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We study the entanglement dynamics in the system of coupled boson fields. We demonstrate that there are different natural
notions of locality in this context leading to inequivalent notions of entanglement. We concentrate on the particle picture, when
entanglement of one particle is determined by one-particle density matrix. We study, in detail, the effect of interaction preserving
populations of individual one-particle states. We show that if the system is initially in a disentangled state with the definite total
number of particles and the dimension of the one-particle Hilbert space is more than two, then only potentials of the special form
admit complete entanglement, which is shown to be reached at NOON states. If the system is initially in Glauber’s coherent state,
complete entanglement is not reached despite the presence of two entangling channels in this case. We conclude with studying the
time evolution of entanglement of photons in a cavity with multiple quantum dots in the limit of large number of photons. We
show that in a relatively short time scale the completely entangled states belong to the class of graph states and are formed due to
the interaction with dots in resonance with the cavity modes.

1. Introduction

Entanglement [1] is a quintessentially quantum feature. It
signifies that different parts of a compound system may
form a new entity, a complex; for example, when neither
of two particles can be characterized by a definite state so
that instead of two particles one has to consider a pair and
so on. If one would attempt to access a particular part of
the complex by performing a local measurement, this would
unavoidably modify the state of other parts even if the direct
interaction between the parts is absent or negligible. Such
departure from the classical properties makes entanglement
the central object in various contexts, from the perspective
of application in quantum informatics [2] to understanding
the physics of quantum phase transitions [3]. As a problem
of special interest, therefore, the problem of preparation of
a system in an entangled state stands out. Among different
appearances of this problem, entangled states of quantized
electromagnetic field, as perhaps the most accessible and the
most flexible object, presents a significant importance on its
own. Nowadays, themost developed andwidely usedmethod
of generating entangled photons is the parametric down

conversion [4–6], which is based on the two-photon radiative
decay ofmaterial excited states.Thismethod, however, suffers
from well recognized intrinsic limitations such as very low
yield and rescaling the wavelength of the emitted photons
[2, 7, 8].Therefore, there is the constant search for alternative
sources of entangled light [9–19], whichmotivates a thorough
consideration of entanglement of quantummany-body states.

The characteristic feature of the process of entangling
photons in the course of interaction with matter is the
nonconserving number of photons, or involved particles in
general. In the few particle limit or in the case when the
typical time scales are well separated, these processes can
be reduced to a more or less standard quantum mechanical
situation. This makes the process of entangling fit into the
well developed description of entanglement. Indeed, in this
case one can specify time periods when the system is either
in the state of excited matter and no (relevant) photon, or
in the state when matter is in the ground state and there
are emitted photons. The general problem of solid based
sources of entangled light, however, requires addressing the
more general situation, when the photon states coexist with
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material excitations and the processes of reabsorption and
reemissionmay play an important role. In this case one has to
incorporate the nonconserving number of particles fully into
consideration.Thequantumfield description (more precisely,
the formalism of second quantization) provides the most
natural framework for dealing with this kind of a situation.
In this approach particles appear not as predefined entities
as, say, qubits within the standard quantummechanical treat-
ment, but rather as excitations of the respective quantized
fields.

As we will demonstrate below, entanglement in the
context of quantized fields has its subtleties. The complete
description of entanglement in this context is yet to be
developed. For our purposes, however, a basic approach is
sufficient. First, we will restrict our attention only to the
case when the whole system can be characterized by a pure
state. Second, entanglement will be considered from the
perspective of the problem of sources of entangled light,
which advances consideration of particle properties, as will
be elaborated below. From this point of view the existence of
entanglement implies that a set of particles is in a nonsepa-
rable state and, as a result, one particle cannot be described
by a state vector; the particle of necessity is in a mixed state.
Pure and mixed states, in turn, can be distinguished using
the fact that extremal values of observables corresponding to
operators with a nondegenerate spectrum are reached at pure
states. Let ̂𝑂 be an operator acting on a finite dimensional
Hilbert space and let its spectral decomposition be ̂

𝑂 =

∑

𝜅
𝑂

𝜅

̂

Π

𝜅
, where 𝑂

𝜅
are the eigenvalues, enumerated in the

ascending order, 𝑂
1
< 𝑂

2
≤ 𝑂

3
⋅ ⋅ ⋅ ≤ 𝑂

𝑁
, and ̂

Π

𝜅
are the

projectors on the respective eigenspaces. Furthermore, let the
smallest eigenvalue be nondegenerate, that is, rank(̂Π

1
) =

1, then the minimal value of ⟨̂𝑂⟩ ≡ Tr[𝜌̂𝑂] (understood
as a function of state described by the density matrix 𝜌) is
equal to 𝑂

1
and is reached at 𝜌 corresponding to the pure

state, 𝜌 =

̂

Π

1
. Respectively, the value of the observable ⟨̂𝑂⟩

on mixed states will always satisfy inequality ⟨̂𝑂⟩mix > 𝑂

1
.

Indeed, on the basis, where ̂𝑂 is diagonal, one has Tr[𝜌̂𝑂] =
∑

𝜅
𝑂

𝜅
𝜌

𝜅,𝜅
≥ 𝑂

1
∑

𝜅
𝜌

𝜅,𝜅
= 𝑂

1
with the equality reached

only when all 𝜌
𝜅,𝜅

but 𝜌
1,1

are zero. Thus, in a sense any
operator with nondegenerate extremal eigenvalues allows
distinguishing between pure and mixed states. Using this
observation one can implement the ideology of witnessing
entanglement, which was originally developed in the context
of the full compound system [1, 20] and later was extended to
one particle description [21].

This approach can be directly applied to the quantum
field description. In this case, the role of witnesses is
played by respective one-particle operators and following
the standard line of arguments (see, e.g., [22]) one can
characterize entanglement of one particle with the rest of
the system using one particle correlation matrix (OPCM)
𝐺

𝜅,𝜆
= ⟨𝑎

†

𝜅
𝑎

𝜆
⟩, where 𝜅 and 𝜆 enumerate one-particle

states and 𝑎

†

𝜅
and 𝑎

𝜆
create and destroy a particle in the

respective states. Throughout the paper we incorporate the
time dependence into the Heisenber, representation of the
operators 𝑎

𝜅
(𝑡) = exp(𝑖H𝑡)𝑎

𝜅
exp(−𝑖H𝑡), where H is the

Hamiltonian describing the whole system. Thus, the time
dependence of the OPCM is given by

𝐺

𝜅,𝜆
(𝑡) = ⟨𝑎

†

𝜅
(𝑡) 𝑎

𝜆
(𝑡)⟩ , (1)

where the average is taken with respect to the initial state
⟨⋅ ⋅ ⋅ ⟩ = ⟨𝜓(𝑡 = 0)| ⋅ ⋅ ⋅ |𝜓(𝑡 = 0)⟩.

In order to illustrate the difficulty of producing entangled
states let us consider a simple example of a boson field driven
by an external source

H = ∑

𝜅

(𝜖

𝜅
𝑎

†

𝜅
𝑎

𝜅
+ 𝑟

𝜅
(𝑡) 𝑎

†

𝜅
+ 𝑟

∗

𝜅
(𝑡) 𝑎

𝜅
) , (2)

where 𝑟
𝜅
(𝑡) are 𝑐-numbers characterizing the external source.

Before applying rigorous methods let us note that this
system may look confusing if approached with the help of
often employed arguments based on interference of different
paths connecting the initial and final states. Indeed, con-
sidering that there are different ways to fill some particular
state, say, with only two particles, one might expect that these
two particles will become entangled, which, of course, is an
incorrect conclusion.

In virtue of the discussion above, the absence of entangle-
ment would bemanifested by rank one of the OPCM [23, 24],
while the rank of the OPCM can be easily investigated. The
solutions of the operator equations of motion have the form

𝑎

𝜅
(𝑡) = 𝑎

𝜅
(0) exp (−𝑖𝜖

𝜅
𝑡) + 𝑅

𝜅
(𝑡) , (3)

where 𝑅
𝜅
(𝑡) = ∫

𝑡

0

𝑑𝑡

 exp[−𝑖𝜖
𝜅
(𝑡 − 𝑡



)]𝑟

∗

𝜅
(𝑡



) are 𝑐-number
functions. Substituting this representation into (1) we find

𝐺

𝜅,𝜆
(𝑡) = 𝑒

𝑖𝑡(𝜖
𝜅
−𝜖
𝜆
)

𝐺

𝜅,𝜆
(0) + 𝑅

∗

𝜅
(𝑡) ⟨𝑎

𝜆
⟩ 𝑒

−𝑖𝜖
𝜆
𝑡

+ ⟨𝑎

†

𝜅
⟩𝑅

𝜆
(𝑡) 𝑒

𝑖𝜖
𝜅
𝑡

+ 𝑅

𝜅,𝜆
(𝑡) ,

(4)

where 𝑅
𝜅,𝜆
(𝑡) = 𝑅

∗

𝜅
(𝑡)𝑅

𝜆
(𝑡). Generally the structure of the

OPCM ̂

𝐺(𝑡) (throughout the paper hats denote matrices in
one-particle Hilbert space) driven by the external source
depends on time nontrivially. The last three terms in (4) may
lead to variation of entanglement depending on the structure
of the initial state. If, however, the system is initially in the
vacuum state, that is, ̂𝐺(0) = 0, then ̂

𝐺(𝑡) =

̂

𝑅(𝑡), where ̂𝑅(𝑡)
is thematrix with the elements𝑅

𝜅,𝜆
(𝑡). In turn, ̂𝑅(𝑡) is at most

of rank which implies the absence of entanglement.
This example shows that the problem of the dynamics

of entanglement should be treated with certain care. First,
the naive arguments based on the picture of interference
of different paths may be misleading. Second, no matter
how complex the internal dynamics of the system described
by the spectrum, 𝜖

𝜅
, and independently on particular time

dependence of the external excitation 𝑟
𝜅
(𝑡), the states, reached

out of vacuum under the action of this excitation, are
disentangled. In particular, the initial state, which may lead
to a nontrivial time dependence of entanglement, as has been
mentioned above, must be created by means other than the
external classical excitation.

The rest of the paper is organized as follows. In Section 2,
we provide a more detailed description of entanglement in
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the context of quantized fields. In Section 3 we consider the
entanglement dynamics for the system of linearly coupled
boson fields. In Section 4 we study entanglement dynamics
for the case of self-interacting bosonfield. Finally, in Section 5
we apply the obtained results to the analysis of the entangle-
ment dynamics of photons in a cavity with multiple quantum
dots in the limit of a large number of photons.

2. Entanglement within Field
and Particle Pictures

Some results presented in Sections 3 and 4 may seem to
contradict some results readily available in the literature.This
reflects a certain ambiguity of the notion of entanglement in
the context of quantized fields. Therefore, in order to avoid
a possible misunderstanding, it is worthwhile to analyze the
problem of entanglement in detail.

2.1. Field and Particle Pictures. The ambiguity stems from the
fact that entanglement is understood as a relation between a
part of the compound system and the whole system, while
there are two distinctive notions of the part when quantized
fields are considered: fields and particles. Which of these two
different entities, fields and particles, appearmore naturally is
dictated by the physical content of the specific problem. For
example, if a system of harmonic or anharmonic oscillators is
considered [25], individual oscillators (i.e., fields) stand out as
part of the big system, while, say, the dynamics of excitons in
semiconductors [10, 12, 14, 16, 17, 19] promotes consideration
of particles.

An arbitrary (pure) state of a system of 𝑛 (boson) fields
can be specified in terms of degrees of excitation (population
numbers) of each field
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𝑛
⟩ , (5)

where𝑁
𝜅
denotes the population of the𝜅-th field andΨ

𝑁
1
,...,𝑁
𝑛

are the respective amplitudes. Equivalently, this state can be
presented in terms of the particle creation operators
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∑

𝑁=0

∑

𝜅
1
,...,𝜅
𝑁

Φ

𝜅
1
,...,𝜅
𝑁

𝑎

†

𝜅
1

⋅ ⋅ ⋅ 𝑎

†

𝜅
𝑁

|0⟩ , (6)

where |0⟩ is vacuum, 𝑁 is the total number of particles,
and 𝑎

†

𝜅
creates a particle in the 𝜅-th one-particle state.

Representations (5) and (6) are equivalent if the amplitudes
Φ

𝜅
1
,...,𝜅
𝑁

satisfy conditions that follow from the commutation
of the creation operators [𝑎†

𝜅
, 𝑎

†

𝜆
] = 0 and the relation between

the individual fields in (5) and one-particle states in (6),
|𝑁

𝜅
⟩ = (𝑎

†

𝜅
)

𝑁
𝜅

|0⟩/√𝑁

𝜅
!.

While representations (5) and (6) are equivalent they
imply different notions of “locality.” This follows simply
from the following observation. An operator acting on a
particular field in (5) does not preserve the total number of
particles unless it is proportional to the identity operator. At
the same time an operator, which changes the state of one
particle in (6), obviously affects the population numbers of

more than one field. In turn, entanglement strongly relies
on the notion of locality and, therefore, is sensitive to the
choice of eligible local transformations.Therefore, one should
distinguish representations (5) and (6). For this reasonwewill
call representation (5) the field picture and (6) will be referred
to as the particle picture. Most of the papers dealing with
entanglement in the field context are effectively restricted
to one of the pictures implied by the physical situation.
This, however, leads to possible ambiguities because results
are often formulated in some general terms (entanglement,
part, compound system, and so on), which are identical for
both pictures. Entanglement, however, does depend on the
picture, as is suggested by the nonequivalence of the notions
of locality and will be demonstrated below.

Within the field picture, if the general form of operators
acting on a particular field is allowed, entanglement is
naturally related to separability of amplitudes Ψ

𝑁
1
,...,𝑁
𝑛

. In
systems with superselection rules [26], the space of allowed
operators is “smaller” and the operators, whose mean value is
extremal at the particular state, may not be accessible. From
the perspective of witness ideology, this means that such
state should be considered as entangled. For such systems,
therefore, one needs a criteria of entanglement different
from the mere separability of the respective amplitudes. This
problem, however, goes beyond the scope of the present
paper.

