

𝑛−2
= 𝑎
𝑝
𝑎
𝑞
(𝑛 − 2)

𝑛−2
⋅ 𝑛 − 2 = 𝑛 − 2.

(14)

If 𝑎
0
= 1, the only idempotent is 1

2
(𝑛 − 2)

𝑛−2
and we find

1
2
(𝑛 − 2)

𝑛−2
⋅ 𝑎
𝑝
𝑎
𝑞
(𝑛 − 2)

𝑛−2
= (𝑎
𝑞
)
2

(𝑛 − 2)
𝑛−2

,

1(𝑛 − 2)
𝑛−1

⋅ 𝑎
𝑝
𝑎
𝑞
(𝑛 − 2)

𝑛−2
= 𝑎
𝑞
(𝑛 − 2)

𝑛−1
,

𝑎
𝑝
𝑎
𝑞
(𝑛 − 2)

𝑛−2
⋅ 1(𝑛 − 2)

𝑛−1
= 𝑛 − 2.

(15)

Hence,DN2
𝑛−2

is a semiring.

Case 3. Let 1 < 𝑎
0
and 𝑎

𝑘−1
< 𝑛 − 2. We find the following

trivial equalities, which are grouped by duality:

𝑎
𝑝
𝑎
𝑞
(𝑎
𝑚
)
𝑛−2

× 𝑎
𝑝
0

𝑎
𝑞
0

(𝑎
𝑚
)
𝑛−2

= 𝑎
𝑚
,

(𝑎
𝑚
)
𝑛−2

𝑎
𝑟
𝑎
𝑠
⋅ (𝑎
𝑚
)
𝑛−2

𝑎
𝑟
0

𝑎
𝑠
0

= 𝑎
𝑚
,

𝑎
𝑝
𝑎
𝑞
(𝑎
𝑚
)
𝑛−2

⋅ 𝑎
𝑝
0

(𝑎
𝑚
)
𝑛−2

𝑎
𝑠
0

= 𝑎
𝑝
0

(𝑎
𝑚
)
𝑛−2

𝑎
𝑠
0

⋅ 𝑎
𝑝
𝑎
𝑞
(𝑎
𝑚
)
𝑛−2

= 𝑎
𝑚
,

(𝑎
𝑚
)
𝑛−2

𝑎
𝑟
𝑎
𝑠
⋅ 𝑎
𝑝
0

(𝑎
𝑚
)
𝑛−2

𝑎
𝑠
0

= 𝑎
𝑝
0

(𝑎
𝑚
)
𝑛−2

𝑎
𝑠
0

⋅ (𝑎
𝑚
)
𝑛−2

𝑎
𝑟
𝑎
𝑠
= 𝑎
𝑚
,

𝑎
𝑝
𝑎
𝑞
(𝑎
𝑚
)
𝑛−2

⋅ (𝑎
𝑚
)
𝑛−2

𝑎
𝑟
𝑎
𝑠

= (𝑎
𝑚
)
𝑛−2

𝑎
𝑟
𝑎
𝑠
⋅ 𝑎
𝑝
𝑎
𝑞
(𝑎
𝑚
)
𝑛−2

= 𝑎
𝑚
,

𝑎
𝑖
(𝑎
𝑚
)
𝑛−1

⋅ 𝑎
𝑝
𝑎
𝑞
(𝑎
𝑚
)
𝑛−2

= 𝑎
𝑝
𝑎
𝑞
(𝑎
𝑚
)
𝑛−2

⋅ 𝑎
𝑖
(𝑎
𝑚
)
𝑛−1

= 𝑎
𝑚
,

(𝑎
𝑚
)
𝑛−1

𝑎
𝑗
⋅ 𝑎
𝑝
𝑎
𝑞
(𝑎
𝑚
)
𝑛−2

= 𝑎
𝑝
𝑎
𝑞
(𝑎
𝑚
)
𝑛−2

⋅ (𝑎
𝑚
)
𝑛−1

𝑎
𝑗
= 𝑎
𝑚
,

𝑎
𝑖
(𝑎
𝑚
)
𝑛−1

⋅ 𝑎
𝑝
(𝑎
𝑚
)
𝑛−2

𝑎
𝑠

= 𝑎
𝑝
(𝑎
𝑚
)
𝑛−2

𝑎
𝑠
⋅ 𝑎
𝑖
(𝑎
𝑚
)
𝑛−1

= 𝑎
𝑚
,

(𝑎
𝑚
)
𝑛−1

𝑎
𝑗
⋅ 𝑎
𝑝
(𝑎
𝑚
)
𝑛−2

𝑎
𝑠

= 𝑎
𝑝
(𝑎
𝑚
)
𝑛−2

𝑎
𝑠
⋅ (𝑎
𝑚
)
𝑛−1

𝑎
𝑗
= 𝑎
𝑚
,

𝑎
𝑖
(𝑎
𝑚
)
𝑛−1

⋅ (𝑎
𝑚
)
𝑛−2

𝑎
𝑟
𝑎
𝑠

= (𝑎
𝑚
)
𝑛−2

𝑎
𝑟
𝑎
𝑠
⋅ 𝑎
𝑖
(𝑎
𝑚
)
𝑛−1

= 𝑎
𝑚
,

(𝑎
𝑚
)
𝑛−1

𝑎
𝑗
⋅ (𝑎
𝑚
)
𝑛−2

𝑎
𝑟
𝑎
𝑠

= 𝑎(𝑎
𝑚
)
𝑛−2

𝑎
𝑟
𝑎
𝑠
⋅ (𝑎
𝑚
)
𝑛−1

𝑎
𝑗
= 𝑎
𝑚
,

𝑎
𝑚
⋅ 𝑎
𝑝
𝑎
𝑞
(𝑎
𝑚
)
𝑛−2

= 𝑎
𝑝
𝑎
𝑞
(𝑎
𝑚
)
𝑛−2

⋅ 𝑎
𝑚
= 𝑎
𝑚
,

𝑎
𝑚
⋅ 𝑎
𝑝
(𝑎
𝑚
)
𝑛−2

𝑎
𝑠
= 𝑎
𝑝
(𝑎
𝑚
)
𝑛−2

𝑎
𝑠
⋅ 𝑎
𝑚
= 𝑎
𝑚
,

𝑎
𝑚
⋅ (𝑎
𝑚
)
𝑛−2

𝑎
𝑟
𝑎
𝑠
= (𝑎
𝑚
)
𝑛−2

𝑎
𝑟
𝑎
𝑠
⋅ 𝑎
𝑚
= 𝑎
𝑚
.

