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Retiming is a transformation which can be applied to digital filter blocks that can increase the clock frequency.This transformation
requires computation of critical path and shortest path at various stages. In literature, this problem is addressed at multiple points.
However, very little attention is given to path solver blocks in retiming transformation algorithm which takes up most of the
computation time. In this paper, we address the problem of optimizing the speed of path solvers in retiming transformation by
introducing high level synthesis of path solver algorithm architectures on FPGA and a computer aided design tool. Filters have
their combination blocks as adders, multipliers, and delay elements. Avoiding costly multipliers is very much needed for filter
hardware implementation. This can be achieved efficiently by using multiplierless MCM technique. In the present work, retiming
which is a high level synthesis optimization method is combined with multiplierless filter implementations using MCM algorithm.
It is seen that retiming multiplierless designs gives better performance in terms of operating frequency. This paper also compares
various retiming techniques for multiplierless digital filter design with respect to VLSI performance metrics such as area, speed,
and power.

1. Introduction

High level synthesis is the process of converting behavioral
description or an algorithm to structural level specification.
In behavior description or an algorithm, the input and
output behavior is described in terms of data transfers and
operations without any implementation details. Structural
description maps this data transfers and operations into
combinational functional units and registers on to hardware.
High level synthesis of DSP algorithms is very much useful
as it reduces time to market window. Various optimization
methods are available in literature for sequential synthesis [1].
Though synthesis of combinational logic has attained a signif-
icant level of maturity, sequential circuit synthesis has been
lagging behind [2] in terms of frequency performance. DSP
algorithms are repetitive and periodically iterations must be
repeated to execute the computations [3]. Here, iteration
period is theminimum time needed for computation and this

is limited by critical path. Critical path can be altered by
redistributing the delays such that functionality is preserved.
Retiming algorithm [4] is used to redistribute the delays
without altering [5] the functionality.

A great amount of research has been done on retiming
[5, 6]. The retiming technique is the valuable optimization
technique in problems of digital filters which can be repre-
sented as data flow graphs (DFGs). Efficient filter systems
are needed to decrease the overall computation time since
scientific applications can be recursive, nonrecursive, and
iterative. Retiming transformation alongwith other high level
transforms likemultiple constantmultiplication approach for
filters in high level synthesis aids in reducing area of the
filter circuit andmost importantly decreases the clock period.
Critical path and shortest path computations consume most
of the time in retiming computation. The retiming mini-
mizes the overall clock period, thereby increasing the clock
frequency by reducing the filter critical path. In the general
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purpose processor where actual retiming vectors are com-
puted for digital filters, the speed with which the retiming
transformation is performed suffers since the entire trans-
formation code will be written as software. Hence, FPGA
based path solver architecture is designed in this paper which
addresses the frequency issue in retiming and reduces the
burden on general purpose processors.

A computer aided design (CAD) tool framework called
DiFiDOT is developed which generates the synthesizable
hardware descriptions of chosen digital filter with specified
user constraints such as area, speed, and power. Since the
digital filters are composed of adders/subtractors, multipli-
ers, and delay elements, DiFiDOT picks the best choice
of adders and multipliers as per users design constraints.
Also, multiplication operation is expensive in terms of area,
power, and delay. Exchanging multipliers with adders is
advantageous because adders weigh less than multipliers in
terms of silicon area [7]. Since the coefficients to bemultiplied
are known beforehand, the full flexibility of multiplier is not
necessary in the design. So a multiplierless design in digital
filter is proposed under multiple constant multiplications
architecture and an option is included in DiFiDOT for gener-
ating multiplierless hardware descriptions. This significantly
reduces the area of filters when compared to those designed
using multiplier blocks. Here, sharing of partial terms in
multiple constantmultiplications (MCMs) concept [8] is used
which reduces area and covers all possible partial terms that
may be used to generate the set of coefficients in the MCM
instance. For simulations, the authors have used some of
ACM/SIGDA benchmark circuits.

2. Background

High level transformation techniques are applied to get
optimal speed in sequential filter systems. For the designed
optimization environment, input is considered as data flow
graphs. This section introduces the data flow graphs (DFGs)
and problem definitions and gives an overview on previously
proposed retiming transformation algorithms with their
drawbacks.