In order to quantify entanglement of the 𝜅-th field with
the rest of the system, that is, with the other fields, it is
convenient to introduce the reduced density matrix

𝜌

(𝜅)

𝑁,𝑁

= ∑

𝑁
1
,...,𝑁
𝑛

⟨𝑁

1
, . . . , 𝑁

𝜅−1
, 𝑁, . . . , 𝑁

𝑛
| 𝜓⟩

× ⟨𝜓 | 𝑁

1
, . . . , 𝑁

𝜅−1
, 𝑁



, . . . , 𝑁

𝑛
⟩,

(7)

where the summation excludes𝑁
𝜅
. If the rank of the reduced

density matrix 𝜌

(𝜅)

𝑁,𝑁

is higher than one, we have entan-

glement, which can be quantified, for example, by the von
Neumann entropy. Thus, entanglement in the field picture
fits the canonical quantum mechanical description based on
separability of the amplitudes and agrees with the general
witness ideology.

Within the particle picture, however, one has to rely upon
the witness approach more due to indistinguishability of
individual particles, whichmakes the separability property of
amplitudes Φ

𝜅
1
,...,𝜅
𝑁

an inadequate criterium. The quantity of
main interest becomes the one-particle correlation matrix

𝐺

𝜅,𝜆
= ⟨𝑎

†

𝜅
𝑎

𝜆
⟩ , (8)

which is related to the amplitudes Φ

𝜅
1
,...,𝜅
𝑁

in a rather
complex way. The one-particle density matrix (OPDM) is
defined as a properly normalized correlation matrix 𝜌 =

̂

𝐺/Tr[̂𝐺].Then, entanglement can be quantified, for example,
by von Neumann entropy (we will return to the question of
the entanglement measure below) 𝐸

𝑁
[𝜌] = −Tr[𝜌 ln(𝜌)].

One can easily check that when the system immediately
admits the standard description (e.g. when all particles are
distinguishable, i.e., all 𝜅

𝑖
in (6) are different, and the field
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and particle pictures are identical) the approach based on
the OPDM yields results consistent with this description.
Of course, OPDM may only answer questions regarding
entanglement of a single particle with the rest of the system. If
one is interested in more subtle details, such as, for instance,
entanglement in pairs, one has to look at the density matrices
of higher orders. We, however, limit ourselves to studying
the basic properties of entanglement and for this purpose it
suffices to consider OPDM, which can be shown to yield the
upper bound for entanglement in the system.

The necessity to distinguish entanglement within differ-
ent pictures is illustrated by states with amplitudes (in the
field picture) being separable, Ψ

𝑁
1
,...,𝑁
𝑛

= ∏

𝑛

𝜅=1
𝜓

(𝜅)

𝑁
𝜅

, and for
each field only amplitudes of the same parity are not zero, for
example, 𝜓(𝜅)

2𝑘
= 0 for all 𝜅 and integral 𝑘 ≥ 0. These states

are disentangled within the field picture; they, however, may
be completely entangled within the particle picture. Indeed,
the off-diagonal elements of the OPDM vanish for such states
and if, additionally, the amplitudes 𝜓(𝜅)

2𝑘+1
are chosen in such

manner that the average number of particles in each state (the
degree of excitation of each field) is the same, ⟨𝑎†

𝜅
𝑎

𝜅
⟩ = const,

then the von Neumann entropy takes the maximal value,
implying maximal entanglement within the particle picture.

The example of opposite situations is presented by single-
particle entanglement [21, 27–30], when, say, Ψ

1,0
Ψ

0,1
̸= 0,

while all other amplitudes in (5) are zero. These states are
obviously entangled within the field picture while disentan-
gled in the framework of the particle picture.

2.2. Disentangled States in Particle Picture. For a more de-
tailed comparison of different pictures we show that the
states disentangled within both field and particle pictures
constitute the special class and this class is not particularly
rich. Besides the states with only excitations of one field, when
trivially there is nothing to entangle (we would like to remind
the reader that we consider the case without superselection
rules), are canonical coherent states [31–33].

First of all we describe all disentangled states within
the particle picture. The main result here is almost obvious:
particles are disentangled within the particle picture if and only
if they all are in the same state. In order to prove this statement
(nontrivial in the part that there are no other disentangled
states) it is convenient to introduce special notations.

We introduce a vector-operator awith components (a)
𝜅
=

𝑎

𝜅
.The commutation relation in terms of the vector-operators

can be formally written as [a†, a] = −

̂

1. These are vectors
in the following sense. The choice of a different set of basis
one-particle states in space 𝐻 corresponds to a linear trans-
formation of𝐻, which translates into choosing a different set
of operators 𝑏

𝜆
linearly related to the old set

𝑏

𝜆
= ∑

𝜅

𝑎

𝜅
𝑈

𝜅,𝜆 (9)

or b = â𝑈. The commutation relation for new operators can
be shown to have the form [b†, b] = −

̂

𝑈

†
̂

𝑈. Thus, in order to
satisfy the boson commutation relation, the vector-operators
b and a must be related through a unitary transformation.

These transformations, in particular, preserve the operator
of the total number of particles. This can be illustrated by
presenting the operator as N = ∑

𝜅
𝑎

†

𝜅
𝑎

𝜅
≡ Tr(a† ⊗ a). In

this section ⊗ denotes the product (a† ⊗ a)
𝜅,𝜆

= 𝑎

†

𝜅
𝑎

𝜆
, which

transforms as a tensor.
The reason why we have introduced vector-operators is

that OPCM also transforms as a tensor

⟨b† ⊗ b⟩ = ̂

𝑈

†

⟨a† ⊗ a⟩ ̂𝑈; (10)

that is, ̂𝐺 is mapped into ̂

𝑈

†
̂

𝐺

̂

𝑈. Thus, unitary transforma-
tions do not change the spectrum of OPCM and, due to
invariance ofN, they leave entanglement intact.

The important consequence of this geometrical picture
is that it immediately provides the description of all disen-
tangled states. OPCM is a Hermitian matrix and, therefore,
can be diagonalized by a unitary transformation, implying
the existence of the preferred set of operators. In turn,
OPCM of any disentangled state in the diagonal form has
only single nonzero element. Thus, choosing the appropriate
transformation we can have only ⟨𝑏†

1
𝑏

1
⟩ ̸= 0 while all other

elements of OPCM are zero. The only states yielding such
OPCM are of the form









𝜓⟩ = ∑

𝑛

𝜙

𝑛

√
𝑛!

(𝑏

†

1
)

𝑛

| 0⟩ , (11)

where ∑
𝑛
|𝜙

𝑛
|

2

= 1. Using relation (9) we can expand 𝑏†
1
=

∑

𝜅
𝑈

∗

𝜅,1
𝑎

†

𝜅
. As follows from unitarity, the single column of

a unitary matrix is a unit vector. Denoting this vector by S
and defining the “scalar” product S ⋅ a† ≡ ∑

𝜅
𝑆

𝜅
𝑎

†

𝜅
, we can

parametrize all disentangled states









𝜓 (S; 𝜙
1
, . . .)⟩ = ∑

𝑁

𝜙

𝑁

√
𝑁!

(S ⋅ a†)
𝑁

| 0⟩ (12)

by a set of amplitudes 𝜙
𝑁

and a vector on the unit sphere
in C𝑛. There is a one-to-one correspondence between such
sphere and the space of one-particle states; therefore, we will
sometimes refer to vector S as a state. Disentangled stateswith
a definite number of particles (with 𝜙

𝑁
= 0 for all but specific

𝑁) will play an important role in the following consideration.
Extending the terminology used for the case 𝑛 = 2wewill call
them spin coherent states.

Once we have established the general form of disentan-
gled states in the particle picture we may proceed and find
which of those are disentangled in the field picture. In order to
find amplitudesΦ

𝑁
1
,...,𝑁
𝑛

= ⟨𝑁

1
, . . . , 𝑁

𝑀
|𝜓(S)⟩we first notice

that only the term with the same total number of particles
𝑁 = ∑

𝑖
𝑁

𝑖
in (12) contributes to Φ

𝑁
1
,...,𝑁
𝑛

and from the
polynomial expansion of this term we need only one term
with matching population numbers for each field. Thus, we
find

Φ

𝑁
1
,...,𝑁
𝑛

= 𝜙

𝑁

√
𝑁!∏

𝜅

𝑆

𝑁
𝜅

𝜅
√𝑁

𝜅
! (13)

with 𝑁 = ∑

𝜅
𝑁

𝜅
and the important convention that 𝑆0

𝜅
=

1 even if 𝑆
𝜅
= 0. It follows from (13) that there are only
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two possibilities to have separability of Φ
𝑁
1
,...,𝑁
𝑛

. The first
one is when all but one 𝑆

𝜅
are zero. This corresponds to

the trivial case when only the single type of fields is excited.
The second possibility is when 𝜙

𝑁
= 𝑐𝛼

𝑁

/
√
𝑁! with some

complex numbers 𝑐 and 𝛼. Substituting these amplitudes into
(12) and enforcing the normalization condition we find that
all states disentangled in both field and particle pictures can
be presented as









𝜓 (S; 𝛼)⟩ = exp (𝛼S ⋅ a† − 𝛼∗S∗ ⋅ a) |0⟩ . (14)

These are Glauber’s coherent states. It is interesting to
emphasize a relation with the example considered in the
introduction. Hamiltonian (2) is diagonalized by introducing
operators 𝑏

𝜅
= 𝑎

𝜅
+ 𝑟

𝜅
/𝜖

𝜅
, which are obtained by employing

Glauber’s shift operator exp(𝛼S ⋅ a† − 𝛼

∗S∗ ⋅ a) with 𝛼𝑆

𝜅
=

𝑟

𝜅
/𝜖

𝜅
. This, in particular, proves that states reached from

vacuum under classical excitation are disentangled within
both pictures.

2.3. NOON States. The general “inverse” problem of a rela-
tion between entanglement and the structure of respective
states requires consideration, which goes far beyond the
objectives of the present paper. Therefore we limit ourselves
to an explicit description of a few sets of completely entangled
states.

In Section 4 states of NOON type appear. While these
states were introduced for qubits [34], they can be defined in
a more general setup as follows. Let vectors S(𝜅), 𝜅 = 1, . . . , 𝑛

form a basis in C𝑛. Then NOON states of 𝑁 particles with 𝑛
dimensional one-particle Hilbert space are defined as

|NOON⟩ = 1

√
𝑛𝑁!

∑

𝜅

[S(𝜅) ⋅ a†]
𝑁

| 0⟩ . (15)

Thus, taking into account that different rearrangements of
S(𝜅) produce the same state, the manifold of NOON states
is isomorphic to 𝑆𝑈(𝑛)/𝑆

𝑛
, where 𝑆

𝑛
is the symmetric group

(group of all permutations of 𝑛 elements).
It should be noted that NOON states do not exhaust all

completely entangled states. In order to see this it is useful
to present NOON states as they appear in a more general
context. The natural representation of 𝑆

𝑛
on the basis S(𝜅)

has the form 𝑇(𝑔)S(𝜅) = S(𝑔−1𝜅) for any 𝑔 ∈ 𝑆

𝑛
. Taking any

1 ≤ 𝜅 ≤ 𝑀, NOON states can be defined in terms of the orbits

|NOON⟩ =
√𝑛

𝑛!
√
𝑁!

∑

𝑔∈𝑆
𝑛

[S(𝑔−1𝜅) ⋅ a†]
𝑁

| 0⟩ , (16)

where we have taken into account that the orbit 𝑔−1𝜅 on
{1, . . . , 𝑛} visits each element (𝑛 − 1)! times as 𝑔 runs
over 𝑆

𝑛
. Representation (16) demonstrates that NOON states

are a particular class of entangled coherent states [35, 36].
Namely, NOON states are equally weighted superpositions of
orthogonal spin coherent states.

Using the same approach as for (16) another set of com-
pletely entangled states can be constructed for𝑁 > 3. For any
pair 1 ≤ 𝜅, 𝜆 ≤ 𝑛 such that 𝜆 ̸= 𝜅 states

|𝑁 − 1, 1⟩ =

√𝑛

𝑛!√(𝑁 − 1)!

× ∑

𝑔∈𝑆
𝑛

[S(𝑔−1𝜅) ⋅ a†]
𝑁−1

S (𝑔−1𝜆) ⋅ a† | 0⟩
(17)

are completely entangled. This makes an interesting con-
nection between completely entangled states (constituting a
straightforward generalization of Dicke states [37, 38]) and
irreducible representations of symmetric group 𝑆

𝑛
.

2.4. One-Particle Entanglement fromLie-Algebraic Perspective.
The natural framework for dealing with entanglement in
particle picture is provided by the language of irreducible
representations of su(𝑛) Lie algebras. For example, in the
case of a two-dimensional one-particle Hilbert space (e.g.,
photons characterized by two “+” and “−” polarizations),
it is convenient to employ Schwinger’s model of angular
momentum [39] and to introduce

J
𝑥
=

1

2

(𝑎

†

+
𝑎

−
+ 𝑎

†

−
𝑎

+
) ,

J
𝑦
=

1

2𝑖

(𝑎

†

+
𝑎

−
− 𝑎

†

−
𝑎

+
) ,

J
𝑧
=

1

2

(𝑎

†

+
𝑎

+
− 𝑎

†

−
𝑎

−
) ,

(18)

which satisfy the commutation relation of su(2) algebra
[J

𝜅
,J

𝜆
] = 𝑖𝜖

𝜅,𝜆,𝜇
J
𝜇
with 𝜖

𝜅,𝜆,𝜇
being a completely antisym-

metric tensor. These operators provide a representation of
OPDM. Consider

𝜌 =

1

2

̂

1 +∑

𝑖

𝜎

𝑖
⟨J

𝑖
⟩, (19)

where 𝑖 runs over {𝑥, 𝑦, 𝑧} and 𝜎
𝑖
are Pauli matrices and 𝜎

0

is the identity matrix. The sum over 𝜎
𝑖
describes a deviation

of 𝜌 from the identity matrix and hence a deviation of the
state from a completely entangled one. This implies that
entanglement can be expressed in terms of 𝐽2 = ∑

𝑖
⟨J

𝑖
⟩

2.
Before formulating a general approach let us consider a

two-particle case, which provides a clear connection with the
standard quantum-mechanical consideration. On the basis
of the population numbers, any two-particle state can be
presented as









𝜓⟩ = Ψ

2,0
| 2, 0⟩ + Ψ

1,1
| 1, 1⟩ + Ψ

0,2
| 0, 2⟩ , (20)

where |𝑁
+
, 𝑁

−
⟩ denotes the state with𝑁

+
particles in the “+”-

mode and 𝑁

−
particles in the “−”-mode. Alternatively, the

state can be presented as [23]









𝜓⟩ = ∑

𝜅,𝜆

𝑤

𝜅,𝜆
𝑎

†

𝜅
𝑎

†

𝜆
| 0⟩ , (21)
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where 𝑤
𝜅,𝜆

is a symmetric matrix. Comparing (20) and (21)
one finds 𝑤

++
= Ψ

2,0
/
√
2, 𝑤

−−
= Ψ

0,2
/
√
2 and 𝑤

+−
= Ψ

1,1
/2.