(16)
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Table 1

DN2
𝑚

DN2
𝑡

𝛼
1
= 𝑎
𝑚

𝛽
1
= 𝑎
𝑡

𝛼
2
= 𝑎
𝑖
(𝑎
𝑚
)
𝑛−1

, 𝑖 = 0, . . . , 𝑚 − 1 𝛽
2
= 𝑎
ℓ
(𝑎
𝑡
)
𝑛−1

, ℓ = 0, . . . , 𝑚 − 1

𝛼
3
= (𝑎
𝑚
)
𝑛−1

𝑎
𝑗
, 𝑗 = 𝑚 + 1, . . . , 𝑘 − 1 𝛽

3
= (𝑎
𝑡
)
𝑛−1

𝑎
𝑢
, 𝑢 = 𝑚 + 1, . . . , 𝑘 − 1

𝛼
4
= 𝑎
𝑝
𝑎
𝑞
(𝑎
𝑚
)
𝑛−2

, 𝑝, 𝑞 = 0, . . . , 𝑚 − 1 𝛽
4
= 𝑎
ℎ
𝑎
𝑔
(𝑎
𝑡
)
𝑛−2

, ℎ, 𝑔 = 0, . . . , 𝑚 − 1

𝛼
5
= (𝑎
𝑚
)
𝑛−2

𝑎
𝑟
𝑎
𝑠
, 𝑟, 𝑠 = 𝑚 + 1, . . . , 𝑘 − 1 𝛽

5
= (𝑎
𝑡
)
𝑛−2

𝑎
𝑢
𝑎V, 𝑢, V = 𝑚 + 1, . . . , 𝑘 − 1

𝛼
6
= 𝑎
𝑝
(𝑎
𝑚
)
𝑛−2

𝑎
𝑠
, 𝑝 = 0, . . . , 𝑚 − 1, 𝑠 = 𝑚 + 1, . . . , 𝑘 − 1 𝛽

6
= 𝑎
ℓ
(𝑎
𝑡
)
𝑛−2

𝑎
𝑢
, ℓ = 0, . . . , 𝑚 − 1, 𝑢 = 𝑚 + 1, . . . , 𝑘 − 1

Case 4. Let 𝑎
0
= 1 and 𝑎

𝑘−1
< 𝑛 − 2. Then, 1

2
(𝑎
𝑚
)
𝑛−2

is the
only idempotent in DN2

𝑚
. Additionally, to the equalities of

the previous case, we find

1
2
(𝑎
𝑚
)
𝑛−2

⋅ 𝑎
𝑝
𝑎
𝑞
(𝑛 − 2)

𝑛−2
= (𝑎
𝑞
)
2

(𝑎
𝑚
)
𝑛−2

,

1(𝑎
𝑚
)
𝑛−1

⋅ 𝑎
𝑝
𝑎
𝑞
(𝑎
𝑚
)
𝑛−2

= 𝑎
𝑞
(𝑎
𝑚
)
𝑛−1

.

(17)

Case 5. Let 1 < 𝑎
0
and 𝑎
𝑘−1

= 𝑛− 2. Now the only idempotent
endomorphism in DN2

𝑚
is (𝑎
𝑚
)
𝑛−2

(𝑛 − 2)
2
. We additionally

find the following equalities:

(𝑎
𝑚
)
𝑛−2

(𝑛 − 2)
2
⋅ (𝑎
𝑚
)
𝑛−2

𝑎
𝑟
𝑎
𝑠
= (𝑎
𝑚
)
𝑛−2

(𝑎
𝑟
)
2
,

(𝑎
𝑚
)
𝑛−1

(𝑛 − 2) ⋅ (𝑎
𝑚
)
𝑛−2

𝑎
𝑟
𝑎
𝑠
= (𝑎
𝑚
)
𝑛−1

𝑎
𝑟
.

(18)

Case 6. Let 𝑎
0
= 1 and 𝑎

𝑘−1
= 𝑛 − 2. Now, in DN2

𝑚
, there

are two idempotents: 1
2
(𝑎
𝑚
)
𝑛−2

and (𝑎
𝑚
)
𝑛−2

(𝑛 − 2)
2
. Here,

the equalities from Cases 4 and 5 are valid and also all the
equalities from Case 3, under the respective restrictions for
the indices, are fulfilled.

Hence,DN2
𝑚
is a semiring.

From Lemma 11, we find the following.

Theorem 12. The union 𝐼 = ⋃
𝑛−1

𝑚=0
DN2
𝑚
of the discrete 2-

neighborhoods with respect to all vertices of internal simplex
𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
} is a right ideal of the simplex.

Proof. For the endomorphisms ofDN2
𝑚
andDN2

𝑡
, where 𝑡 >

𝑚, from (11), it follows as shown in Table 1
Let 𝛽
𝑖
, 𝑖 = 2, 3, 4, 5, 6, be elements of DN2

𝑡
(see Table 1).

We denote by 𝛽
𝑖
an endomorphism, which maps the same

elements to 𝑎
𝑡
, but other images (one or two) are not in Im(𝛼).

For example, 𝛽
2
= 𝑎
ℓ
0

(𝑎
𝑡
)
𝑛−1

, where ℓ
0
= 0, . . . , 𝑚 − 1 and

ℓ
0

̸= ℓ. Evidently, 𝛽
𝑖
∈ DN2

𝑡
, for 𝑖 = 2, 3, 4, 5, 6.

Now we calculate the following:

(1) 𝛼
1
+𝛽
1
= 𝛽
1
, 𝛼
1
+𝛽
2
= 𝛽
2
or 𝛼
1
+𝛽
2
= 𝛽
2
, 𝛼
1
+𝛽
3
= 𝛽
3
,

and 𝛼
1
+ 𝛽
4
= 𝛽
4
or 𝛼
1
+ 𝛽
4
= 𝛽
4
, 𝛼
1
+ 𝛽
5
= 𝛽
5
, and

𝛼
1
+ 𝛽
6
= 𝛽
6
or 𝛼
1
+ 𝛽
2
= 𝛽
6
;

(2) 𝛼
2
+𝛽
1
= 𝛽
1
, 𝛼
2
+𝛽
2
= 𝛽
2
or 𝛼
2
+𝛽
2
= 𝛽
2
, 𝛼
2
+𝛽
3
= 𝛽
3
,

and 𝛼
2
+ 𝛽
4
= 𝛽
4
or 𝛼
2
+ 𝛽
4
= 𝛽
4
, 𝛼
2
+ 𝛽
5
= 𝛽
5
, and

𝛼
2
+ 𝛽
6
= 𝛽
6
or 𝛼
2
+ 𝛽
2
= 𝛽
6
;