2.1. Data Flow Graphs (DFGs). Digital filters are important
part of digital signal processor. Their extraordinary perfor-
mance is one of the parameters that made DSP become so
popular [9]. Filters are used in audio processing, speech
processing (detection, compression, and reconstruction),
modems, motor control algorithms, video and image pro-
cessing, and so forth. Retiming is important step [10] in high
level synthesis (HLS) of digital filters. HLS is nothing but
to map behavioural descriptions of algorithms to physical
realizations. All digital filters which are iterative, recursive,
and nonrecursive can be represented using data flow graphs
(DFGs) [11, 12]. Any digital filter can be realized by functional
blocks such as adder/subtractor and multiplier with delay
elements. A filter DFG consists of such functional blocks and
connectivity information for the data flow. This example is
a 4th-order low pass elliptic filter block. High level trans-
formations operate on the filter functional blocks for better

performance. This can be done by changing the execution
order or by altering the number of functional blocks in
the critical path of retiming [3] process. Performance can
also be improved by altering the architecture of functional
block’s implementation characteristics without altering the
functionality of the filter in the optimization environment.
In this paper, MCM technique is used to achieve this. For
applying all these transformations, input is given in the form
of DFGs.The input DFGs can also be represented in the form
of matrices for further computations. In this paper, 4th-order
low pass elliptic filter is used as an application example to
explain the present work. The elliptic filter response is given
by
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The second order elliptic filter block is as shown in
Figure 1(a). The typical DFG for the filter is shown in
Figure 1(b). For the designed optimization environment, the
filter information is given in the form of matrices. There
are two matrices which represent the filter information. The
node-weight matrix represents node weights that are nothing
but computation time unit delays in the filter graph. The
computational complexity of the adder is 𝑂(𝑛), whereas for
multiplication it is 𝑂(𝑛2) for two 𝑛 digit numbers. Multipli-
cation computation complexity is higher when compared to
addition. Hence, in the present work, time delay considered
for multiplication in retiming is twice that of addition. Inci-
dence matrix defines the edge weights between all the nodes
which represent connectivity information. The number of
delay elements present in between the computation nodes
(adder and multiplier) is considered as edge weight. If there
are no delay elements and adder or multiplier node is directly
connected to another node, then the edge weight will have
zero value. The node weight matrix and incidence matrix
are used as the inputs for optimization environment where
high level transformations are applied to obtain performance
improvement. The critical path and shortest path of the
filter are computed for retiming which is one of the efficient
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Figure 1: (a) Block diagram of 4th-order low pass elliptic filter; (b) DFG of elliptic filter block DFG.

optimization techniques to obtain a filter solution with
reduced clock period which in turn increases the filter speed.
The critical path can be obtained by observing Figure 1(b)
DFG. The critical path is node 1 → 9 → 5 → 14 → 8.

Retiming Transformation. Retiming is a high level transfor-
mation technique in which the location of the registers is
altered in such a way that the overall clock period reduces,
thereby increasing the clock frequency [13]. This happens
due to reduction in the critical path which bounds the
speed of the design. Due to intelligent placement of registers,
the clock period gets minimised without altering the filter
functionality. Critical path is the longest computation path
in between computational elements [14] or delay elements.
The critical path can also be minimized by inserting the
delay elements on the primary inputs of the filter circuit
and retiming the circuit. This is called automatic pipelining
technique. Both themethods are used to find the best optimal
solution in the present work. Retiming for filter optimization
is found to be NP complete problem, and time to find the
solution increases as the problem size increases.There are two
ways of applying retiming transformation:

(i) retiming using clock period minimization method,
(ii) retiming using register minimization method.

The retiming algorithm for clock period minimization is
efficient in terms of clock frequency improvement. Its com-
putational complexity is 𝑂(𝑛3 log 𝑛), where 𝑛 is the number
of nodes which are nothing but computation elements such
as adders and multipliers. The algorithm starts by building a
new graph from the original DFG. The new graph can give
us a set of inequalities called the critical path constraints.

The original DFG also presents a set of equalities called the
feasibility constraints. A constraint graph can be built from
the critical path constraints and the feasibility constraints.
The retiming values for each node can be derived by applying
a Floyd-Warshall shortest path algorithm to the constraint
graph. The weight for each edge in the retimed DFG can be
calculated using the original weight and the retiming values
of the two nodes are connected by this edge.

(i) Calculate𝑀 = 𝑡max
𝑛

, where 𝑛 represents the number
of nodes in the original DFG 𝐺 and 𝑡max is the
maximum computation time of all the nodes in the
DFG.Also compute the critical pathwhich defines the
required clock period of original graph.

(ii) A new DFG 𝐺

∗ can be created from 𝐺. 𝐺∗ has the
same nodes and edges as 𝐺. For each edge in 𝐺∗, the
edge weight is 𝑊∗(𝑒) = MW(𝑒) − 𝑡(𝑢), where 𝑊(𝑒)
is the edge weight of the same edge in 𝐺; 𝑡(𝑢) is the
computation time of the node initiating this edge.