From (21) one obtains ̂𝐺 = 4𝑤

†

𝑤.
TheOPCM is a 2×2matrix and, therefore, its eigenvalues

are completely determined by det[̂𝐺] = 𝜆

1
𝜆

2
and Tr[̂𝐺] =

𝜆

1
+ 𝜆

2
= 𝑁 with 𝑁 being the total number of particles.

Entanglement, in turn, is determined by the normalized
eigenvalues ̃𝜆

1,2
= 𝜆

1,2
/𝑁, which are found as

̃

𝜆

1,2
=

1

2

±

1

2

√

1 −















2𝐶

𝑁















2

,

(22)

where |𝐶|2 = det ̂𝐺 is the concurrence [40]. In order to see the
relationwith the standard definition of the concurrence in the
two-particle case we introduce the “spin flip” transformation
𝜎

𝑦
|+⟩ = −𝑖|−⟩, 𝜎

𝑦
|−⟩ = 𝑖|+⟩ and the spin flip state | ̃𝜓⟩ =

(𝜎

𝑦
⊗ 𝜎

𝑦
|𝜓⟩)

∗, then 𝐶 = ⟨
̃
𝜓 | 𝜓⟩ = 4 det[𝑤]. Thus, the

two-particle case completely fits into the canonical quantum-
mechanical description and, moreover, concurrence is tightly
connected to average angular momentum; for an arbitrary𝑁
one has |𝐶|2 = 𝑁

2

/4 − 𝐽

2.
Now we can turn to a general 𝑆𝑈(𝑛) case. Let 𝑇(𝑖) with

𝑖 = 1, . . . , 𝑛

2

−1 be generators of su(𝑛), which are presented in
C𝑛 by tracelessHermitianmatrices ̂𝑇(𝑖) normalized according
to Tr[̂𝑇(𝑖) ̂𝑇(𝑗)] = 𝛿

𝑖,𝑗
/2 [41]. It can be checked that operators

T
(𝑖)

= ∑

𝜅,𝜆

̂

𝑇

(𝑖)

𝜅,𝜆
𝑎

†

𝜅
𝑎

𝜆 (23)

constitute a symmetric representation of su(𝑛) on the boson
Fock space and this representation is irreducible within each
sector with a definite total number of particles.

Any Hermitian 𝑛 × 𝑛 matrix can be uniquely presented
as a linear combination of ̂𝑇(𝑖) and the identity matrix ̂

1.
Taking into account the chosen normalization of ̂𝑇(𝑖) we find
a representation of OPDM generalizing (19) [42]

𝜌 =

1

𝑛

̂

1 +

̃J ⋅ ̂T, (24)

where (̂T)
𝑖
=

̂

𝑇

(𝑖) and ̃J is a Bloch vector with components
̃

𝐽

𝑖
= 2⟨T(𝑖)

⟩/⟨𝑁⟩.
As follows from (24) vector ̃J completely determines the

spectrum of OPDM and, therefore, any measure of entan-
glement in the particle picture is a function of ̃J or, more pre-
cisely, of its invariants with respect to adjoint representation
of 𝑆𝑈(𝑛) [42]. It is worth noting that since operators T(𝑖)

correspond to a set of single-particle observables, this implies
that entanglement is an observable.

Entanglement is a global characteristic of the spectrum
of OPDM. Qualitatively, it is related to the density of the
distribution of eigenvalues of𝜌; if they, including zeros, are far
away from each other, entanglement is weak; if they are close,
entanglement is strong. Taking into account that Tr[𝜌] = 1

the simplest characteristic of the spectrum is the averaged
squared distance between the eigenvalues

𝑆 (𝜌) =

1

2𝑛

∑

𝜅,𝜆

(𝜌

𝜅
− 𝜌

𝜆
)

2

. (25)

It changes from 0, when all 𝜌
𝜅

= 1/𝑛 (complete entan-
glement), to (𝑛 − 1)/𝑛, when one eigenvalue is 1 and the
remaining are 0 (absence of entanglement). By expanding
(25) we find

𝑆 (𝜌) = ∑

𝜅

𝜌

2

𝜅
−

1

𝑛

= Tr [𝜌2] − 1

𝑛

. (26)

This establishes the relation between 𝑆(𝜌) and the linear
entropy

𝐸

𝐿
(𝜌) =

𝑛

𝑛 − 1

(1 − Tr [𝜌2]) = 1 −

𝑛𝑆 (𝜌)

𝑛 − 1

.
(27)

On the other hand, from (24) we find 𝑆(𝜌) = ̃

𝐽

2

/2. Thus,
̃

𝐽

2 changes from 0 for completely entangled states to 2(𝑛−1)/𝑛
for disentangled ones. The condition ⟨T(𝑖)

⟩ = 0 has been
considered as a criterion for complete entanglement from
different perspectives: maximization of quantum fluctuations
[43] and geometric invariant theory [44]. We would like,
therefore, to emphasize that within the present approach
this condition is a consequence of the physical requirement
that an entangled particle cannot be characterized by any
definite one-particle state, which allows for a straightforward
generalization for the case of indefinite number of particles.

Othermeasures of entanglementmay involvemore subtle
characteristics of the distribution of the spectrum of OPDM
and do not have to coincide with the linear entropy [45].
It should be noted, however, that the choice of essentially
different measures is limited. Clearly, any measure should be
invariant with respect to basis transformations and, therefore,
should be a function of invariants of OPDM only. For 𝑛 ×
𝑛 matrices there are 𝑛 − 1 invariants determined by the
exact positions of eigenvalues of OPDM constrained by the
requirement Tr[𝜌] = 1. Thus, any measure can be expressed
in terms of Tr[𝜌𝑘] with 𝑘 = 2, . . . , 𝑛 − 1. In particular, for
𝑆𝑈(2) there is only one invariant and, therefore, any measure
of entanglement is a function of a single parameter ̃𝐽, which in
this case has themeaning of themagnitude of average angular
momentum. For example, in the 𝑆𝑈(2) case, entanglement
without any loss of generality can be quantified by the linear
entropy

𝐸

𝐿
= 1 −

̃

𝐽. (28)

Moreover, if one is interested mostly in limiting situations of
complete entanglement and disentanglement, a description
employing only ̃

𝐽 is sufficient also for the case of general
𝑆𝑈(𝑛). Therefore, in the following consideration, we will use
the linear entropy for characterization of entanglement. It is
especially convenient because Tr[𝜌2] = ∑

𝜅,𝜆
|𝜌

𝜅,𝜆
|

2, which
effectively allows one to calculate ̃𝐽 without dealing with the
problem of specific representations of su(𝑛) [46, 47].
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3. Entanglement Transfer between
Coupled Fields

We begin our analysis of dynamics of entanglement by
considering a simple but important case of linearly coupled
fields described by the Hamiltonian

H = ∑

𝑘

𝜖

(𝑎)

𝑘
𝑎

†

𝑘
𝑎

𝑘
+∑

𝜅

𝜖

(𝑏)

𝜅
𝑏

†

𝜅
𝑏

𝜅

+∑

𝑘,𝜅

(𝑑

𝑘,𝜅
𝑎

†

𝑘
𝑏

𝜅
+ 𝑑

∗

𝑘,𝜅
𝑏

†

𝜅
𝑎

𝑘
) ,

(29)

where 1 ≤ 𝑘 ≤ 𝑛

(𝑎) and 1 ≤ 𝜅 ≤ 𝑛

(𝑏) enumerate the
modes of the fields; 𝜖(𝑎)

𝑘
, 𝜖(𝑏)
𝜅
, and 𝑑

𝑘,𝜅
are the spectra of the

fields and the coupling constants between them, respectively,
and the operators 𝑎

𝑘
and 𝑏

𝜅
are assumed to obey the boson

commutation relations.
The important feature of the time evolution of entangle-

ment in this system is that the total entanglement remains
constant and is solely determined by the initial state. For a
more precise formulation, instead of the operators 𝑎

𝑘
and 𝑏

𝜅
,

let us introduce the combined operators 𝑢
𝑖
. That is instead of

two fields with two sets of modes𝑀
𝑎
and𝑀

𝑏
we consider the

single field, whose modes are the direct sum𝑀

𝑎
⊕𝑀

𝑏
. Thus,

𝑢

𝑖
≡ 𝑎

𝑘
𝑖

if 𝑖 ∈ 𝑀
𝑎
and 𝑢

𝑖
≡ 𝑏

𝜅
𝑖

if 𝑖 ∈ 𝑀
𝑏
. For field 𝑢 we define

the OPCM as

𝐺

𝑖𝑗
(𝑡) = ⟨𝑢

†

𝑖
(𝑡) 𝑢

𝑗
(𝑡)⟩ . (30)

When both 𝑖 and 𝑗 belong to, say, 𝑀
𝑎
the respective matrix

elements 𝐺

𝑖𝑗
(𝑡) give the OPCM for field 𝑎 and so on.

Furthermore, let ̂𝐺 have the spectral representation

̂

𝐺 (𝑡) =

𝑛

∑

𝑙=1

𝜆

𝑙
(𝑡) k

𝑙
(𝑡) ⊗ k

𝑙
(𝑡) , (31)

where 𝑛 = 𝑛

(𝑎)

+𝑛

(𝑏) and 𝜆
𝑙
and k

𝑙
are the eigenvalues and the

unit eigenvectors and ⊗ denotes the tensor product, which
is defined as (k ⊗ k)

𝑖𝑗
= V∗

𝑖
V
𝑗
. Then the total entanglement

can be characterized by 𝐸
𝐿
(𝑡) = (1 − ∑

𝑙

̃

𝜆

2

𝑙
)𝑛/(𝑛 − 1), where

̃

𝜆

𝑙
(𝑡) = 𝜆

𝑙
(𝑡)/∑

𝑚
𝜆

𝑚
(𝑡).

The important feature of systems with linear coupling
between fields is that the entanglement evolution is restricted
purely to its redistribution between the fields, while the total
entanglement remains constant, 𝐸

𝐿
(𝑡) = 𝐸

𝐿
(0). This result

while specific for the particle picture (thus contrasting the
results obtained, e.g., in [25, 48]) is in a more general context
agreeable with the description of entanglement in terms of
irreducible representations of 𝑆𝑈(𝑛) Lie groups. Therefore,
we prove it for a system described by the Hamiltonian
H = ∑

𝑖𝑗
ℎ

𝑖𝑗
𝑢

†

𝑖
𝑢

𝑗
, with Hermitian ̂

ℎ and pairs of field
operators obeying the commutation relation [𝑢

†

𝑖
𝑢

𝑗
, 𝑢

†

𝑘
𝑢

𝑙
] =

𝑢

†

𝑖
𝑢

𝑙
𝛿

𝑘𝑗
− 𝑢

†

𝑘
𝑢

𝑗
𝛿

𝑖𝑙
. The total entanglement is determined by

the spectrum of ̂𝐺, which satisfies (𝜕/𝜕𝑡)̂𝐺(𝑡) = 𝑖[

̂

ℎ,

̂

𝐺]. The
spectrum ofmatrices, whose time dependence is governed by
such equations with the commutator in the r.h.s., does not
change with time. Indeed, the solution has the form ̂

𝐺(𝑡) =

exp(𝑖̂ℎ𝑡)̂𝐺(0) exp(−𝑖̂ℎ𝑡).Thus, due to unitarity of exp(𝑖̂ℎ𝑡), the
spectral representation of ̂𝐺(𝑡) is given by (31), with constant
𝜆

𝑙
, and only the eigenvectors are functions of time. This

implies that entanglement is an integral of motion.
For example, if initially there was only a single nonzero

eigenvalue (i.e., entanglement was zero) it remains the only
one later on, implying no production of entanglement. The
same result holds for the OPCM corresponding to either
fields 𝑎 or 𝑏. Indeed, the OPCM of field 𝑎 is obtained from
the OPCM of the combined field 𝑢 applying the respective
projection operators, ̂Π

𝑎
, so that

̂

𝐺

(𝑎)

=

̂

Π

𝑎

̂

𝐺

̂

Π

𝑎
. (32)

Using for ̂𝐺 its spectral representation one can see that such
projection cannot increase the rank of the OPCM.

While inability of linear coupling to entangle initially
disentangled fields can be expected [49], it should be noted
that the evolution of entanglement of initially entangled states
is nontrivial. As an example, let us consider the situation of
small total entanglement, more specifically, when there are
only two nonzero terms in (31) corresponding to 𝑙 = 1, 2with
𝜆

1
≫ 𝜆

2
. According to (32) the OPCM for field 𝑎 is given by

̂

𝐺

(𝑎)

= 𝜆

(𝑎)

1
(𝑡) k(𝑎)

1
(𝑡) ⊗ k(𝑎)

1
(𝑡) + 𝜆

(𝑎)

2
(𝑡) k(𝑎)

2
(𝑡) ⊗ k(𝑎)

2
(𝑡) ,

(33)

where k(𝑎)
𝑙

=

̂

Π

𝑎
k
𝑙
/|

̂

Π

𝑎
k
𝑙
| and 𝜆(𝑎)

𝑙
(𝑡) = 𝜆

𝑙
|

̂

Π

𝑎
k
𝑙
|

2. Thus, the
value of entanglement depends on the magnitude of the pro-
jections ̂

Π

𝑎
k
𝑙
, which is determined by the internal dyn-

amics of the coupled fields. In particular, if |̂Π
𝑎
k
𝑙
| ≪ 1

one may have 𝜆(𝑎)
1
(𝑡) ∼ 𝜆

(𝑎)

2
(𝑡), resulting in the significant

entanglement of particles 𝑎, either with each other or with
particles 𝑏. For more concrete information one has to take
into account that, generally speaking, (33) may not be the
spectral representation of the matrix ̂𝐺(𝑎) because the vectors
k(𝑎)
1
(𝑡) and k(𝑎)

2
(𝑡) are not necessarily orthogonal. Let 𝜃(𝑡) =

|k(𝑎)
1
(𝑡) ⋅ k(𝑎)

2
(𝑡)|

2. Then the eigenvalues of ̂𝐺(𝑎) are found to be

̃

𝜆

(𝑎)

1,2
=

1

2

(𝜆

(𝑎)

1
+ 𝜆

(𝑎)

2
) ±

1

2

√

(𝜆

(𝑎)

1
− 𝜆

(𝑎)

2
)

2

+ 4𝜆

(𝑎)

1
𝜆

(𝑎)

2
𝜃 (𝑡).