(3) 𝛼
3
+𝛽
1
= 𝛽
1
or 𝛼
3
+𝛽
1
= 𝛽
3
, 𝛼
3
+𝛽
2
= 𝛽
2
or 𝛼
3
+𝛽
2
=

𝛽
2
, 𝛼
3
+ 𝛽
3
= 𝛽
3
or 𝛼
3
+ 𝛽
3
= 𝛽
3
, 𝛼
3
+ 𝛽
4
= 𝛽
4
or

𝛼
3
+ 𝛽
4
= 𝛽
4
, 𝛼
3
+ 𝛽
5
= 𝛽
5
or 𝛼
3
+ 𝛽
5
= 𝛽
5
, and

𝛼
3
+ 𝛽
6
= 𝛽
6
or 𝛼
3
+ 𝛽
6
= 𝛽
6
;

(4) 𝛼
4
+𝛽
1
= 𝛽
1
, 𝛼
4
+𝛽
2
= 𝛽
2
or 𝛼
4
+𝛽
2
= 𝛽
2
, 𝛼
4
+𝛽
3
= 𝛽
3
,

and 𝛼
4
+ 𝛽
4
= 𝛽
4
or 𝛼
4
+ 𝛽
4
= 𝛽
4
, 𝛼
4
+ 𝛽
5
= 𝛽
5
and

𝛼
4
+ 𝛽
6
= 𝛽
6
or 𝛼
4
+ 𝛽
6
= 𝛽
6
;

(5) 𝛼
5
+𝛽
1
= 𝛽
1
or𝛼
5
+𝛽
1
= 𝛽
3
or𝛼
5
+𝛽
1
= 𝛽
5
,𝛼
5
+𝛽
2
= 𝛽
2

or 𝛼
5
+ 𝛽
2
= 𝛽
2
or 𝛼
5
+ 𝛽
2
= 𝛽
5
or 𝛼
5
+ 𝛽
2
= 𝛽
6
,

𝛼
5
+𝛽
3
= 𝛽
3
or𝛼
5
+𝛽
3
= 𝛽
3
or𝛼
5
+𝛽
3
= 𝛽
5
,𝛼
5
+𝛽
4
= 𝛽
4

or 𝛼
5
+ 𝛽
4
= 𝛽
4
or 𝛼
5
+ 𝛽
4
= 𝛽
5
or 𝛼
5
+ 𝛽
4
= 𝛽
6
,

𝛼
5
+ 𝛽
5
= 𝛽
5
or 𝛼
5
+ 𝛽
5
= 𝛽
5
and 𝛼

5
+ 𝛽
6
= 𝛽
6
or

𝛼
5
+ 𝛽
6
= 𝛽
5
or 𝛼
5
+ 𝛽
6
= 𝛽
6
;

(6) 𝛼
6
+𝛽
1
= 𝛽
1
or 𝛼
6
+𝛽
1
= 𝛽
3
, 𝛼
6
+𝛽
2
= 𝛽
2
or 𝛼
6
+𝛽
2
=

𝛽
2
, 𝛼
6
+ 𝛽
3
= 𝛽
3
or 𝛼
6
+ 𝛽
3
= 𝛽
3
or 𝛼
6
+ 𝛽
3
= 𝛽
5
,

𝛼
6
+𝛽
4
= 𝛽
4
or𝛼
6
+𝛽
4
= 𝛽
4
or𝛼
6
+𝛽
4
= 𝛽
6
,𝛼
6
+𝛽
5
= 𝛽
5

or 𝛼
6
+ 𝛽
5
= 𝛽
5
and 𝛼

6
+ 𝛽
6
= 𝛽
6
or 𝛼
6
+ 𝛽
6
= 𝛽
5
or

𝛼
6
+ 𝛽
6
= 𝛽
6
.

From these calculations and Lemma 11 we conclude that
𝐼 is closed under the addition.

Let 𝛼 ∈ 𝐼 and 𝜑 ∈ 𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}. Then, 𝛼 ∈ DN2

𝑚
, for

some 𝑚 = 0, . . . , 𝑘 − 1. Considering the cases where 𝛼 = 𝛼
𝑖
,

𝑖 = 1, 2, 3, we consider in the proof of Theorem 9. Now we
consider three new cases.

Case 1. Let 𝛼 = 𝛼
4
= 𝑎
𝑝
𝑎
𝑞
(𝑎
𝑚
)
𝑛−2

, where 𝑝, 𝑞 = 0, . . . , 𝑚 − 1.
Let 𝜑(𝑎

𝑚
) = 𝑎
𝑡
, 𝜑(𝑎
𝑝
) = 𝑎
𝑝
0

, and 𝜑(𝑎
𝑞
) = 𝑎
𝑞
0

. Then, 𝛼 ⋅ 𝜑 =

𝑎
𝑝
0

𝑎
𝑞
0

(𝑎
𝑡
)
𝑛−2

∈ 𝐼.The same is true when 𝑞
0
= 𝑡 or 𝑝

0
= 𝑞
0
= 𝑡.

Case 2. Let 𝛼 = 𝛼
5
= (𝑎
𝑚
)
𝑛−2

𝑎
𝑟
𝑎
𝑠
, where 𝑟, 𝑠 = 𝑚+1, . . . , 𝑘−1.

Let 𝜑(𝑎
𝑚
) = 𝑎

𝑡
, 𝜑(𝑎
𝑟
) = 𝑎

𝑟
0

, and 𝜑(𝑎
𝑠
) = 𝑎

𝑠
0

. Then 𝛼 ⋅ 𝜑 =

(𝑎
𝑡
)
𝑛−2

𝑎
𝑟
0

𝑎
𝑠
0

∈ 𝐼. The same is true when 𝑟
0
= 𝑡 or 𝑠

0
= 𝑟
0
= 𝑡.

Case 3. Let 𝛼 = 𝛼
6
= 𝑎
𝑝
(𝑎
𝑚
)
𝑛−2

𝑎
𝑠
, where 𝑝 = 0, . . . , 𝑚 − 1

and 𝑠 = 𝑚 + 1, . . . , 𝑘 − 1. Let 𝜑(𝑎
𝑚
) = 𝑎
𝑡
, 𝜑(𝑎
𝑝
) = 𝑎
𝑝
0

, and
𝜑(𝑎
𝑠
) = 𝑎
𝑠
0

. Then, 𝛼 ⋅ 𝜑 = 𝑎
𝑝
0

(𝑎
𝑡
)
𝑛−2

𝑎
𝑠
0

∈ 𝐼. The same is true
when 𝑝

0
= 𝑡, 𝑠
0
= 𝑡, or 𝑝

0
= 𝑠
0
= 𝑡.

Hence, in all cases, 𝛼 ⋅ 𝜑 ∈ 𝐼.