(iii) We then apply the Floyd-Warshall shortest path algo-
rithm to compute 𝑆∗

𝑈𝑉
, which represents the shortest

path from node 𝑈 to node 𝑉.
(iv) From 𝑆

∗

𝑈𝑉
, 𝑊
𝑈𝑉

and 𝐷
𝑈𝑉

are calculated. If 𝑈 ̸= 𝑉,
then𝑊

𝑈𝑉
= 𝑆

∗

𝑈𝑉
/𝑀 and𝐷

𝑈𝑉
= 𝑀𝑊

𝑈𝑉
− 𝑆

∗

𝑈𝑉
+ 𝑡(𝑉).

If 𝑈 = 𝑉, then𝑊
𝑈𝑉

and 𝐷
𝑈𝑉
= 𝑡(𝑢). Here, 𝑡(𝑈) and

𝑡(𝑉) represent the computation times of node 𝑈 and
node 𝑉, respectively.

(v) We then find the maximum value of 𝐷
𝑈𝑉

and the
minimum values of 𝐷

𝑈𝑉
. We check all the possible

clock periods starting frommaximumvalue of𝐷
𝑈𝑉

to
minimum value of𝐷

𝑈𝑉
one by one. If we find a clock
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period that can give us a feasible solution, we stop
and find theminimal clock period by solving for solu-
tions critical path. The solution contains the retiming
values for all nodes. Here, 4th-order low pass IIR
elliptic filter is designed and retimed using the above
mentioned clock periodminimization algorithm.The
retimed data flow graph with reduced clock period is
shown in Figure 2.

After applying retiming transformation to the filter, the
critical path changes to 2 → 1 → 9.

Since each delay element occupies about one-third of
the binary adder, it is important to reduce the number of
delay elements [11]. In retiming using register minimization,
we can obtain the digital filter that uses minimum number
of registers and satisfies the clock period constraints [15].
Here, forward splitting or register sharing [12] is used. If
the node has several output edges carrying the same signal,
the number of registers required to implement these edges
is the maximum number of registers on any one of the
edges. Consider Figure 3. The maximum number of registers
required in Figure 3(a) is 6 whereas after register sharing, this
gets reduced to 3 as shown in Figure 3(b).

The number of registers needed to construct this output
edges (𝑒) in retimed graph𝑊

𝑟
and the total cost are

𝑅V = Max (𝑊
𝑟
(𝑒)) , Cost = ∑𝑅V. (4)

The cost is WRT:

(i) fan-out constraints: 𝑅
𝑉
≥ 𝑊
𝑟
for all 𝑉 and all edges

𝑉

𝑒

󳨀→ 𝑎𝑛𝑦 𝑜𝑡ℎ𝑒𝑟 V𝑒𝑟𝑡𝑒𝑥

(ii) feasibility constraints: 𝑟(𝑈) − 𝑟(𝑉) ≥ 𝑊(𝑒) for every
edge 𝑈 𝑒󳨀→ 𝑉

(iii) clock period constraints: 𝑟(𝑈)−𝑟(𝑉) ≥ 𝑊(𝑈,𝑉)−1

for all vertices such that 𝐷(𝑈,𝑉) ≥ 𝑐, where 𝑐 is the
clock period.

This method makes use of gadgets to represent the nodes
with multiple edges. The register minimization retiming can
be modeled as linear programming problem. A dummy node
with zero computation time will be introduced in this. The
weight of the edge 𝑒

𝑖
is defined to be𝑊(𝑒

𝑖
) = 𝑊max¬𝑊(𝑒𝑖),

where𝑊max = max(𝑊(𝑒
𝑖
)), where 1 ≤ 𝑖 ≤ 𝐾 where 𝑘 is the

number of edges available. Also 𝛽 parameter is used which is
the breadth associated tomodel thememory required by edge
𝑒
𝑖
. The breadth of each edge is inverse of 𝑘. A binary search

is performed for clock period and below is the procedure
used while performing retiming using register minimisation.
The register minimization retiming values can be obtained as
below.

(i) Use the gadgetmodel of the graph to compute the cost
function.

(ii) Calculate 𝑆󸀠 by using shortest path Floyd-Warshall
algorithm.

(iii) Compute 𝐷(𝑈,𝑉) and 𝑊(𝑈,𝑉) matrices from the
original graph and 𝑆󸀠 matrix.