(34)

Thus, if at some particular instant one has 𝜆(𝑎)
1
(𝑡) ≈ 𝜆

(𝑎)

2
(𝑡),

then, depending on the details of the dynamics of the
eigenvectors, one may have 𝐸(𝑎)

𝐿
≈ 1. Strong entanglement is

produced when the “weak” component of the OPCM ∼ 𝜆

2

is transferred more effectively than the major component
∼ 𝜆

1
, whose only small part is moved into field 𝑎 during

the evolution. At the same time, as can be seen from (34)
after a slight change of notations, such spike of entanglement
between particles 𝑎 is accompanied with disentanglement of
particles 𝑏.

The main condition for this geometric effect is the
smallness of the projection of the respective eigenvector
of the total OPCM. As a result, the characteristic feature
of the OPCM of strongly entangled states in this case is
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Tr[̂𝐺(𝑎)] ≪ Tr[̂𝐺] = Tr[̂𝐺(𝑎)] + Tr[̂𝐺(𝑏)]. That is, the
states with 𝐸

(𝑎)

𝐿
≈ 1 developed from the states with low

total entanglement, are characterized by low excitation, while
the strongly excited field, say the field 𝑏 in the considered
example, for which one has Tr[̂𝐺(𝑏)] ≈ Tr[̂𝐺], remains only
weakly entangled.

The fact that entanglement of the specific particles is
determined by the projections of the total OPCM may lead
not only to increased entanglement of the particles but also to
disentanglement. Indeed, if for the OPCM given by (31) with
𝑙 = 1, 2 at some instant the vectors k

1
(𝑡) and k

2
(𝑡) belong to

different subspaces (say, ̂Π
𝑎
k
1
(𝑡) = k

1
(𝑡) and ̂Π

𝑏
k
2
(𝑡) = k

2
(𝑡))

then entanglement of particles of both types, 𝑎 and 𝑏, are
zero. One can understand this effect introducing the isospin
quantum number, so that one value of isospin corresponds
to the particle 𝑎 and another one stands for the particle
𝑏. Thus, non-zero total entanglement coexisting with zero
entanglement of specific particles can be interpreted as stored
in isospin.

These effects are of a general nature and do not depend on
the number of particles andmay play an important role in the
dynamics of entanglement in specific systems, for example,
the time dependence of entanglement of initially entangled
light in a leaky cavity.

4. Entanglement Produced by Interaction

As has been demonstrated above, simple linear coupling
of quantum fields is not sufficient for the fields to become
entangled. We show in this section that the situation is
different when there is an interaction in the system. In order
to illustrate some important features of the dynamics of
entanglement, we consider evolution the of initially disentan-
gled states in systems whose dynamics preserves populations
of one-particle states, so that the Hamiltonian can be written
asH = ∑

𝜅
𝜖

𝜅
N
𝜅
+ ∑

𝜅,𝜆
𝑉

𝜅,𝜆
N
𝜅
N
𝜆
, whereN

𝜅
= 𝑎

†

𝜅
𝑎

𝜅
is the

operator of the number of particles in 𝜅-th one-particle state,
𝜖

𝜅
are energies of these states, and𝑉

𝜅,𝜆
are thematrix elements

of the interaction potential.
Such systems demonstrate nontrivial entanglement

dynamics while admitting an exact solution. First, we con-
sider a simple example of a system with 2d one-particle
Hilbert space, which we will refer to as an 𝑆𝑈(2)model, then
we will generalize this consideration to an arbitrary dimen-
sion, 𝑆𝑈(𝑛)model.

4.1. 𝑆𝑈(2)-Model. In the normal form the Hamiltonian pre-
serving population of individual one-particle states has the
form

H = ∑

𝜅=+,−

𝜖

𝜅
𝑎

†

𝜅
𝑎

𝜅
+ ∑

𝜅=+,−

𝑈

𝜅
𝑎

†

𝜅
𝑎

†

𝜅
𝑎

𝜅
𝑎

𝜅

+ 𝑈

+−
𝑎

†

−
𝑎

†

+
𝑎

+
𝑎

−
.

(35)

Here the first two terms describe the internal dynamics
of the modes and the last term represents the interaction
between the modes. Following the discussion in Section 2 it

is convenient to rewrite H in terms of generators of su(2)
defined in (18). Consider

H = 𝐸

0
(N) + 𝜖 (N)J

𝑧
+ 𝜔J

2

𝑧
, (36)

where 𝐸
0
(N) = N∑

𝜅
(𝜖

𝜅
− 𝑈

𝜅
)/2 + N2

(𝑈

+
+ 𝑈

−
+ 𝑈

+−
)/4

and 𝜖(N) = 𝜖

+
− 𝜖

−
+ (𝑈

+
− 𝑈

−
)(N − 1) depend on the total

number of particlesN = N
+
+N

−
, and

𝜔 = 𝑈

+
+ 𝑈

−
− 𝑈

+−
. (37)

The dynamics governed by Hamiltonian (36) was a subject
of numerous studies [50–52]. It is constructive, however, to
consider its properties from the perspective of the formal-
ism described in Section 2 and establish a connection with
entanglement in the particle picture. In particular, we show
that the time evolution of entanglement essentially depends
on the structure of the initial disentangled state; if initially
the system is in spin coherent state it may evolve into a
completely entangled state; however, if the system is initially
in Glauber’s coherent state (i.e., disentangled in both field
and particle pictures) it cannot be completely entangled.
Moreover, the structure of maximally entangled states is
qualitatively different for these initial states.

From [H,J
𝑧
] = 0 it follows that the dynamics of

entanglement is subject to the general constraint ⟨J
𝑧
(𝑡)⟩ =

⟨J
𝑧
(0)⟩. Thus, the variation of entanglement is determined

by the change with time of the “transversal” component
𝐽

2

⊥
(𝑡) = ⟨J

𝑥
(𝑡)⟩

2

+⟨J
𝑦
(𝑡)⟩

2

= ⟨J
+
(𝑡)⟩⟨J

−
(𝑡)⟩, which is unaf-

fected by rotations around the 𝑧-axis. This imposes an
upper limit on the value of entanglement produced by the
interaction, 𝐸

𝐿
(𝑡) ≤ 𝐸

(max)
𝐿

= 1 − (⟨J
𝑧
⟩/𝑗)

2. The sym-
metry with respect to rotations around the 𝑧-axis implies
that dynamics of entanglement is identical for states related
through such rotations. An additional simplification comes
from the fact thatH preserves the total number of particles.
We use this circumstance restricting the main analysis to the
case when states are characterized by a definite number of
particles, that is, when the initial state is spin coherent states
|𝜓(S)⟩. Expansion in terms of creation operators yields

⟨J
𝑧
(𝑡)⟩ =

𝑁

2

(









𝑆

1









2

−









𝑆

2









2

) = 𝑗 cos (𝛽) , (38)

where in the last equality we have used spherical coordinates
for spin coherent states 𝑆

1
= 𝑒

𝑖𝜙/2 cos(𝛽/2) and 𝑆

2
=

𝑒

−𝑖𝜙/2 sin(𝛽/2).
In order to find the transversal component ̃

𝐽

⊥
(𝑡) =

𝐽

⊥
(𝑡)/𝑗, we first notice that solutions of the operator equations

of motion ̇J
±
(𝑡) = 𝑖[H,J

±
(𝑡)] can be presented as

J
±
(𝑡) = J

±
exp (±𝑖𝜖𝑡 + 𝑖𝜔𝑡 ± 2𝑖𝜔J

𝑧
𝑡) . (39)

The effect of theJ
𝑧
term on the initial state while calculating

⟨J
±
(𝑡)⟩ ∝ ⟨𝜓(S)|J

±
exp(±2𝑖𝜔J

𝑧
𝑡)|𝜓(S)⟩ reduces to a

rotation of the vector S at the right end. Thus, we obtain
⟨J

+
(𝑡)⟩ = 𝑁𝑆

∗

1
𝑆

2
𝑒

𝑖𝜖𝑡

(|𝑆

1
|

2

𝑒

𝑖𝜔𝑡

+ |𝑆

2
|

2

𝑒

−𝑖𝜔𝑡

)

𝑁−1 and

̃

𝐽

2

= 4









𝑆

1
𝑆

2









2
















𝑆

1









2

𝑒

𝑖𝜔𝑡

+









𝑆

2









2

𝑒

−𝑖𝜔𝑡










2𝑁−2 (40)



ISRNMathematical Physics 9

or in the spherical coordinates ̃

𝐽

2

= sin2(𝛽)[1 − sin2(𝛽)
sin2(𝜔𝑡)]𝑁−1. It follows from (40) that for 𝛽 ̸= 0 or 𝜋 the total
angular momentum oscillates with the period 𝑇 = 𝜋/𝜔.
Instants 𝑡

𝑘
= 𝑇(𝑘 + 1/2) with integer 𝑘 correspond to mini-

mal ̃𝐽 and, hence, maximal entanglement reached from the
particular initial state.

In order to better understand the effect of the number of
particles on the time evolution of entanglement we consider
the case 𝛽 = 𝜋/2, that is, the case of initially disentangled
states with symmetrically populated modes (⟨𝜓|J

𝑧
|𝜓⟩ =

0). Up to rotation around 𝑧-axis these are the only states
(among initially disentangled ones) that yield maximum
entanglement 𝐸

𝐿
= 1 in the course of time evolution. Such

states are the object of special interest in our consideration
and, therefore, it is worth noting that they constitute a
manifold (defined by ⟨𝜓|J

𝑧
|𝜓⟩ = 0) M

0
in the Fock space

of all states, including superposition of states with different
total number of particles.

From (40) one finds that for these states

̃

𝐽

2

= cos2𝑁−2 (𝜔𝑡) . (41)

The time dependence of entanglement is particularly simple
in this case. When the number of particles increases, entan-
glement considerably changes (practically from 1 to 0 and
back) within vicinities of 𝑘𝑇 with 𝑘 = 0, 1, . . .. When the
number of particles increases these regions narrow down. In
the limit𝑁 ≫ 1 one can approximate

̃

𝐽

2

(𝑡) ≈

∞

∑

𝑛=0

exp [− (𝑁 − 1) (𝜔𝑡 − 𝜋𝑛)

2

] . (42)

Thus, away from the points where ̃𝐽(𝑡) = 0, it can be regarded
as a train of Gaussian bumps. As a result, when√𝑁 ≫ 1 one
can consider the system as spendingmost of the time in states
with high entanglement, 𝐸

𝐿
≈ 1.

The Gaussian decay of ̃𝐽(𝑡) is similar to the Gaussian
decay of coherence of central system [53, 54]: two spins 1/2
coupled to the bath. In particular, the same dependence of
the decay rate on the number of particles ∝ √

𝑁 in the
environment [notice 𝑁 − 1 in (42)] should be emphasized.
There are, however, two important differences between this
situation and our case. First, the Gaussian decay for the case
of central system appears in the limit of slow dynamics of
the environment. In the opposite limit, the decay follows the
Lorentzian law and in the intermediate case both types of
decays present at different time scales [55]. For the two-mode
boson field it is meaningless to separate particular particles
and environment due to indistinguishability; however, it is
worth noting that ̃𝐽(𝑡) does not depend on the single-particle
energies. The second important difference is that the concur-
rence of the two-mode boson field exhibits oscillations while
the loss of coherence of the central system is irreversible.

Despite the complex structure of the manifold of all
completely entangled states, the states reached in the course
of evolution of spin coherent states are simple and belong to
the class of NOON states. As a result, we can describe these
states completely despite the circumstance that the general

problem of the state structure refers to the full hierarchy of
many-particle density matrices and therefore is not suited for
the one-particle approach developed in Section 2 (see, e.g.,
[56]).

First we notice that due to [H,J
𝑧
] = 0 the structure

of maximally entangled states is determined solely by a
nonlinear term in the Hamiltonian, which we consider in
detail and we discuss the effect of the linear terms later. In
order to present the state |̃Ψ(𝑡

0
)⟩ = exp{−𝑖𝜋J2

𝑧
/2}|𝜓(S)⟩ as a

NOON state we rewrite

exp {−𝑖𝜋J2

𝑧
/2} = exp{−𝑖𝜋

2

(

3

2

N)

2

− 𝑖

3𝜋

2

NJ
𝑧
}

× exp {−𝑖𝜋
2

P
2

} ,

(43)

where P = N
+
+ 2N

−
= 3N/2 − J

𝑧
. A rationale behind

such reformulation, which allows one to treat cases of even
and odd 𝑁 on the equal ground [51, 57], will be provided in
the next subsection.

The operatorP is represented on the basis of population
numbers as an integer number𝑃. Hence, the action of the last
operator on the right in (43) is reduced to amultiplication by a
phase factor 𝑒−𝑖𝜋𝑃

2

/2, a function of an integer variable with the
periodΔ𝑃 = 2.Thus, using the discrete Fourier transform,we
obtain

𝑒

−𝑖𝜋P2/2 






𝜓⟩ = ∑

𝑁
+
,𝑁
−

𝜓

𝑁
+
,𝑁
−

exp {−𝑖𝜋
2

𝑃

2

(𝑁

+
, 𝑁

−
)}









𝑁

+
, 𝑁

−
⟩

=

1

√𝑛

1

∑

𝑙=0

∑

𝑁
+
,𝑁
−

𝜓

𝑁
+
,𝑁
−

𝑓

𝑙
𝑒

−𝑖(2𝜋/2)𝑃(𝑁
+
,𝑁
−
)𝑙 






𝑁

+
, 𝑁

−
⟩

=

1

√𝑛

1

∑

𝑙=0

𝑓

𝑙
𝑒

−𝑖𝜋P𝑙 






𝜓⟩ ,

(44)

where 𝑓
𝑙
= 2

−1/2

∑

1

𝑃=0
exp(𝑖𝜋𝑙𝑃 − 𝑖𝜋𝑃2/2) = 𝑒

𝑖𝜋𝑙
2

/2−𝑖𝜋/4

/
√
2.