From Theorem 9 and Theorem 12, we obtain the follow-
ing.
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Corollary 13. (a) If 𝜎(𝑛){𝑎
0
, . . . , 𝑎

𝑘−1
} is an internal simplex,

then the union 𝐽 = ⋃
𝑛−1

𝑚=0
DN1
𝑚
of the discrete 1-neighborhoods

with respect to all vertices is an ideal of the simplex.
(b) Let 𝜎

(𝑛)

{𝑥
0
, . . . , 𝑥

𝑠−1
} be an internal simplex and

𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
} is internal of the simplex 𝜎

(𝑛)

{𝑥
0
, . . . , 𝑥

𝑠−1
}.

Then, the union 𝐼 = ⋃
𝑛−1

𝑚=0
DN2
𝑚

of the discrete 2-
neighborhoods is an ideal of the simplex 𝜎(𝑛){𝑎

0
, . . . , 𝑎

𝑘−1
}.

Proof. (a) If 𝜎(𝑛){𝑎
0
, . . . , 𝑎

𝑘−1
} is an internal simplex and 𝜑 ∈

𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}, then 𝜑(0) > 0 and 𝜑(𝑛 − 1) < 𝑛 − 1. We

calculate 𝜑 ⋅ 𝑎
𝑚
= 𝜑 ⋅ 𝑎

𝑖
(𝑎
𝑚
)
𝑛−1

= 𝜑 ⋅ (𝑎
𝑚
)
𝑛−1

𝑎
𝑗
= 𝑎
𝑚
.

FromTheorem 9, it follows that 𝐽 is an ideal of the simplex
𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}.

(b) If 𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
} satisfies the condition of

Theorem 12 and 𝜑 ∈ 𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}, then 𝜑(0) > 1

and 𝜑(𝑛 − 1) < 𝑛 − 2. Thus (see the notations in the proof of
Theorem 12) we obtain

𝜑 ⋅ 𝛼
1
= 𝜑 ⋅ 𝛼

2
= 𝜑 ⋅ 𝛼

3
= 𝜑 ⋅ 𝛼

4
= 𝜑 ⋅ 𝛼

5
= 𝜑 ⋅ 𝛼

6
= 𝑎
𝑚
. (19)

From Theorem 12, it follows that 𝐼 is an ideal of the simplex
𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}.

Proposition 14. Let 𝜎
(𝑛)

𝑘
(𝐴) = 𝜎

(𝑛)

{𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑘−1
} be a

simplex.

(a) For the least vertex 𝑎
0
, it follows that DN

𝑛−𝑎
0
−1

0
=

𝜎
(𝑛)

𝑘
(𝐴) ∩E

(𝑎
0
)

C
𝑛

.

(b) For the biggest vertex 𝑎
𝑘−1

, it follows that DN
𝑎
𝑘−1

𝑘−1
=

𝜎
(𝑛)

𝑘
(𝐴) ∩E

(𝑎
𝑘−1
)

C
𝑛

.

Proof. (a) Since 𝑎
0
is the least vertex of the simplex, it follows

that layer L𝑎0+1
𝑎
0

(𝜎
(𝑛)

{𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑘−1
}) consists of endomor-

phisms 𝛼 = (𝑎
0
)
𝑎
0
+1
(𝑎
1
)
𝑝
1

⋅ ⋅ ⋅ (𝑎
𝑘−1

)
𝑝
𝑘−1

, where 𝑎
0
+ 1 + 𝑝

1
+

⋅ ⋅ ⋅ + 𝑝
𝑘−1

= 𝑛; that is, 𝛼(0) = 𝑎
0
, . . . , 𝛼(𝑎

0
) = 𝑎

0
. All the

layersLℓ
𝑎
0

(𝜎
(𝑛)

{𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑘−1
}), where ℓ ≥ 𝑎

0
+ 1, consist of

endomorphisms having 𝑎
0
as a fixed point. So, DN

𝑛−𝑎
0
−1

0
⊆

𝜎
(𝑛)

𝑘
(𝐴) ∩E

(𝑎
0
)

C
𝑛

.
Conversely, let 𝛼 ∈ 𝜎

(𝑛)

𝑘
(𝐴)∩E

(𝑎
0
)

C
𝑛

.Then, 𝛼(𝑎
0
) = 𝑎
0
. Since

𝑎
0
is the least vertex of the simplex, we have 𝛼(0) = ⋅ ⋅ ⋅ =

𝛼(𝑎
0
− 1) = 𝑎

0
; that is, 𝛼 ∈ Lℓ

𝑎
0

(𝜎
(𝑛)

{𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑘−1
}), where

ℓ ≥ 𝑎
0
+ 1. Hence,DN

𝑛−𝑎
0
−1

0
= 𝜎
(𝑛)

𝑘
(𝐴) ∩E

(𝑎
0
)

C
𝑛

.
(b) Since 𝑎

𝑘−1
is the biggest vertex of the simplex, it

follows that layer L𝑛−𝑎𝑘−1
𝑎
𝑘−1

(𝜎
(𝑛)

{𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑘−1
}) consists of

endomorphisms 𝛼 = (𝑎
0
)
𝑝
0

. . . (𝑎
𝑘−2

)
𝑝
𝑘−2

(𝑎
𝑘−1

)
𝑛−𝑎
𝑘−1

, where
𝑝
0
+ ⋅ ⋅ ⋅ + 𝑝

𝑘−2
+ 𝑛 − 𝑎

𝑘−1
= 𝑛. So, 𝑝

0
+ ⋅ ⋅ ⋅ + 𝑝

𝑘−2
= 𝑎
𝑘−1

implies that the images of 0,. . .,𝑎
𝑘−1

− 1 are not equal to 𝑎
𝑘−1

,
but 𝛼(𝑎

𝑘−1
) = 𝑎

𝑘−1
. For all the endomorphisms of layers

Lℓ
𝑎
𝑘−1

(𝜎
(𝑛)

{𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑘−1
}), where ℓ ≥ 𝑛 − 𝑎

𝑘−1
, we have

𝑝
0
+ ⋅ ⋅ ⋅ + 𝑝

𝑘−2
= 𝑎
𝑘−1

. Hence, the elements of these layers
have 𝑎

𝑘−1
as a fixed point andDN

𝑎
𝑘−1

0
⊆ 𝜎
(𝑛)

𝑘
(𝐴) ∩E

(𝑎
𝑘−1
)

C
𝑛

.

Conversely, let 𝛼 ∈ 𝜎
(𝑛)

𝑘
(𝐴) ∩ E

(𝑎
𝑘−1
)

C
𝑛

. Then, 𝛼(𝑎
𝑘−1

) =

𝑎
𝑘−1

. Since 𝑎
𝑘−1

is the biggest vertex of the simplex, we have
𝛼(𝑎
𝑘−1

+ 1) = ⋅ ⋅ ⋅ = 𝛼(𝑛 − 1) = 𝑎
𝑘−1

. Thus, it follows that
𝛼 ∈ Lℓ

𝑎
𝑘−1

(𝜎
(𝑛)

{𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑘−1
}), where ℓ ≥ 𝑛 − 𝑎

𝑘−1
.