(iv) Perform LP formulation such that the cost function
gets minimized which is subjected to feasibility and
clock period constraints.

This LP problem is solved to obtain the retiming solution
which minimizes the number of registers by satisfying the
clock period. Figure 4 shows the DFG of 4th-order low pass
IIR elliptic filter. It is observed that the register minimum
retimed solution provides the filter solution with reduced
register count for reduced clock period. However, in some
cases, it is found that clock period minimization efficiency
reduces in comparison to clock period minimization retim-
ing technique as the priority is given to the register count.
For the considered elliptic filter for a clock period of 4 units,
it is found that the register count gets minimized to 9. After
applying register minimization retiming transformation to
the filter, the critical path changes to 1 → 9 → 5.

Problem Formulation. Critical path and shortest path solving
contribute to most of the computation time in retiming.

Definition 1 (the path solver problem). Let 𝑆 =

{𝑠
0
, 𝑠
1
, 𝑠
2
, 𝑠
3
, . . . , 𝑠

𝑘
}, where 𝑘 is the maximum number

of feasible solutions available for retiming of a considered
filter DFG. During retiming of digital filters in high level
synthesis, the shortest path between the nodes must be
computed for (𝑘 + 1) times where 𝑘 is the number of
feasible solutions available for the DFG which is nothing
but unique entries in path delay 𝐷 matrix. Similarly,
the critical path must be computed for (𝑘 + 1). General
purpose processors (GPPs) where retiming algorithm is
implemented are fully programmable but are less efficient
in terms of power and performance. Hence, the problem is
to improve the performance and power of retiming using
FPGA based path solvers. Further, along with retiming, high
level transformation technique called automatic pipeline is
applied to improve the filter speed.

Definition 2 (multiple constant multiplication in digital
filters). For the considered filter coefficient constant 𝑇 in
the retimed filters, find the set of multiplierless operations
{𝑂
1
, 𝑂
2
, 𝑂
3
, . . . , 𝑂

𝑛
} with minimum number of addition,

subtraction, and shift operations using multiple constant
multiplier architecture to optimize the filter architecture
further.

Definition 3 (optimization and automation of filter HDL).
An environment needs to be developed to obtain HDLs
of retimed filters in which user can choose different data
path element architectures depending on the specifications.
This reduces time to market and helps to evaluate a lot
of hardware implementation trade-offs. Filter equivalence
checking after applying high level transformation needs to
be done which needs to be developed as a part of the
optimization environment.

Principle of Shortest Path andMCMAlgorithm. Several FPGA
synthesis algorithms have been proposed specifically for
sequential circuits. In [16], authors have proposed how to
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Figure 2: 4th-order elliptic filter after clock period minimization retiming; (a) DFG after retiming; (b) clock period and register count before
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Figure 3: (a) Graph before register sharing. (b) Graph after register sharing.

map retimed circuits on to FPGAs efficiently. However, in
this paper, authors suggest a method for efficient retiming
process using FPGA based path solvers. This can be applied
to any retiming techniques available in literature. Shortest
path is solved in filter DFG using Floyd-Warshall algorithm.
The Floyd-Warshall algorithm uses an approach of dynamic
programming to solve the shortest-paths problem on a DFG.
The Floyd-Warshall Algorithm can solve the shortest path
problem in 𝑂(𝑛3) time where 𝑛 is the number of nodes in
the DFG. Let 𝑑

𝑖𝑗(𝑘)
denote the weight of the shortest path

from 𝑖 to 𝑗 such that all intermediate vertices are contained
in the set {1, 2, . . . , 𝑘}. That is, the path 𝑝 is decomposed into
𝑖 → 𝑘 → 𝑗. Let the vertices in the graph be numbered
from 1, 2, . . . , 𝑛. Consider the subset {1, 2, . . . , 𝑘} of these 𝑛
vertices. Find the shortest path from vertex 𝑖 to vertex 𝑗 that
uses vertices in the set {1, 2, . . . , 𝑘} only. Then, there are two
situations possible:

(i) 𝑘 is an intermediate vertex on the shortest path,

(ii) 𝑘 is not an intermediate vertex on the shortest path.

If the vertex 𝑘 is not an intermediate vertex on 𝑝, then

𝑑
𝑖𝑗
(𝑘) = 𝑑

𝑖𝑗
(𝑘 − 1) else 𝑑

𝑖𝑗
(𝑘) = 𝑑

𝑖𝑘
(𝑘 − 1) + 𝑑

𝑘𝑗
(𝑘 − 1) .