Expressing P in terms of N and J
𝑧
, one can see that at

𝑡 = 𝑡

𝑛
the initial spin coherent state turns into a superposition

of two spin coherent states related to each other through
rotation by 𝜋 around the 𝑧-axis. For example, if the initial
state belongs toM

0
then the coordinate system can be chosen

in such a way so that the maximally entangled state can be
written as (|x⟩ + 𝑒

𝑖𝜙

| − x⟩)/√2, or, choosing the 𝑥-axis as
the new quantization axis, as (|𝑁, 0⟩ + 𝑒

𝑖𝜙

|0,𝑁⟩)/
√
2. The

particular orientation of the NOON state and the phase 𝜙 are
determined by the terms linear inJ

𝑧
in (36) and (43) and by

the number of particles.
Two important circumstances should be emphasizedwith

this regard. First, while the time dependence of entanglement
is a periodic function, however, the time dependence of the
state, generally speaking, is not periodic. For example, at 𝑡 =
2𝑡

0
entanglement vanishes, and therefore the system returns

to a spin coherent state. The form of the state, however, is not
necessarily the same as of the initial state but is given by









Ψ (2𝑡

0
)⟩ = exp {−𝑖J

𝑧
[2𝑡

0
𝜖 (N) + 3𝜋N]}









𝜓⟩ ; (45)
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that is, it is rotated around the 𝑧-axis. Second, the angle of
rotation depends on the number of particles, unless (𝑈

+
−

𝑈

−
)/𝜔 = 2𝑘 + 1 with an integer 𝑘. As a result, states

with a different number of particles pass through different
sequences of spin coherent states.

This suggests that the time evolution of entanglement of
states, which cannot be characterized by a definite number of
particles, demonstrates features peculiar from the perspective
of the dynamics of the spin coherent states. A general form of
a disentangled state is given by (12). Using that [N,J

𝑖
] = 0

we find

⟨J
𝑖
⟩ =

∞

∑

𝑁=0









𝜙

𝑁









2

𝑁!

⟨J
𝑖
(𝑡)⟩

𝑁
, (46)

where ⟨J
𝑖
(𝑡)⟩

𝑁
= ⟨𝜓

𝑁
(S)|J

𝑖
(𝑡)|𝜓

𝑁
(S)⟩ is the average taken

within the𝑁-particle sector. Despite an independent contri-
bution of each sector into the average components of
the angular momentum, their effect on entanglement is
more complex due to |⟨J

𝑖
(𝑡)⟩|

2

= ∑

𝑁,𝑁
 |𝜙

𝑁
𝜙

𝑁
 |

2

⟨J
𝑖
(𝑡)⟩

𝑁

⟨J†

𝑖
(𝑡)⟩

𝑁
 . For concreteness, we limit ourselves to consid-

ering a case of special interest when the initial state is
disentangled within both field and particle pictures. That
is |𝜓⟩ is Glauber’s coherent state and, hence, |𝜙

𝑁
|

2

=

exp(−⟨𝑁⟩)⟨𝑁⟩𝑁, where ⟨𝑁⟩ is the average number of par-
ticles. Moreover, we restrict ourselves to the case when |𝜓⟩ ∈
M

0
and obtain for the normalized angular momentum ̃

𝐽 =

2|⟨J
+
⟩|/⟨N⟩

̃

𝐽 (𝑡) = exp {− ⟨𝑁⟩ [1 − cos (Δ𝑈𝑡) cos (𝜔𝑡)]} , (47)

where Δ𝑈 = 𝑈

+
− 𝑈

−
.

First of all, it should be noted that the maximal value of
entanglement is limited from above by 𝐸(max)

𝐿
= 1 −

̃

𝐽

2

min,
where ̃𝐽min = exp(−2⟨𝑁⟩). Thus, Glauber’s coherent states do
not pass through completely entangled states. However, the
“dephasing” of dynamics within sectors corresponding to a
different total number of particles brings interesting features
to the time dependence of entanglement.

It follows from (47) that, unless Δ𝑈/𝜔 is a rational
number, entanglement vanishes only at 𝑡 = 0. In other words,
for a generic interaction potential, the loss of coherence of
Glauber’s coherent states is irreversible (while, of course,
nonmonotonous). The initial loss is described by a Gaussian
law ̃

𝐽

2

(𝑡) ≈ exp(−𝑡2/𝜏2
𝐶
) with 𝜏2

𝐶
= 2/⟨𝑁⟩(Δ𝑈

2

+ 𝜔

2

). This
expression demonstrates that for the case of superposition
of states with different numbers of particles, one has two
cooperating channels of entanglement: the internal dynamics
within each sector and the dephasing between different
sectors.

Anothermanifestation of existence of an additional chan-
nel is the formation of entangled states even if 𝜔 = 0,
when spin coherent states remain disentangled. In this case
the variation of entanglement is due to Δ𝑈 ̸= 0, that is, due
to dephasing of states with different number of particles. It
follows from (47) that the maximal entanglement in this case
is reached at 𝑡 = 𝜋/Δ𝑈𝑘 with 𝑘 = 1, 2, . . .. It can be seen that
this corresponds to the “antiferromagnetic” arrangement of
spin coherent states with different total number of particles

0 1 2 3

Figure 1: Schematic depiction of arrangement of one-particle states
within sectors with 𝑁 = 0, 1, 2, 3 in maximally entangled state
achieved from initial Glauber’s coherent state. Dashed arrows show
one-particle states represented as unit vectors in R3 and solid
arrows show their projections onto (𝑥, 𝑦)-plane. If the initial state
corresponds to ⟨J

𝑧
⟩ = 0, the one-particle states lie in the (𝑥, 𝑦)-

plane.

(see Figure 1).Theone-particle states in sectorswith the num-
bers of particles differing by 1 are characterized by opposite
transversal components of the average angular momentum.

Clearly, the same result holds when𝜔 ̸= 0 butΔ𝑈 = 0.The
instant when NOON states are formed for each component
with the definite number of particles (when cos(𝜔𝑡) = 0)
does not correspond to maximal entanglement because of
the uncompensated angular momentum of the one-particle
component. In fact, 𝐸(max)

𝐿
is reached at cos(𝜔𝑡) = −1, when

again one has spin coherent states within different sectors but
states with odd numbers of particles are oppositely oriented,
compared to orientation determined by the linear dynamics.

It follows from this consideration that when both chan-
nels contribute, in order to reach 𝐸(max)

𝐿
it is necessary to have

commensurate 𝜔 and Δ𝑈. Thus, for a generic interaction,
potential states with maximal entanglement are inaccessible
and for 𝑡 > 0 the inequality 0 < 𝐸

𝐿
(𝑡) < 𝐸

(max)
𝐿

holds.
The overall dependence of ̃𝐽(𝑡) on Δ𝑈 and 𝜔 has a simple
structure (see Figure 2). In order to describe its main features
we introduce 𝑡 = 𝜔𝑡 and consider the normalized angular
momentum as a function of two variables ̃𝐽(𝛼, 𝑡), where 𝛼 =
Δ𝑈/𝜔.The function has a lattice of resonances ̃𝐽(𝛼 = 𝑝/𝑘, 𝑡



=

𝜋𝑘) = 1, where 𝑝 and 𝑘 are integers of the same parity. The
resonances are of the Gaussian form with the principal axes
along vectors V

1
= (1, −𝑥)/

√
1 + 𝑥

2 and V
2
= (𝑥, 1)/

√
1 + 𝑥

2

on the (𝛼, 𝑡)-plane and the respective decay parameters 𝜆
1
=

1/
√
1 + 𝑥

2 and 𝜆
2
= 𝜋𝑘

√
1 + 𝑥

2, where 𝑥 = 𝑝/𝜋𝑘

2 and we
have neglected corrections of the order 1/𝜋2𝑘2.

Wewould like to emphasize that the reasonwhyGlauber’s
coherent states cannot be completely entangled is that the
dynamics governed by Hamiltonian (36) is unable to can-
cel the contribution of the one-particle component when
the distribution of amplitudes 𝜙

𝑁
corresponds to Glauber’s

coherent state. If one discards the requirement for the initial
state to be disentangled in the field picture, it is not difficult
to construct such sets of 𝜙

𝑁
, which produce states evolving

through completely entangled states of various structures.

4.2. 𝑆𝑈(𝑛)-Model. A general case of 𝑛-dimensional one-
particle Hilbert space can be treated using the same ideas
as those that have been applied in the previous subsection.
As has been discussed in Section 2, the most convenient
framework for studying entanglement in the particle pic-
ture is provided by the language of Lie algebras of Lie
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Figure 2: The transversal component of normalized angular
momentum ̃

𝐽 = 2|⟨J
+
⟩|/⟨N⟩ as a function of time and Δ𝑈/𝜔

for ⟨N⟩ = 5. Resonances correspond to points where the initial
coherence is restored, ̃𝐽 = 1.

groups describing transformations of the basis in one-particle
Hilbert space. From this perspective it would be, perhaps,
more natural to approach the problem in the spirit of studies
of dynamical symmetry and to present the Hamiltonian in a
form emphasizing the role of su(𝑛) as a spectrum generating
algebra [58], for example, in terms of Cartan generators (the
elements of the Cartan subalgebra) of su(𝑛). We, however,
find it more convenient to assume that a basis in the Hilbert
space is chosen in such a way that the Hamiltonian can be
written solely in terms of the operators of the number of
particles in individual modes

H = ∑

𝜅

𝜖

𝜅
N
𝜅
+∑

𝜅,𝜆

𝑉

𝜅,𝜆
N
𝜅
N
𝜆
. (48)

Hamiltonians of this form emerge from a general Hamilto-
nian with two-particle interaction, when there are 𝑛 linearly
independent one-particle integrals of motion. This corre-
sponds to an off-resonant dynamics of many-level atoms in
a cavity [59]. A similar situation may take place in highly
symmetrical molecular systems [60, 61] and the special
interest the 𝑆𝑈(𝑛)model presents in the context of the Bose-
Hubbard model [62], where it corresponds to the strong
coupling limit and describes fast on-site dynamics.

The structure of Hamiltonian (48) allows one to find the
evolution of time with a general ladder operator

J (𝜇, ^) = 𝑎

†

𝜇
1

⋅ ⋅ ⋅ 𝑎

†

𝜇
𝑞

𝑎]
1

⋅ ⋅ ⋅ 𝑎]
𝑞

, (49)

where 𝑞 is the order of the operator. Indeed, noticing that

[N
𝜅
,J (𝜇, ^)] = J (𝜇, ^)

𝑞

∑

𝑗=1

(𝛿

𝜅,𝜇
𝑗

− 𝛿

𝜅,]
𝑗

) (50)

we find the solution of ̇J = 𝑖[H,J] in the form

J (𝜇, ^; 𝑡) = J (𝜇, ^) exp {𝑖𝑡 [𝜖 (𝜇, ^) + Q (𝜇, ^)]} ,
(51)

where Q(𝜇, ^) = 2∑

𝜅
𝑈

𝜅
(𝜇, ^)N

𝜅
, 𝜖(𝜇, ^) = ∑

𝑗
[𝜖

𝜇
𝑗

− 𝜖]
𝑗

+

𝑈

𝜇
𝑗

(𝜇, ^) − 𝑈]
𝑗

(𝜇, ^)] and 𝑈
𝜅
(𝜇, ^) = ∑

𝑗
(𝑉

𝜅,𝜇
𝑗

− 𝑉

𝜅,]
𝑗

).
For the analysis of one-particle entanglement, we need to

consider a particular case J(𝜇, ]) = 𝑎

†

𝜇
𝑎]. Its time depend-

ence is given by (51) with

Q (𝜇, ]) = 2∑

𝜅

(𝑉

𝜅,𝜇
− 𝑉

𝜅,])N𝜅
,

𝜖 (𝜇, ]) = 𝜖

𝜇
− 𝜖] + 𝑉𝜇,𝜇 + 𝑉],] − 2𝑉𝜇,].

(52)

Initially, a disentangled state with a definite number of
particles is a spin coherent state |𝜓(S)⟩. Finding ⟨J(𝜇, ]; 𝑡)⟩ =
⟨𝜓(S)|J(𝜇, ]; 𝑡)|𝜓(S)⟩ follows the same steps as in the 𝑆𝑈(2)
case. Operator exp(𝑖𝑡Q(𝜇, ])) acting on |𝜓(S)⟩ turns it
into another spin coherent state |𝜓(S(𝑡))⟩ with 𝑆

𝜅
(𝑡) =

𝑆

𝜅
exp(2𝑖𝑡(𝑉

𝜅,𝜇
− 𝑉

𝜅,])). Thus, we have for the OPCM

𝐺

𝜇,] (𝑡) = 𝑁𝑆

∗

𝜇
𝑆]𝑒

𝑖𝑡(𝜖
𝜇
−𝜖])+𝑖𝑡(𝑉𝜇,𝜇−𝑉],])

× [∑

𝜅









𝑆

𝜅









2

𝑒

2𝑖𝑡(𝑉
𝜅,𝜇
−𝑉
𝜅,])
]

𝑁−1

.

(53)

This yields

𝐸

𝐿
(𝑡) = 𝐸

(max)
𝐿

(S) − 𝜂 (𝑡) , (54)

where

𝐸

(max)
𝐿

(S) = 𝑛

𝑛 − 1

(1 −

1

𝑁

2
∑

𝜇











𝐺

𝜇,𝜇











2

) (55)

and 𝜂(𝑡) = (𝑛/𝑁

2

(𝑛 − 1))∑

𝜇 ̸= ] |𝐺𝜇,]|
2. The term 𝐸

(max)
𝐿

(S) is
an integral of motion and is determined by the population of
one-particle states in the initial state. It can be expressed in
terms of the normalized average values of Cartan generators
𝐸

(max)
𝐿

= 1− (𝑛/2(𝑛 − 1))∑

𝑛−1

𝑗=1

̃

𝐽

2

𝑗
, where ̃𝐽

𝑗
= 2⟨H

𝑗
⟩/𝑁; obvi-

ously this expression does not depend on a particular choice
of the defining representation of the Cartan generators.Thus,
𝐸

(max)
𝐿

(S) plays a similar role as 1−⟨J
𝑧
⟩

2 for the 𝑆𝑈(2)-model
and limits the maximal value of entanglement, which can
be reached for a particular initial state. The states of special
interest are those that admit complete entanglement. It can
be seen that these are states with |𝑆

𝜅
|

2

= 1/𝑛 for 𝜅 = 1, . . . , 𝑛.
In more general terms, these are states for which average
values of all Cartan generators vanish. This condition defines
a manifold M

0
in the Fock space. Thus, for a spin coherent

state fromM
0
we have 𝐸(max)

𝐿
(S) = 1.