Hence,DN
𝑎
𝑘−1

𝑘−1
= 𝜎
(𝑛)

𝑘
(𝐴) ∩E

(𝑎
𝑘−1
)

C
𝑛

.

4. A Partition of a Simplex

Let 𝜎
(𝑛)

{𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑘−1
} be a simplex. Then, 𝛼 ∈ 𝜎

(𝑛)

{𝑎
0
,

𝑎
1
, . . . , 𝑎

𝑘−1
} is called endomorphism of type ⟨⟨𝑚

0
,

. . . , 𝑚
𝑘−1

⟩⟩, where 𝑚
𝑖

∈ {0, . . . , 𝑘 − 1}, 𝑚
𝑖

≤ 𝑚
𝑗
for

𝑖 < 𝑗, 𝑖, 𝑗 = 0, . . . , 𝑘 − 1, if 𝛼(𝑎
𝑖
) = 𝑎
𝑚
𝑖

.
Obviously, the relation 𝛼 ∼ 𝛽, if and only if 𝛼 and 𝛽 are

of the same type, is an equivalence relation. Any equivalence
class is closed under the addition. But there are equivalence
classes which are not closed under the multiplication. For
example, consider 𝛼 = (𝑎

0
)
𝑎
1
+1
(𝑎
1
)
𝑎
2
−𝑎
1

(𝑎
2
)
𝑛−𝑎
2
−1
, where 𝑛 >

𝑎
3

> 𝑎
2
+ 1. Since 𝛼(𝑎

0
) = 𝑎

0
, 𝛼(𝑎
1
) = 𝑎

0
, 𝛼(𝑎
2
) =

𝑎
1
, and 𝛼(𝑎

3
) = 𝑎

2
, . . . , 𝛼(𝑎

𝑘−1
) = 𝑎

2
, the type of 𝛼 is

⟨⟨0, 0, 1, 2, . . . , 2⟩⟩. But 𝛼
2

= (𝑎
0
)
𝑎
2
+1
(𝑎
1
)
𝑛−𝑎
2
−1

is of type
⟨⟨0, 0, 0, 1, . . . , 1⟩⟩.

Sometimes it is possible to describe the semiring struc-
ture of union of many equivalence classes, that is, blocks
of our partition. For example, the union of endomorphisms
from all the blocks of type ⟨⟨0, ∗, . . . , ∗⟩⟩ is the set of
𝛼 ∈ 𝜎

(𝑛)

{𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑘−1
} such that 𝛼(𝑎

0
) = 𝑎

0
and, from

Proposition 14, it is the semiringDN
𝑛−𝑎
0
−1

0
.

The type of any endomorphism is itself an endomorphism
of a simplex ÊC

𝑘

= 𝜎
(𝑘)

{0, 1, . . . , 𝑘 − 1}. The simplex ÊC
𝑘

is called a coordinate simplex of 𝜎(𝑛){𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑘−1
}. From

this point of view, the set of endomorphisms from all the
blocks of type ⟨⟨0, ∗, . . . , ∗⟩⟩ really corresponds to the set
of all endomorphisms ≀0, 𝑚

1
, . . . , 𝑚

𝑘−1
≀ ∈ ÊC

𝑘

, which is the
semiring E(0)

C
𝑘

. More generally, we can consider the semiring
E
(𝑗)

C
𝑘

, where 𝑗 ∈ C
𝑘
, consisting of all 𝜑 ∈ ÊC

𝑘

such
that 𝜑(𝑗) = 𝑗. Then, 𝛼(𝑎

𝑗
) = 𝑎

𝑚
𝑗

= 𝑎
𝜑(𝑗)

= 𝑎
𝑗
. So

the union of endomorphisms from all the blocks of type
⟨⟨∗, . . . , ∗, 𝑗, ∗, . . . , ∗⟩⟩ is semiring 𝜎

(𝑛)

{𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑘−1
} ∩

E
(𝑎
𝑗
)

C
𝑛

. Now, more generally again, we can consider the
semiring ⋂

𝑚

𝑠=1
E
(𝑗
𝑠
)

C
𝑘

consisting of all endomorphisms of ÊC
𝑘

having 𝑗
1
, . . . , 𝑗

𝑚
as fixed points. Then, similarly, 𝛼(𝑎

𝑗
𝑠

) = 𝑎
𝑗
𝑠

,
for all 𝑠 = 1, . . . , 𝑚. So the union of endomorphisms from
all the blocks of type ⟨⟨∗, . . . , ∗, 𝑗

1
, ∗, . . . , ∗, 𝑗

𝑚
, ∗, . . . , ∗⟩⟩ is

semiring 𝜎(𝑛){𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑘−1
} ∩ (⋂

𝑚

𝑠=1
E
(𝑎
𝑗𝑠
)

C
𝑛

). The next results
from this section are announced in [8].

Theorem 15. Let 𝜎(𝑛){𝑎
0
, . . . , 𝑎

𝑘−1
} be a simplex. Let 𝑅 be a

subsemiring of the coordinate simplex ÊC
𝑘

of 𝜎(𝑛){𝑎
0
, . . . , 𝑎

𝑘−1
}.

The set 𝑅̃ of endomorphisms of 𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}, of type

⟨⟨𝑚
0
, . . . , 𝑚

𝑘−1
⟩⟩, where the endomorphism ≀𝑚

0
, . . . , 𝑚

𝑘−1
≀ ∈

𝑅, is a semiring. Moreover, when 𝑅 is a (right, left) ideal of
semiring ÊC

𝑘

, it follows that 𝑅̃ is a (right, left) ideal of simplex
𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}.
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Proof. Let 𝛼, 𝛽 ∈ 𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}. Let 𝛼 be of type

⟨⟨𝑝
0
, . . . , 𝑝

𝑘−1
⟩⟩, where the endomorphism 𝜑 = ≀𝑝

0
, . . .,

𝑝
𝑘−1

≀ ∈ 𝑅 and similarly 𝛽 are of type ⟨⟨𝑞
0
, . . . , 𝑞

𝑘−1
⟩⟩, where

the endomorphism 𝜓 = ≀𝑞
0
, . . . , 𝑞

𝑘−1
≀ ∈ 𝑅. Then, we find

(𝛼 + 𝛽)(𝑎
𝑖
) = 𝛼(𝑎

𝑖
) + 𝛽(𝑎

𝑖
) = 𝑎

𝑝
𝑖

+ 𝑎
𝑞
𝑖

= 𝑎
𝑚
𝑖

, where
𝑚
𝑖
= max{𝑝

𝑖
, 𝑞
𝑖
}. But the endomorphism ≀𝑚

0
, . . . , 𝑚

𝑘−1
≀ is

the sum 𝜑 + 𝜓. So we prove that endomorphism 𝛼 + 𝛽 is of
type 𝜑 + 𝜓 ∈ 𝑅; that is, 𝛼 + 𝛽 ∈ 𝑅̃.