The variation of entanglement with time is related to 𝜂(𝑡).
It can be expressed in terms of the “transversal” component
of the Bloch vector 𝜂(𝑡) =

̃

𝐽

2

⊥
(𝑡)𝑛/2(𝑛 − 1) with ̃

𝐽

2

⊥
=

∑

𝑗
⟨J

𝑗
⟩

2

4/𝑁

2, where the summation runs over the ladder
operators of su(𝑛) in the Hermitian representation. Using
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the expressions found for the off-diagonal elements of OPCM
we find

𝜂 (𝑡) =

𝑛

𝑛 − 1

∑

𝜇 ̸= ]











𝑆

𝜇
𝑆]










2



















∑

𝜅









𝑆

𝜅









2

𝑒

2𝑖𝑡(𝑉
𝜅,𝜇
−𝑉
𝜅,])


















2(𝑁−1)

. (56)

In particular, we find that for |𝜓(S)⟩ ∈ M
0
complete entangle-

ment is reached at instants when

𝐹

𝜇,] (𝑡) =
1

𝑛

∑

𝜅

𝑒

2𝑖𝑡(𝑉
𝜅,𝜇
−𝑉
𝜅,]) (57)

vanishes for all 𝜇 ̸= ]. It is not difficult to see that not all
potentials admit the existence of such instants.Moreover, one
can show that in striking contrast to the 𝑆𝑈(2) model such
potentials constitute a special and not very rich class.

In order to see this we first notice that 𝐹
𝜇,](𝑡) can be seen

as matrix elements of a matrix ̂

𝐹 =

̂

𝑋

̂

𝑋

†, where 𝑋
𝜇,] =

exp(2𝑖𝑡𝑉
𝜅,𝜇
)/√𝑛. The condition of complete entanglement

in these terms is simply ̂

𝑋

̂

𝑋

†

=

̂

1. Thus, ̂𝑋 must be a
symmetric (due to 𝑉

𝜅,𝜇
= 𝑉

𝜇,𝜅
) unitary matrix. Next, we

notice that the condition ̂

𝑋

̂

𝑋

†

=

̂

1 remains invariant under
the symmetry transformation 𝑉

𝜅,𝜇
→ 𝑉

𝜅,𝜇
+ Ṽ

𝜅
+ Ṽ

𝜇
for

an arbitrary set of real Ṽ
𝜅
. This transformation can be used

to turn all elements of the first row (and the first column)
of 𝑉

𝜅,𝜇
to zeros. Finally, we notice that up to permutations

of coordinates of the orthonormal vectors constituting the
matrix or, equivalently, up to permutations of the vectors
themselves, symmetric unitary matrix with elements of the
first row equal to 1/√𝑛 is unique since it is determined by
𝑛(𝑛−1)/2 phase factors satisfying 𝑛(𝑛−1)/2 inhomogeneous
equations. The matrix elements of such matrix are given by

𝑋

𝜇,] =
1

√𝑛

exp [2𝜋𝑖
𝑛

(𝜇 − 1) (𝜅 − 1)] . (58)

Thus, after a proper enumeration of the basis vectors in
one-particle Hilbert space, potentials admitting the complete
entanglement are of the form

𝑉

𝜅,𝜆
= 𝜔𝜅𝜆 + V

𝜅
+ V

𝜆
(59)

with 𝜔 ̸= 0. It follows from this expression that for the 𝑆𝑈(𝑛)
model the manifold of such potentials is parametrized by
𝑛 + 1 parameters, while the dimension of the manifold of
𝑛 × 𝑛 symmetric matrices is 𝑛(𝑛 + 1)/2. For 𝑆𝑈(2) these
dimensions coincide and as a result any interaction potential
causes complete entanglement (of states with ⟨J⟩ = 0) except
for 𝑉 = 0, which corresponds to 𝑉

++
+ 𝑉

−−
− 2𝑉

+−
= 0 with

the factor 2 stemming from the difference in definitions of
𝑉

𝜅,𝜆
and𝑈

±
and𝑈

+−
in (35). In the 𝑆𝑈(3) case, themanifold of

completely entangling potentials has codimension two and so
on.Thus, by increasing the dimensionality of the one-particle
Hilbert space completely, entangling potentials are rather
exceptional, at least when dynamics preserves populations of
individual modes.

The time dependence 𝜂(𝑡) when 𝑛 increases becomes
more complex with a characteristic self-similar pattern
emerging (see Figure 3(a)). Its overall form can be found

0 2 4 6

𝜂
(t
)

Time

1.0

0.5

0.0

(a)

0 62 4

Time

−5

−10

0

lo
g[
𝜂
(t
)]

(b)

Figure 3: (a) A characteristic pattern of 𝜂(𝑡) due to partial recoveries
of coherence is illustrated for 𝑛 = 15 and𝑁 = 3. Time ismeasured in
𝑉

−1. (b) Dotted and solid lines show 𝜂(𝑡) for 𝑛 = 5 (prime number)
and 𝑛 = 6 = 3!, respectively. This demonstrates that the number of
times entangled states are encountered within one period depends
on factorization properties of 𝑛.

using (59) in (56) for |𝑆
𝜅
|

2

= 1/𝑛. In the 𝑆𝑈(2), the time
dependence of ̃

𝐽

2

⊥
(𝑡) has a typical form of strong (when

𝑁 ≫ 1) “resonances” at instants 𝑡
𝑘
= 2𝜋𝑘/𝜔, where the

one-particle coherence is briefly restored. In the 𝑆𝑈(𝑛) case,
additional instants of partial recovery of coherence emerge.
By performing summation over 𝜅 in (56) we obtain

𝜂 (𝑡) =

1

𝑛 (𝑛 − 1)

∑

𝜇 ̸= ]
[

sin(𝑛𝑡𝜔(𝜇 − ]))
𝑛 sin(𝑡𝜔(𝜇 − ]))

]

2(𝑁−1)

. (60)

When 𝑁 ≫ 1 the term under the sum is small unless
sin(𝑡𝜔(𝜇 − ])) = 0. Thus, we have a partial recovery of
coherence, when 𝑡 = 𝑡

𝑘,𝑝
= 𝜋𝑘/𝜔𝑝 with coprime 1 <

𝑝 < 𝑛 and 1 ≤ 𝑘 < 𝑝. It follows then that the number of



ISRNMathematical Physics 13

such points is equal to the number of irreducible fractions
of the form 𝑘/𝑝 and the degree of recovery (the magnitude
𝜂(𝑡

𝑘,𝑝
)) is proportional to the number of pairs (𝜇, ]) satisfying

sin(𝑡
𝑘,𝑝
𝜔(𝜇 − ])) = 0.

Of more general interest is the question of initial forma-
tion of entanglement. In the limit𝑁 ≫ 1, we obtain for small
𝑡

𝜂 (𝑡) ≈

𝑛

𝑛 − 1

∑

𝜇 ̸= ]
exp {−1

3

𝑁 (𝑛

2

− 1) (𝜇 − ])2𝜔2𝑡2} . (61)

Thus, one has a spectrum of entanglement times (the same
holds also for points of partial recovery of coherence).
Estimating the entanglement time as the longest one we
obtain 𝜏

1
=
√
3/𝜔𝑁(𝑛

2
− 1).

The distribution of instants when complete entanglement
is reached is also more complex compared to the 𝑆𝑈(2) case.
Within the period 𝑇 = 𝜋/𝜔, one has multiple instants where
𝜂(𝑡) = 0. We denote that 𝑡

1
= 𝜋/𝑛𝜔 = 𝑇/𝑛 at the earliest

time when the complete entanglement is reached. One can
see from (60) that 𝜂(𝑡

𝑠
) = 0, where 𝑡

𝑠
= 𝑠𝑡

1
with integral

1 ≤ 𝑠 < 𝑛 such that gcd(𝑠, 𝑛) = 1. From the perspective
of determining potentials admitting complete entanglement,
this corresponds to permutations of either coordinates of
the vectors constituting symmetric unitary matrix ̂

𝑋 or the
vectors themselves.

Thus, the number of points 0 < 𝑡 < 𝑇, when 𝜂(𝑡) = 0,
depends on prime factorization of 𝑛. For example, if 𝑛 is
prime, 𝜂(𝑡

𝑠
) = 0 for all 𝑠 = 1, . . . , 𝑛−1. For composite 𝑛’s, some

of these points are excluded and one has the least density
of points of complete entanglement when 𝑛 is a factorial. It
should be noted, however, that 𝑠 = 1 and 𝑠 = 𝑛 − 1 always
correspond to complete entanglement (see Figure 3(b)).

Finally, we turn to the question of the structure of com-
pletely entangled states obtained in the course of evolution
of initial spin coherent states. The same approach used for
the 𝑆𝑈(2) model can be applied here. First, we present the
potential as in (59) with 𝜔 = 𝜋/𝑛𝑡

0
, where 𝑡

0
is the earliest

time when a completely entangled state is reached, and study
the structure of |Ψ(𝑡

0
)⟩ = exp(−𝑖∑

𝜅
𝜖

𝜅
N
𝜅
− 𝑖𝜋P2

/𝑛)|𝜓(S)⟩,
where 𝜖

𝜅
= 𝜖

𝜅
+NV

𝜅
andP = ∑

𝜅
𝜅N

𝜅
. Similar towhatwe had

in the previous subsection, the structure of the entangled state
is determined by the term ∝ P2, while the term ∝ 𝜖

𝜅
(N)

affects only the orientation of the state. Therefore, in order
to analyze the structure of the state it suffices to consider
|

̃

Ψ(𝑡

0
)⟩ = 𝑒

−𝑖𝜋P2/𝑛
|𝜓(S)⟩. The idea is the same as for the

𝑆𝑈(2)-model.We expand |𝜓(S)⟩ over basis states on the basis
of population numbers and use the fact that action of P
on these states is equivalent to multiplication by an integer
number 𝑃. Thus, 𝑒−𝑖𝜋P

2

/𝑛 can be regarded as a function of
an integer variable and with the help of the discrete Fourier
transform can be expanded in terms of linear operators inP.

The implementation of thisHubbard-Stratonovich type of
transformation is slightly different for even and odd 𝑛, and
therefore we consider these cases separately.

For even 𝑛 the period of 𝑒−𝑖𝜋𝑃
2

/𝑛 is Δ𝑃 = 𝑛 and we obtain











̃

Ψ (𝑡

0
)⟩ =

1

√𝑛

𝑛−1

∑

𝑙=0

𝑓

𝑙
𝑒

−𝑖2𝜋𝑙P/𝑛 






𝜓 (S)⟩ , (62)

where

𝑓

𝑙
=

1

√𝑛

𝑛−1

∑

𝑃=0

𝑒

𝑖2𝜋𝑙𝑃/𝑛−𝑖𝜋𝑃
2

/𝑛

= 𝑒

𝑖𝜋𝑙
2

/𝑛−𝑖𝜋/4

. (63)

Here we have used

𝑛−1

∑

𝑃=0

𝑒

−𝑖𝜋(𝑃
2

+𝑏𝑃)/𝑛

= √𝑛𝑒

−𝑖(𝑛−𝑏
2

)/4𝑛

, (64)

which follows from Siegel’s reciprocity relation for general-
ized quadratic Gauss sums [63, 64] and is valid when 𝑛 + 𝑏 is
even.

When 𝑛 is odd we need to consider 𝑒−𝑖𝜋P/𝑛𝑒−𝑖𝜋P
2

/𝑛+𝑖𝜋P/𝑛

instead. Here the second exponential is a periodic function
with the period Δ𝑃 = 𝑛. Thus, using (64), we find











̃

Ψ (𝑡

0
)⟩ =

1

√𝑛

𝑒

−𝑖𝜋P/𝑛
𝑛−1

∑

𝑙=0

𝑓

𝑙
𝑒

−𝑖2𝜋P𝑙/𝑛 






𝜓 (S)⟩ , (65)

where 𝑓
𝑙
= 𝑒

𝑖𝜋𝑙(𝑙−1)/𝑛−𝑖𝜋(𝑛−1)/4𝑛.
Applying (62) and (65) to the case when |𝜓(S)⟩ ∈

M
0
we can see that the structure of completely entangled

states is essentially the same as in the 𝑆𝑈(2) case: they are
superpositions of 𝑛 spin coherent states characterized by state
vectors S

𝑙
= 𝑒

−2𝜋𝑖�̂�𝑙/𝑛S, where ̂

𝑃 = diag(1, 2, . . . , 𝑛) and
𝑙 = 0, . . . 𝑛 − 1. It can be easily seen that S∗

𝑙
⋅ S

𝑙
 = 𝛿

𝑙,𝑙
 .

In other words, a completely entangled state is built of spin
coherent states corresponding to an orthogonal set of one-
particle states.Thus, completely entangled states belong to the
class of NOON states.

The structure of completely entangled states reached at
𝑡 = 𝑡

𝑠
with 𝑠 > 1 differs only by precise relations between

phases of superimposed spin coherent states. In order to see
this we consider the more transparent case of even 𝑛. The
expansion of 𝑒−𝑖𝜋𝑠P

2

/𝑛

|𝜓(S)⟩ is given by (62) with amplitudes

𝑓

(𝑠)

𝑙
= 𝑒

𝑖𝜋𝑠𝑘
2

𝑙
/𝑛

1

√𝑛

𝑛−1

∑

𝑃=0

𝑒

−𝑖𝜋𝑠𝑃
2

/𝑛

, (66)

where 𝑘
𝑙
is defined by 𝑙 ≡ 𝑠𝑘

𝑙
(mod 𝑛) or 𝑘

𝑙
≡ 𝑠

𝑛−1

𝑙(mod 𝑛).
In (66) only the phase factor in front of the sum is relevant
and it describes the difference between completely entangled
states reached at different 𝑡

𝑠
.

The obtained results can be generalized to the case
of superpositions of states with different total numbers of
particles following the same line as for the 𝑆𝑈(2)model. For
an initially disentangled state, presented as in (12), we have

⟨J (𝜇, ]; 𝑡)⟩ =
∞

∑

𝑁=0









𝜙

𝑁









2

𝑁

⟨J(𝜇, ]; 𝑡)⟩
𝑁
. (67)
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Thus, one can expect a qualitative similarity between 𝑆𝑈(2)

and 𝑆𝑈(𝑛)models. Let the initial state be Glauber’s coherent
state characterized by the one-particle state S and the average
total number of particles ⟨𝑁⟩. Then, the time dependence of
entanglement is given by (54) with

𝜂 (𝑡) =

𝑛

𝑛 − 1

𝑒

−2⟨𝑁⟩

× ∑

𝜇 ̸= ]











𝑆

𝜇
𝑆]










2

exp{∑
𝜅









𝑆

𝜅









2 cos (2𝑡 (𝑉
𝜅,𝜇

− 𝑉

𝜅,]))} .

(68)

First of all it should be noted that 𝜂(𝑡) > 0; thus complete
entanglement cannot be achieved for any interaction poten-
tial. Instead one has to consider the problem of the minimal
value that 𝜂(𝑡) can reach for given potential and initial state.
This complex problem is significantly simplified for the case
when the interaction potential and the initial state admit
complete entanglement within sectors with a definite number
of particles, that is, when potential can be presented as in (59)
and |𝑆

𝜅
|

2

= 1/𝑛. In this case we have

𝜂 (𝑡) =

1

𝑛 (𝑛 − 1)

∑

𝜇 ̸= ]
exp{−2 ⟨𝑁⟩ [1 − cos (Δ𝑈

𝜇,]𝑡)

×

sin [𝑛𝑡𝜔 (𝜇 − ])]
𝑛 sin [𝑡𝜔 (𝜇 − ])]

]} ,

(69)

whereΔ𝑈
𝜇,] = 2(V

𝜇
−V])+𝜔(𝜇−])(𝑛+1).This equation has the

same structure as (47) and posseses the same basic features
related to the existence of different channels of entanglement
in the case of superposition of states with different number of
particles. One channel is through the formation of NOON
states as has been discussed above and another channel is
related to dephasing of states belonging to sectors with a
different total number of particles. As well as in the 𝑆𝑈(2)
case, initially, at 𝑡 ≈ 0, the effects of these two mechanisms
combine leading to faster entanglement compared to the case
of spin coherent state.

When Δ𝑈

𝜇,] ≡ 0 there is an interesting dependence
of the general profile of 𝜂(𝑡) on the parity of 𝑛. In order
to see it, we consider the case ⟨𝑁⟩ ≫ 1. The magnitude
of 𝜂(𝑡) in this case is determined by the largest term in
the sum over 𝜇 and ]. Therefore, a special attention should
be paid to vicinities of 𝑡

𝑝,𝑘
, instants of partial recovery of

coherence.The respective contributions to 𝜂(𝑡) have the form
exp{−2⟨𝑁⟩[1 − (−1)

(𝑛+1)𝑘

]} with integral 𝑘. Thus, when 𝑛

is odd all 𝑡
𝑝,𝑘

correspond to partial recovery of coherence.
While for even 𝑛, some of these points in fact correspond
to increased entanglement, an effect similar to what we have
seen in the 𝑆𝑈(2) case (see Figure 4).

When both entangling channels contribute (i.e., we
have 𝜔 ̸= 0 and Δ𝑈

𝜇,] ̸= 0), the initial time dependence of
entanglement is relatively simple: the contribution of terms
with Δ𝑈

𝜇,] ̸= 0 vanishes at time scales ∼ 1/Δ𝑈

𝜇,], leading
to a reduction of entanglement oscillations. The long time
behavior, however, is quite complex and strongly depends on
the commensurability of Δ𝑈

𝜇,] and 𝜔.
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Figure 4: Variation of 𝜂(𝑡) for initially Glauber’s state with the
parity of 𝑛: solid and dotted lines correspond to 𝑛 = 6 and 𝑛 =

5, respectively, for 𝑁 = 20. When only one entangling channel
contributes (i.e., Δ𝑈

𝜇,] ≡ 0 in (69)), stronger entanglement can be
reached in 𝑆𝑈(𝑛) systems with even 𝑛.

5. Entanglement Dynamics in Two-Mode
Jaynes-Cummings Model

In the previous sections we have considered only interaction
between boson fields. Here, we extend the analysis for the
case when the boson field interacts with the system, whose
dynamics is subject to the Pauli exclusion principle. More
specifically, we consider the evolution of entanglement of
photons in a cavity with 𝑀 quantum dots (QD) modelled
by two-level systems admitting transitions characterized by
definite helicities.

The excitations of QDs are described by 𝑐†
𝑠
(r), operators

creating electron with spin 𝑠 in the QD at point r, and
V†
𝑠
(r), operators creating holes. A dot in the ground state is

excited by creating an electron-hole pair. This is described by
acting on the QD’s ground state by V†

𝑠
(r)𝑐†

𝑠

(r). The helicity

of the respective transition is given by 𝑠 − 𝑠

. The operators
dealing with transitions of fixed helicity constitute su(2)
algebras and, therefore, it is more convenient to introduce
the respective generators: S+

±
(r) = V†

∓3/2
(r)𝑐†

∓1/2
(r), S−

±
(r) =

𝑐

∓1/2
(r)V

∓3/2
(r), and so on, where we have assumed that the

states in the valence bands are heavy-holes.
Using these notations, we present the Hamiltonian gov-

erning the dynamics of the system as a Hamiltonian of two-
mode Jaynes-Cummings model [65, 66]. Consider

H = ∑

𝜅

𝜖

𝜅
𝑎

†

𝜅
𝑎

𝜅
+∑

𝜅,𝑖

]
𝜅
(r
𝑖
)S

𝑧

𝜅
(r
𝑖
) +Hint, (70)

where 𝑖 runs over QDs and ]
𝜅
(r) are the excitation ener-

gies of QDs and S𝑧
𝜅
(r) = [S+

𝜅
(r),S−

𝜅
(r)]/2. In terms

of the electron and hole operators, S𝑧
𝜅
(r) are written
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as S𝑧
±
(r) = [𝑐

†

∓1/2
𝑐

∓1/2
+ V†

∓3/2
V
∓3/2

− 1]/2. The interaction
between photons and QDs is given by

Hint = ∑

𝜅,𝑖

[𝜔

𝜅
(r
𝑖
)S

+

𝜅
(r
𝑖
) 𝑎

𝜅
+ 𝜔

∗

𝜅
(r
𝑖
)S

−

𝜅
(r
𝑖
) 𝑎

†

𝜅
] , (71)

where 𝜔
𝜅
(r) are the respective Rabi frequencies. Generally

speaking, they are complex numbers depending on the phase
of the photon mode. Their argument, however, is of minor
importance and, therefore, in what follows we will assume
that 𝜔

𝜅
(r) = 𝜔

∗

𝜅
(r) ≥ 0.

We do not require the parameters of the QDs to be
the same. This accounts for the variation of QD’s excitation
energies due to the size fluctuations and the variation of the
Rabi frequencies due to position of the QDs in the cavity.
The dynamics of entanglement in this system is a result of
interference of harmonics with incommensurate frequencies
[67] and in the long time limit the time dependence of
entanglement is very complex. However, when the number
of photons is large, then for relatively short time scales the
evolution of entanglement demonstrates universal features,
which we will analyse in detail. More specifically, we consider
the evolution of entanglement for the case when initially we
have a disentangled photon state in the cavity and all QDs are
in the ground state. This closely corresponds to the situation
when, for example, the cavity in the ground state is pumped
by an external source.

It is convenient to take into account that the total number
of excitations remains constant: [H,N

𝜅
] = 0, where

N
𝜅
= 𝑎

†

𝜅
𝑎

𝜅
+ ∑

𝑖
(S𝑧

𝜅
(r
𝑖
) + 1/2). The effect of the operator

exp(−𝑖𝑡 ∑
𝜅
𝜖

𝜅
N
𝜅
) on the dynamics is simple and reduces

to rotation of the initial photon state around the 𝑧-axis. It
results in acquiring phase factors by ⟨J

±
⟩ and, therefore, does

not affect the entanglement. This circumstance allows us to
exclude the single-photon contribution to the energy and to
introduce ̃H = H − ∑

𝜅
𝜖

𝜅
N
𝜅
= ∑

𝑖,𝜅
Δ

𝜅
(r
𝑖
)S𝑧

𝜅
(r
𝑖
) + Hint,

where Δ
𝜅
(r) = ]

𝜅
(r) − 𝜖

𝜅
is the detuning of the 𝜅-transition

in the QD at r from the resonance with the cavity mode.
Thenontrivial part of the dynamics is due to the excitation

of a QD by absorbing a photon. Let the initial state of the
system be characterized by definite numbers of photons with
each polarization, |Ψ(𝑡 = 0)⟩ = |𝑁

+
, 𝑁

−
⟩|0⟩

𝐷
, where |0⟩

𝐷

corresponds to all QDs being their ground states.Then at any
instant we can present

|Ψ (𝑡)⟩ = ∑

̂
𝑘
+
,
̂
𝑘
−

𝜓̂
𝑘
+
,
̂
𝑘
−

(𝑡)











̂

𝑘

+
,

̂

𝑘

−
⟩ , (72)

where |̂𝑘
+
,

̂

𝑘

−
⟩ = |𝑁

+
−𝑘

+
, 𝑁

−
−𝑘

−
⟩|

̂

𝑘

+
,

̂

𝑘

−
⟩

𝐷
and |̂𝑘

+
,

̂

𝑘

−
⟩

𝐷
are

the QDs state with 𝑘
±
QDs in excited ±-states and ̂𝑘

±
describe

the distribution of the excited states over the QDs. The
matrix element of the Hamiltonian between the respective
states is proportional, for example, to ⟨𝑁

𝜅
− 𝑘



𝜅
|𝑎

𝜅
|𝑁

𝜅
−

𝑘

𝜅
⟩ = 𝛿

𝑘


𝜅
,𝑘
𝜅

√𝑁

𝜅
− 𝑘

𝜅
, which varies in the range from√𝑁

𝜅
to

√𝑁

𝜅
−𝑀. In the limit𝑁

𝜅
≫ 𝑀, we canneglect this variation,

which is sufficient for the consideration of relatively short
time scales, as will be elaborated below. Moreover, if one is
interested, for example, only in photon observables (say, the

photon OPDM), one can extend this approximation further
and neglect the variation of photon states in expansion (72)
and set |̂𝑘

+
,

̂

𝑘

−
⟩ ≈ |𝑁

+
, 𝑁

−
⟩|

̂

𝑘

+
,

̂

𝑘

−
⟩

𝐷
up to terms ∝ 1/√𝑁

±
.

Thus, treating consistently the limit𝑁
𝜅
≫ 𝑀 one can approx-

imate ̃H by replacing photon creation and annihilation
operators by√𝑎†

𝜅
𝑎

𝜅
, similar to the Bogoliubov approximation

in the theory of excitations of the Bose-Einstein condensates.
The validity of this approximation for initially disentangled
states, however, is not self-evident. Indeed, except the cases
when 𝑁

+
= 0 or 𝑁

−
= 0, disentangled states are not

characterized by a definite numbers of photons. Therefore,
generally speaking, the condition 𝑁

𝜅
≫ 𝑀 is not fulfilled

for disentangled states. On the other hand, states with a
significantly mismatched number of photons with different
polarizations are typical for states with ⟨J

𝑧
⟩/𝑁 ∼ 1, and the

time evolution of entanglement of such states is rather simple
due to the limitation on themaximumvalue of entanglement.
Similar to previous sections, states of our main interest are
those which pass through completely entangled states. These
are states with |⟨J

𝑧
⟩| ≤ 𝑀 ≪ 𝑁 and for simplicity we will

consider states with ⟨J
𝑧
⟩ = 0.The contribution of states with

mismatched𝑁
+
and𝑁

−
decreases with𝑚 = (𝑁

+
−𝑁

−
)/2 fast

∝ exp[−(𝑚/𝑚
0
)

2

], where 𝑚
0
∼ 2(𝜋𝑗

5

)

1/8. Thus, if 𝑗 − 𝑚
0
≫

𝑀, the contribution of the states, for which the condition
𝑁

𝜅
≫ 𝑀 does not hold, is negligible.
Adopting these approximations we can write the Hamil-

tonian in a simple form

̃H = ∑

𝜅,r,𝑖
B

𝜅
(r
𝑖
) ⋅S

𝜅
(r
𝑖
) , (73)

whereB
𝜅
(r) = (S𝑥

𝜅
(r),S𝑦

𝜅
(r),S𝑧

𝜅
(r)) with S𝑥

𝜅
(r) = [S+

𝜅
(r) +

S−
𝜅
(r)]/2, and so on, and B

𝜅
(r) = (2𝜔

𝜅
(r)√𝑎†

𝜅
𝑎

𝜅
, 0, Δ

𝜅
(r)).

Hamiltonian (73) has the form of a Hamiltonian of a lattice
of spins in a magnetic field depending on the number of
photons. It should be noted that “spins” are formed by
the generators of the su(2) algebras corresponding to each
helicity independently.

Different terms in (73) commute and, therefore, the
operator of evolution is represented as a product of operators
acting on individual QDs. Thus, by expanding the photon
state over the basis of population numbers one can evaluate
the action of the operator of evolution on the initial state
and find the resulting photon OPDM. The final expression
turns out to be very cumbersome due to noncommutativity
of operators B

𝜅
(r) ⋅ S

𝜅
(r) taken for photon states with

different 𝑁
𝜅
. It can be seen, however, that the variation of

the directions of B
𝜅
(r) leads to corrections to the state ∝

1/
√
𝑁, which were neglected while deriving (73). Thus, we

can approximate B
𝜅
(r) ≈ ê

𝜅
(r)√4𝜔2

𝜅
(r)𝑎†

𝜅
𝑎

𝜅
+ Δ

2

𝜅
(r), where

ê
𝜅
(r) = ̃B

𝜅
(r)/̃B

𝜅
(r) and ̃B

𝜅
(r) = (2𝜔

𝜅
(r)√J

0
, 0, Δ

𝜅
(r))

withJ
0
= (𝑎

†

+
𝑎

+
+𝑎

†

−
𝑎

−
)/2. TreatingJ

𝑧
as a small correction

toJ
0
and keeping only the linear term we finally obtain

̃H = ∑

𝜅,𝑖

̃B
𝜅
(r
𝑖
) ⋅S

𝜅
(r
𝑖
) +J

𝑧
∑

𝜅,𝑖

Ω
𝜅
(r
𝑖
) ⋅S

𝜅
(r
𝑖
) , (74)
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whereΩ
𝜅
(r) = 2ê

𝜅
(r)ℎ

𝜅
𝜔

2

𝜅
(r)/̃B

𝜅
(r)with ℎ

𝜅
= ± for 𝜅 = ±. It

should be emphasized that all terms entering (74) commute
with each other. This yields a compact expression for the
photon OPDM. We provide it for the case when the initial
photon state has the definite number of particles, so that we
can replace J

0
→ 𝑗 in expressions for ̃B

𝜅
(r) and Ω

𝜅
(r).