Now, let us assume that 𝜑 and 𝜓 are arbitrary endomor-
phisms of ÊC

𝑘

. Then, we find

(𝛼 ⋅ 𝛽) (𝑎
𝑖
) = 𝛽 (𝛼 (𝑎

𝑖
)) = 𝛽 (𝑎

𝑚
𝑖

)

= 𝛽 (𝑎
𝜑(𝑖)

) = 𝑎
𝜓(𝜑(𝑖))

= 𝑎
(𝜑⋅𝜓)(𝑖)

.

(20)

So, if 𝑅 is a right ideal of ÊC
𝑘

and 𝜑 ∈ 𝑅, 𝑅 is a left ideal
of ÊC

𝑘

and 𝜓 ∈ 𝑅, or 𝑅 is an ideal of ÊC
𝑘

and one of 𝜑 and 𝜓

is from 𝑅, it follows that 𝜑 ⋅𝜓 ∈ 𝑅. Hence, in each of the three
cases 𝛼 ⋅ 𝛽 ∈ 𝑅̃ and this completes the proof.

Now, let endomorphism 𝛼 be of type ⟨⟨𝜄
0
, . . . , 𝜄
𝑘−1

⟩⟩ and
the endomorphism 𝜄 = ≀𝜄

0
, . . . , 𝜄
𝑘−1

≀ from the coordinate
simplex ÊC

𝑘

be an idempotent, different from constant
endomorphisms 𝑗, where 𝑗 = 0, . . . , 𝑘 − 1, and the identity
i. Then we say that 𝛼 is of an idempotent type.

Corollary 16. The set of endomorphisms 𝛼 ∈ 𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
} of a fixed idempotent type ⟨⟨𝜄

0
, . . . , 𝜄
𝑘−1

⟩⟩ is a
semiring.

Proof. Obviously, since the set 𝑅 = {𝜄}, where 𝜄 is an
idempotent, is a semiring, the semirings of an idempotent
type are denoted by 𝑅̃ = I(𝜄), where 𝜄 = ≀𝜄

0
, . . . , 𝜄
𝑘−1

≀ is the
corresponding idempotent.

Let ℓ ∈ C
𝑘
. For any ℓ = ≀ℓ, . . . , ℓ≀ ∈ ÊC

𝑘

, we consider (see
the first section) the set

N
[ℓ]

𝑘
= {𝜑 | 𝜑 ∈ ÊC

𝑘

,

𝜑
𝑚
ℓ = ℓ for some natural number 𝑚

ℓ
} .

(21)

From Theorem 1, it follows that N[ℓ]
𝑘
, for 𝑘 ≥ 2 and ℓ ∈

C
𝑘
, is a subsemiring of ÊC

𝑘

.
Now, let the endomorphism 𝛼 ∈ 𝜎

(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
} be

of any type ⟨⟨𝑚
0
, . . . , 𝑚

𝑘−1
⟩⟩, where the endomorphism

≀𝑚
0
, . . . , 𝑚

𝑘−1
≀ ∈ N

[ℓ]

𝑘
, for some fixed ℓ ∈ C

𝑘
. Then, we say

that 𝛼 is of an ℓ-nilpotent type.

Corollary 17. The set of endomorphisms 𝛼 ∈ 𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
} of ℓ-nilpotent type, for some fixed ℓ ∈ C

𝑘
, is a

semiring.

Proof. Immediately from the last theorem and Theorem 1,
the semirings of ℓ-nilpotent type are denoted by 𝑅̃ =

N[𝑎ℓ](𝜎(𝑛){𝑎
0
, . . . , 𝑎

𝑘−1
}).

Now, let the endomorphism 𝛼 ∈ 𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
} be of

any type ⟨⟨𝑚
0
, . . . , 𝑚

𝑘−1
⟩⟩, where the endomorphism 𝜑 =

≀𝑚
0
, . . . , 𝑚

𝑘−1
≀ from the coordinate simplex ÊC

𝑘

is neither
an idempotent nor an ℓ-nilpotent for some ℓ ∈ C

𝑘
. Then,

according to [5], 𝜑 is a root of some idempotent 𝜄 =

≀𝜄
0
, . . . , 𝜄
𝑘−1

≀. Since the roots of identity of semiring ÊC
𝑘

do
not exist (see [2]), it follows that 𝜄 is an idempotent, different
from ℓ, ℓ ∈ C

𝑘
, and identity. In this case, the endomorphism

𝛼 is called a type related to idempotent type ⟨⟨𝜄
0
, . . . , 𝜄
𝑘−1

⟩⟩.
To clarify the above definition, we give an example of
endomorphisms of type related to some idempotent type.

Example 18. Let us consider the simplex 𝜎
(10)

{0, 2, 3, 5, 8}.
The coordinate simplex consisting of all the types of endo-
morphisms of𝜎(10){0, 2, 3, 5, 8} is the simplex𝜎(5){0, 1, 2, 3, 4}.
In this coordinate simplex, we chose the idempotent 𝜄 =

≀0, 0, 0, 0, 4≀. FromTheorem 19 of [5], it follows that the idem-
potent 𝜄 and its roots form a semiring of order 𝐶

3
= 5. Let us

note that Catalan sequence is the sequence 𝐶
0
, 𝐶
1
, 𝐶
2
, 𝐶
3
, . . .,

where 𝐶
𝑛

= 1/(𝑛 + 1) ( 2𝑛
𝑛
). So, the elements of the

semiring, generated by 𝜄 contains 5 endomorphisms: 𝜑
1

=

≀0, 0, 0, 1, 4≀, 𝜑
2

= ≀0, 0, 0, 2, 4≀, 𝜑
3

= ≀0, 0, 1, 1, 4≀, 𝜑
4

=

≀0, 0, 1, 2, 4≀, and 𝜄. Now, we choose endomorphisms from the
simplex 𝜎

(10)

{0, 2, 3, 5, 8}: 𝛼 = 0
4
2
2
8
4
and 𝛽 = 0

3
2
2
3
3
8
5
.

The endomorphism 𝛼 is of type ⟨⟨0, 0, 0, 1, 4⟩⟩, related to
idempotent type ⟨⟨0, 0, 0, 0, 4⟩⟩, and endomorphism 𝛽 is of
type ⟨⟨0, 0, 1, 2, 4⟩⟩, related to the same idempotent type.
We compute 𝛼

2

= 0
6
8
4
which is an idempotent and also

𝛽
2

= 0
5
2
3
8
2
which is not an idempotent, but 𝛽3 = 0

8
8
2

is an idempotent. Thus, we show that 𝛼 and 𝛽 are roots of
different idempotents, but they are of types related to the same
idempotent type. We can also show that 𝛼 ⋅ 𝛽 = 0

6
8
4
is an

idempotent and 𝛽 ⋅ 𝛼 = 0
8
8
2
also is an idempotent.