Using the Heisenberg representation we find

⟨J
+
(𝑡)⟩ = ⟨J

+
(0)⟩ ⟨0|

𝐷
exp[𝑖𝑡∑

𝜅,𝑖

Ω
𝜅
(r
𝑖
) ⋅S

𝜅
(r
𝑖
)] |0⟩

𝐷

= ⟨J
+
(0)⟩∏

𝜅,𝑖

[cos(
Ω

𝜅
(r
𝑖
) 𝑡

2

)

+ 𝑖ℎ

𝜅

Δ

𝜅
(r
𝑖
)

̃

𝐵

𝜅
(r
𝑖
)

sin(
Ω

𝜅
(r
𝑖
) 𝑡

2

)] .

(75)

First we discuss the case when all QDs are in resonance
with the cavity, Δ

𝜅
(r) ≡ 0. In this case, ⟨J

+
(𝑡)⟩ =

⟨J
+
(0)⟩∏

𝜅,𝑖
cos[𝜔

𝜅
(r
𝑖
)𝑡/2√𝑗].The complete entanglement is

reached at instants 𝑇(𝑘)
𝜅
(r
𝑖
) = √𝑗𝜋(1+2𝑘)/𝜔

𝜅
(r
𝑖
)with integer

𝑘. Thus, we have a spectrum of instants corresponding to
complete entanglement. With this regard it should be noted
that accounting for terms omitted while deriving (74) leads to
significant variations at time scales∼𝑗𝑇(1)

𝜅
(r) ≫ 𝑇

(1)

𝜅
(r).Thus,

the dynamics described by approximate Hamiltonian (74)
is sufficient for covering multiple recurrence of completely
entangled states.

In order to discuss the structure of completely entangled
states we first notice that both ̃B

𝜅
(r) and Ω

𝜅
(r) have only

𝑥-component. Choosing 𝑥-axis as the new quantization
axis we can rewrite (74) as ̃H = ∑

𝜅,𝑖

̃

𝐵

𝜅
(r
𝑖
)

̃S𝑧
𝜅
(r
𝑖
) +

∑

𝜅,𝑖
ℎ

𝜅
Ω

𝜅
(r
𝑖
)J

𝑧

̃S𝑧
𝜅
(r
𝑖
) with the initial state of the QDs being

the product of (|x
𝜅
(r
𝑖
)⟩ + | − x

𝜅
(r
𝑖
)⟩)/

√
2, where S𝑥

𝜅
(r)| ±

x
𝜅
(r)⟩ = ±(1/2)| ± x

𝜅
(r)⟩. The resultant Hamiltonian has

the form of a spin lattice Hamiltonian with the Ising-type
interaction with photons playing the role of a many-body
state at a special, “defect”, site of the lattice. A full discussion
of completely entangled states in this case requires expanding
the scope of the present paper to the lattice case. For our
purposes, however, it is sufficient to note that the completely
entangled states are a many-body generalization of graph
states [68, 69] and can be described following the standard
procedure. The states are described by a simple graph: the
central vertex represents photons and other vertices corre-
spond to different QDs and helicities of the transition. The
vertex representing 𝜅-transition in the 𝑖th QD gets connected
to the photon vertex at instant 𝑇𝑘

𝜅
(r
𝑖
), as is illustrated in

Figure 5.
We consider explicitly the simplest case, when the graph

has at most two vertices; that is, at instant 𝑡
0
there is at most

one set of (r
0
, 𝜅

0
, 𝑘

0
) such that 𝑇(𝑘0)

𝜅
0

(r
0
) = 𝑡

0
. We present ̃H =

̃H
0
+

̃H, where ̃H
0
contains only the term with 𝜅 = 𝜅

0
and

r = r
0
from (74) and ̃H has the rest of the terms. Next, let

(a) (b)

Figure 5: Schematic depiction of completely entangled state at
instant 𝑡 for the system of four QDs (filled vertices) and photons
(opened central vertex): (a) the condition of complete entanglement,
𝑡 = 𝑇

(𝑘)

𝜅
(r
𝑖
) is fulfilled only for one QD; (b) three QDs satisfy the

condition of the complete entanglement and; that is, there are three
sets of (𝑖, 𝜅, 𝑘) such that 𝑇(𝑘)

𝜅
(r
𝑖
) = 𝑡.

the initial photon state be the coherent spin state |𝜓(S)⟩, then
the completely entangled state can be presented as









Ψ

0
⟩ = 𝑒

−𝑖
̃H𝑡
0

1

√
2

(











𝜓 (

̃S)⟩ 




x̃
𝜅
0

(r
0
)⟩

𝐷

+











𝜓(−

̃S)⟩ 




−x̃
𝜅
0

(r
0
)⟩

𝐷

)











0



⟩

𝐷

,

(76)

where |x̃
𝜅
0

(r
0
)⟩

𝐷

= exp[−𝑖𝑡
0
√𝑗𝜔

𝜅
0

(r
0
)]|x

𝜅
0

(r
0
)⟩

𝐷

, ̃S =

𝑒

−𝑖𝜋𝐽
𝑧
ℎ
𝜅
0

/2S, −̃S ≡ 𝑒

−𝑖𝜋𝐽
𝑧̃S, and |0⟩

𝐷
denotes the ground state

of the rest of the QD system.
Thus, the completely entangled state has the form of

superpositions of NOON states of the extended photon-QD
system. It can be obtained using the standard procedure
developed for graph states [68, 69] with the only difference
being that for photons one has to use the spin coherent
state 𝜓(S) instead of qubit states |±⟩. The generalization
to situations when there are several sets (𝑖, 𝜅, 𝑘) satisfying
𝑇

(𝑘)

𝜅
(r
𝑖
) = 𝑡

0
, therefore, is straightforward.

It should be emphasized that the complete entanglement
is solely due to the interaction of photons with the 𝜅

0
-

transition of the QD at r
0
. The interaction with the other

QDs cannot reduce the entanglement but can significantly
complicates the structure of the state. In order to see how the
“extended” NOON states are present in the state of the whole
system, we expand |0⟩

𝐷
over the products of the eigenstates

of S𝑥
𝜅
(r). Each product has the form of a sequence of qubits,

which correspond to | ± x
𝜅
(r)⟩. We denote such sequence by

|𝑄⟩

𝐷
and rewrite (76) as









Ψ

0
⟩ =

1

2

𝑀
∑

𝑄

[











𝜓 (

̃S (𝑄))⟩ 




x̃
𝜅
0

(r
0
)⟩

𝐷

+











𝜓 (−

̃S (𝑄))⟩ 




−x̃
𝜅
0

(r
0
)⟩

𝐷

]











̃

𝑄⟩

𝐷

,

(77)

where |

̃

𝑄⟩

𝐷
= exp[−𝑖𝑡

0
∑



𝜅,𝑖
𝜔

𝜅
(r
𝑖
)√𝑗𝑠

𝜅
(r
𝑖

| 𝑄)]|𝑄⟩

𝐷
,

with 𝑠

𝜅
(r
𝑖

| 𝑄) = 1 or −1 depending on whether
⟨x
𝜅
(r
𝑖
)|

𝐷
|𝑄⟩

𝐷
̸= 0 or ⟨−x

𝜅
(r
𝑖
)|

𝐷
|𝑄⟩

𝐷
̸= 0 and |𝜓(

̃S(𝑄))⟩ =

exp[−𝑖𝑡
0

̂

𝐽

𝑧
∑



𝜅,𝑖
ℎ

𝜅
𝜔

2

𝜅
(r
𝑖
)𝑠

𝜅
(r
𝑖
| 𝑄)/2√𝑗]|𝜓(S(𝑄))⟩. The sum

signs are primed in order to indicate that the pair (𝜅
0
, r
0
) is

excluded from the summation.
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This consideration shows that completely entangled states
are formed due to the interaction with individual QDs and
this is why 𝑇(𝑘)

𝜅
(r
𝑖
) do not depend on the total number of

QDs. At the same time, similar to what we have seen in the
previous section, during the initial stage, different channels
of formation of entanglement cooperate and the initial rate of
loss of coherence increases with the number of QDs. Indeed,
considering the limit 𝑡 ∼ 0 we find

𝐽 (𝑡) = exp[− 𝑡
2

8𝑗

∑

𝜅,𝑖

𝜔

2

𝜅
(r
𝑖
)] . (78)

This analysis can be straightforwardly generalized to
include the case when QDs (all or part of them) are not in
resonance with the cavity. In (75), the terms with Δ

𝜅
(r
𝑖
) ̸= 0

does not vanish. In other words the interaction with QDs,
which are not in resonance with the cavitymodes, do not lead
to complete entanglement. Moreover, (78) in this case takes
the form

𝐽 (𝑡) = exp{− 𝑡
2

8𝑗

∑

𝜅,𝑖

𝜔

2

𝜅
(r
𝑖
) [1 −

Δ

2

𝜅
(r
𝑖
)

̃

𝐵

2

𝜅
(r
𝑖
)

]} . (79)

Thus, the effect of the interaction with off-resonant QDs on
initial formation of entanglement is reduced and in the limit
of large detuning their contribution into the rate of loss of
coherence vanishes∝ 4𝑗𝜔

2

𝜅
(r
𝑖
)/Δ

2

𝜅
(r
𝑖
). Of course, this result

is valid only for relatively short time scales when the effect of
neglected terms remains small, as has been discussed above.

6. Conclusion

We have considered the basic dynamics of entanglement in
the system of coupled second quantized fields in the general
context of the problem of solid based sources of entangled
light. This compels us to treat entanglement as a property
of particles, which are excitations of respective fields, rather
than a property of states of fields themselves. The properties
of particles and fields are described by different quantities:
many-particle density matrix and fields density matrix. We
show that while these quantities describe the same state of
the physical system they yield different entanglement. This
reflects the fact that entanglement depends on the notion
of locality: what is the part of the system and what is the
complement? These notions are clearly different whether
we address properties of particles or fields, in other words,
whether we consider the system within the particle or field
picture. We show that the same state may be completely
entangled in one picture and disentangled in another. States
disentangled in the particle picture are superpositions of
spin coherent states corresponding to the same one-particle
state. Out of these states, only Glauber’s coherent states are
disentangled in field picture. Taking the inequivalence of
two pictures into account, we paid the most attention to the
dynamics of entanglement in the particle picture, which is
the most relevant for the problem of solid based sources of
entangled light.

The first question, which has to be answered, is how is
it possible to produce an entangled state of a quantum field?

The circumstance, which motivates this question, is that by a
classical source, entangled states (in either picture) cannot be
reached out of vacuum. Moreover, we show that in a system
of linearly coupled quantized fields, total entanglement (in
particle picture) conserves and its dynamics reduces to mere
transfer between subsystems. Therefore, in order for initially
disentangled states to get entangled it is necessary to have an
interaction, a nonlinear dependence of energy on the number
of particles. We provide a detailed analysis of the effect of
interactionwhich preserves the population of individual one-
particle states. Such systems admit an exact solution for an
arbitrary dimension 𝑛 of one-particle Hilbert space, while
demonstrate nontrivial dynamics of entanglement.

We found that in the simplest 𝑛 = 2 case, a generic
potential admits an evolution that drives an initially dis-
entangled state through a completely entangled one. When
𝑛 > 2, however, only potentials of special form admit such
dynamics.

If initially the system is in spin coherent state, the time
dependence of entanglement has a characteristic form of a
periodic train of Gaussian resonances with the characteristic
time of decay of coherence (entanglement time) 𝜏 ∝

1/
√
𝑁(𝑛

2
− 1), where 𝑁 is the total number of particles. By

increasing 𝑛, the time dependence demonstrates a richer
structure with an emerging self-similar pattern due to the
existence of instances of partial recovery of coherence. Maxi-
mal entanglement is shown to be reached at states, which are
superpositions of spin coherent states. Completely entangled
states correspond to the situation when superimposing states
are orthogonal to each other and, thus, belong to the class of
NOON states.

If the initial state is disentangled in both particle and field
pictures, that is, its Glauber’s coherent state, complete entan-
glement cannot be achieved (if dynamics preserves popula-
tions of individual one-particle states). The time dependence
of entanglement, however, becomes more complex in this
case due to the presence of two entangling channels. One
is related to formation of NOON states within each sector
with a definite total number of particles and another is
due to the dephasing of dynamics within different sectors.
Initially, the effects of two channels combine, leading to an
increased rate of initial decay of coherence. At long time
scales, however, their interplay leads to more complex time
dependence of entanglement. For example, if characteristic
time scales related to different channels are incommensurate,
the loss of initial coherence is irreversible.

Finally, we have considered the evolution of entanglement
of photons in a cavity with𝑀 two-level quantum dots (QD)
in the limit of a large number of photons, 𝑁 ≫ 𝑀. We
show that in relatively short time scale, completely entangled
states result from the interaction of photons with QDs tuned
in the resonance with the cavity mode. The time when the
completely entangled state is reached due to absorption and
reemission of a 𝜅-polarized photon by the QD at point r
is 𝑇

𝜅
(r) ∝

√
𝑁/𝜔

𝜅
(r), where 𝜔

𝜅
(r) is the respective Rabi

frequency. The interesting feature of these states is that they
are a straightforward generalization of the graph states. Since
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they are formed through the interactionwith individual QDs,
𝑇

𝜅
(r) do not depend on the number of QDs. However, in

the short time limit, 𝑡 ≪ 𝑇

𝜅
(r), different channels cooperate

leading to an increasing rate of the loss of coherence with
increasing𝑀. Detuning a QD away from the resonance leads
to its exclusion from the formation of maximally entangled
states and reduces its contribution into the initial rate of the
loss of coherence.
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