Corollary 19. The set of endomorphisms 𝛼 ∈

𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
} of a type, related to some fixed idempotent

type, is a semiring.

Proof. Immediately from the last theorem and Theorem
19 of [5], the semirings from the last corollary are called
idempotent closures of type 𝜄, where 𝜄 = ≀𝜄

0
, . . . , 𝜄
𝑘−1

≀ is the
corresponding idempotent and is denoted by 𝑅̃ = IC(𝜄).

From the last theorem, we also find the following.

Corollary 20. The set of endomorphisms of 𝜎(𝑛){𝑎
0
, . . . , 𝑎

𝑘−1
},

of type ⟨⟨𝑚
0
, . . . , 𝑚

𝑘−1
⟩⟩, where the endomorphism

≀𝑚
0
, . . . , 𝑚

𝑘−1
≀ belongs to some face of the coordinate

simplex ÊC
𝑘

, is a left ideal.

Now we describe the left ideals from the last corollary
when 𝑘 = 4.

Example 21. For a simplexTETR(𝑛){𝑎
0
, 𝑎
1
, 𝑎
2
, 𝑎
3
}, the coor-

dinate simplex is TETR(4){0, 1, 2, 3} and its faces are as
follows:

triangles: 𝐼
0

= 󳵻
(4)

{1, 2, 3}, 𝐼
1

= 󳵻
(4)

{0, 2, 3}, 𝐼
2

=

󳵻
(4)

{0, 1, 3}, and 𝐼
3
= 󳵻
(4)

{0, 1, 2};
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strings: 𝐼
0

∩ 𝐼
1

= STR(4){2, 3}, 𝐼
0

∩ 𝐼
2

=

STR(4){1, 3}, 𝐼
0
∩ 𝐼
3

= STR(4){1, 2}, 𝐼
1
∩ 𝐼
2

=

STR(4){0, 3}, 𝐼
1
∩ 𝐼
3
= STR(4){0, 2}, and 𝐼

2
∩ 𝐼
3
=

STR(4){0, 1};
vertices: 𝐼

0
∩ 𝐼
1
∩𝐼
2
= {3}, 𝐼

0
∩ 𝐼
1
∩ 𝐼
3
= {2}, 𝐼

0
∩𝐼
2
∩𝐼
3
=

{1}, and 𝐼
1
∩ 𝐼
2
∩ 𝐼
3
= {0}.

Then, the left ideal 𝐼
0
of simplexTETR(𝑛){𝑎

0
, 𝑎
1
, 𝑎
2
, 𝑎
3
}

consists of endomorphisms 𝛼, such that 𝑎
0
is not a fixed

point of 𝛼. Now, the triangle 󳵻
(𝑛)

{𝑎
1
, 𝑎
2
, 𝑎
3
}, which is a left

ideal of semiringTETR(𝑛){𝑎
0
, 𝑎
1
, 𝑎
2
, 𝑎
3
}, is contained in 𝐼

0
.

Moreover,

𝐼
0
\ 󳵻
(𝑛)

{𝑎
1
, 𝑎
2
, 𝑎
3
}

=

𝑎
0

⋃

𝑠=1

L
𝑠

𝑎
0

(TETR
(𝑛)

{𝑎
0
, 𝑎
1
, 𝑎
2
, 𝑎
3
})

= {𝛼 = (𝑎
0
)
ℓ
(𝑎
1
)
𝑝
1

(𝑎
2
)
𝑝
2

(𝑎
3
)
𝑝
3

,

where 0 < ℓ ≤ 𝑎
0
, ℓ + 𝑝

1
+ 𝑝
2
+ 𝑝
3
= 𝑛} .

(22)

Similarly, the left ideals 𝐼
1
, 𝐼
2
J 𝐼
3
consist of endomor-

phisms 𝛼, such that 𝑎
1
, 𝑎
2
, and 𝑎

3
are not fixed points of 𝛼,

respectively.
The left ideals 𝐼

𝑝
∩ 𝐼
𝑞
, where 𝑝, 𝑞 ∈ {0, 1, 2, 3}, 𝑝 ̸= 𝑞,

consists of endomorphisms 𝛼, such that 𝑎
𝑝
and 𝑎

𝑞
are not

fixed points of 𝛼. Let {𝑎
𝑟
, 𝑎
𝑠
} = {𝑎

0
, 𝑎
1
, 𝑎
2
, 𝑎
3
} \ {𝑎
𝑝
, 𝑎
𝑞
}J 𝑎
𝑟
<

𝑎
𝑠
.Then,STR(4){𝑎

𝑟
, 𝑎
𝑠
} ⊂ 𝐼
𝑝
∩𝐼
𝑞
. Observe that in the interior

of one of the triangles with vertices 𝑎
𝑝
, 𝑎
𝑟
, and 𝑎

𝑠
and 𝑎
𝑞
, 𝑎
𝑟
,

and 𝑎
𝑠
, respectively, there are endomorphisms 𝛼, such that 𝑎

𝑝

and 𝑎
𝑞
are not fixed points of 𝛼.

The left ideal 𝐼, where 𝐼 = 𝐼
𝑝
∩𝐼
𝑞
is actually the ideal 𝐼

𝑝
∩𝐼
𝑞
.

The left ideal 𝐼
0
∩ 𝐼
1
∩ 𝐼
2
consists of endomorphisms 𝛼

such that 𝑎
0
, 𝑎
1
, and 𝑎

2
are not fixed points of 𝛼. Hence, all

elements of this left ideal have 𝑎
3
as a fixed point. Similarly,

we determine the left ideals 𝐼
0
∩𝐼
1
∩𝐼
3
, 𝐼
0
∩𝐼
2
∩𝐼
3
, and 𝐼

1
∩𝐼
2
∩𝐼
3
.

From the last theorem, also we have two consequences.

Corollary 22. The set of endomorphisms of the simplex
𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}, having a type ⟨⟨𝑎

𝑖
, . . . , 𝑎

𝑖
⟩⟩, where 𝑖 =

0, . . . , 𝑘 − 1, is an ideal.

Corollary 23. The set of endomorphisms of the simplex
𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}, having a type ⟨⟨𝑚

0
, . . . , 𝑚

𝑘−1
⟩⟩, where the

endomorphism ≀𝑚
0
, . . . , 𝑚

𝑘−1
≀ belongs to the union 𝐽 =

⋃
𝑘−1

𝑚=0
DN1
𝑚
of the discrete 1-neighborhoods of all vertices of

coordinate simplex ÊC
𝑘

, is a right ideal.

At last, we consider the endomorphisms 𝛼 ∈

𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
} of type ⟨⟨0, 1, . . . , 𝑘 − 1⟩⟩. Now the

corresponding endomorphism from the coordinate simplex
is identity i. In order to find the set of endomorphisms 𝑅̃

of this type, we need the following definition. Idempotent
𝛼 ∈ 𝜎

(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
} is called a boundary idempotent of the

simplex, if 𝛼 ∈ BD(𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}), similarly, an interior

idempotent of the simplex, if 𝛼 ∈ INT(𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}).

Note that, in the coordinate simplex, the identity i is the
unique interior idempotent.

Theorem 24. The set of endomorphisms of 𝜎(𝑛){𝑎
0
, . . . , 𝑎

𝑘−1
},

which are right identities, is a semiring of order∏𝑘−1
𝑖=0

(𝑎
𝑖+1

−𝑎
𝑖
).

Proof. Let us denote by RI(𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}) semiring

𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}∩(⋂

𝑘−1

𝑖=0
E
(𝑎
𝑖
)

C
𝑛

).Then, for any element 𝑥 ∈ C
𝑛

and arbitrary endomorphism 𝛼 ∈ RI(𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}),

it follows that 𝛼(𝑥) = 𝑎
𝑖
, for some 𝑖 = 0, . . . , 𝑘 − 1. Then

𝛼
2

(𝑥) = 𝛼(𝑎
𝑖
) = 𝑎
𝑖
= 𝛼(𝑥); that is, 𝛼 is an idempotent. Since

𝛼 = (𝑎
0
)
ℓ
0

. . . (𝑎
𝑘−1

)
ℓ
𝑘−1

, where ℓ
𝑖
> 0, for any 𝑖 = 0, . . . , 𝑘 − 1

(if we suppose ℓ
𝑖
= 0, then 𝛼 ∉ E

(𝑎
𝑖
)

C
𝑛

), it follows that 𝛼 is an
interior idempotent.

Conversely, let 𝛼 be an interior idempotent. Then, we
can express 𝛼 = (𝑎

0
)
ℓ
0

⋅ ⋅ ⋅ (𝑎
𝑘−1

)
ℓ
𝑘−1

, where ℓ
𝑖

> 0, for
any 𝑖 = 0, . . . , 𝑘 − 1 (if we suppose ℓ

𝑖
= 0, then 𝛼 ∉

INT(𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
})). So, we prove that the semiring

RI(𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}) consists of all interior idempotents of

the simplex.
Let 𝛼 ∈ RI(𝜎

(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}) and 𝛽 be an arbitrary

element of the simplex. For 𝑥 ∈ C
𝑛
, it follows that 𝛽(𝑥) = 𝑎

𝑖
,

where 𝑖 = 0, . . . , 𝑘 − 1. Then (𝛽 ⋅ 𝛼)(𝑥) = 𝛼(𝛽(𝑥)) = 𝛼(𝑎
𝑖
) =

𝑎
𝑖
= 𝛽(𝑥). Hence, 𝛼 is a right identity of the simplex.
Conversely, let 𝛼 be a right identity of the simplex.

Evidently, 𝛼 is an idempotent. Assume that, for some 𝑖 =

0, . . . , 𝑘 − 1, we have 𝑎
𝑖

∉ Im(𝛼). Since for some 𝛽 ∈

𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
} and 𝑥 ∈ C

𝑛
, it follows that 𝛽(𝑥) = 𝑎

𝑖
, where

𝑖 = 0, . . . , 𝑘 − 1, we find (𝛽 ⋅ 𝛼)(𝑥) = 𝛼(𝛽(𝑥)) = 𝛼(𝑎
𝑖
) ̸= 𝑎
𝑖
=

𝛽(𝑥); that is, 𝛽 ⋅ 𝛼 ̸= 𝛽, which contradicts that 𝛼 is a right
identity. So, Im(𝛼) = {𝑎

0
, . . . , 𝑎

𝑘−1
}; that is, 𝛼 is an interior

idempotent or 𝛼 ∈ RI(𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}).

Hence, we prove thatRI(𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}) is a semiring

of right identities of simplex 𝜎(𝑛){𝑎
0
, . . . , 𝑎

𝑘−1
}. Since elements

of RI(𝜎
(𝑛)

{𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑘−1
}) are all the idempotents with

fixed points 𝑎
0
, . . . , 𝑎

𝑘−1
, from Theorem 2 (Section 1), it fol-

lows that |RI(𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
})| = ∏

𝑘−1

𝑖=0
(𝑎
𝑖+1

− 𝑎
𝑖
).

So, we can construct a partition of the simplex
𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
} such that all blocks of this partition

are as follows:

(1) semirings 𝑅̃ = N[𝑎ℓ](𝜎(𝑛){𝑎
0
, . . . , 𝑎

𝑘−1
}), where ℓ =

0, . . . , 𝑘 − 1;
(2) semirings 𝑅̃ = I(𝜄), where 𝜄 = ≀𝜄

0
, . . . , 𝜄
𝑘−1

≀ is an
idempotent of ÊC

𝑘

;

(3) semirings 𝑅̃ = IC(𝜄), where 𝜄 = ≀𝜄
0
, . . . , 𝜄
𝑘−1

≀ is an
idempotent of ÊC

𝑘

;

(4) semiring 𝑅̃ = RI(𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}).

From the last theorem we also find the following.

Corollary 25. There is at least one right identity of the simplex
𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}.
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If there are two or more right identities of simplex
𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}, then there is not a left identity. Let us

suppose that there is a left identity 𝜔 ∈ 𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}.

Let 𝜀 be a right identity of the simplex. Then, it follows that
𝜀 = 𝜔 ⋅ 𝜀 = 𝜔. If there is a single right identity, from the last
theorem, it follows that 𝑎

𝑖+1
= 𝑎
𝑖
+ 1, for any 𝑖 = 0, . . . , 𝑘 − 2.

Then, this single right identity is 𝜀 = (𝑎
0
)
𝑎
0
+1
(𝑎
0
+ 1) ⋅ ⋅ ⋅ (𝑎

0
+

𝑘 − 2)(𝑎
0
+ 𝑘 − 1)

𝑛−𝑎
0
−𝑘+1

. Let 𝛼 = (𝑎
0
)
𝑎
0

(𝑎
1
)
𝑛−𝑎
0

. We find
𝜀 ⋅ 𝛼 = 𝑎

1
̸= 𝛼, and so we have proved.

Corollary 26. There are not any left identities of the simplex
𝜎
(𝑛)

{𝑎
0
, . . . , 𝑎

𝑘−1
}.
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