(5)

In either case, the subpaths contain nodes from {1, 2, . . . , (𝑘−

1)}. Therefore,

𝑑
𝑖𝑗
(𝑘) = 𝑑

𝑖𝑗
(𝑘 − 1) + 𝑑

𝑘𝑗
(𝑘 − 1) . (6)

When 𝑘 = 0, then

𝑑
𝑖𝑗
(0) = {𝑊

𝑖𝑗
} ,

and 𝑖𝑓 𝑘0 then 𝑑
𝑖𝑗
(𝑘) = min {𝑑

𝑖𝑗
(𝑘 − 1) + 𝑑

𝑖𝑗
(𝑘 − 1)} .

(7)

Let𝐷 be the incidence matrix with the graph edge weight
information𝑊 initially.𝐷 is then updatedwith the calculated
shortest paths; see Algorithm 1.

The final 𝐷 matrix will store all the shortest paths. This
algorithm is extended for retiming of digital filters.

The multiple constant multiplication (MCM) problem is
addressed in the literature [14] using either graph basedmeth-
ods or using common subexpression elimination method. In
common subexpression elimination algorithm, all possible
subexpressions are extracted for a variable. But this is possible
only if it is defined as minimum signed digit and as canonical
signed digit. Then the subexpression is found such that it
can be shared by multiple constant multiplication values.
In this paper, the above two concepts are extended for
automatic pipelining and retiming of digital filters in high
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(1) n = # of rows in W, 𝐷

0 = W

(2) for(k=1 to n)

(3) for(i=1 to n)

(4) for(j=1 to n)

(5) 𝑑

𝑘

𝑖𝑗
= min{𝑑(𝑘−1)

𝑖𝑗
, 𝑑

(𝑘−1)

𝑖𝑘
+ 𝑑

(𝑘−1)

𝑖𝑘
}

(6) end for

(7) end for

(8) end for

(9) return 𝐷

𝑛

Algorithm 1

level synthesis. In all the digital filters, the filter coefficients
are known beforehand. Hence, full flexibility of themultiplier
is not necessary and we can make use of MCM designs.
This method is more efficient when compared to shift and
add multiplications as intermediate results can be shared
which reduces the area of multiplierless implementation of
digital filters. The sharing of intermediate result will provide
potential area saving with increased filter order (Figure 5).

Consider the filter coefficient set which is to be used for
the filter design given by𝑇 = {𝑐

1
, 𝑐
2
, 𝑐
3
, . . . , 𝑐

𝑛
}, we need to find

the smallest set 𝑆 given by {𝑎
1
, 𝑎
2
, 𝑎
3
, . . . , s

1
, 𝑠
2
, 𝑠
3
, . . . , }where

𝑎 (adders/Subtractors) & 𝑠 (shifts) < 𝑆 such that the set is
made of adderssubtracters, shifters, and 𝐴 operations. Here,
shift operations also can be shared across multiple points so
that the output set is optimum. Here 𝐻cub algorithm [8] is
used to generate corresponding DFG for the multiplier block
implementing the parallelmultiplications 𝑐

1
∗𝑥, 𝑐
2
∗𝑥, . . . , 𝑐

𝑛
∗

𝑥. The only operations used in the generated DAG and
input design matrices are additions, subtractions, shifts, and
negations. In this paper, performance of MCM based filter
designs is further improved by combining this approach with
retiming. The multiplierless filter circuit is further retimed

to reduce the overall clock period which increases the clock
frequency.

Consider 𝑙
1
and 𝑙
2
as two integerswhich specifies left shifts

and 𝑟 ≥ 0 specifies right shift and let 𝑠 be the sign bit which
can be {0, 1}. An𝐴 operation is an operation with two integer
inputs 𝑢 and V and one fundamental output which is defined
as

𝐴
𝑝
(𝑢, V) = 󵄨󵄨󵄨

󵄨
(𝑢 ≪ 𝑙

1
) + (1) 𝑠 (V ≪ 𝑙

2
)

󵄨
󵄨
󵄨
󵄨

≫ 𝑟 = 2

𝑙
1
𝑢 + (−1)

𝑠
2

𝑙
2V | 2−𝑟,

(8)

where≪ is a left binary shift,≫ is a right binary shift, and 𝑝 =
{𝑙
1
, 𝑙
2
, 𝑟, 𝑠} is the parameter set or the 𝐴 configuration of 𝐴

𝑝
.

To preserve all significant bits of the output, 2𝑟 must divide
2

𝑙
1
𝑢 + (−1)

𝑠
2

𝑙
2V. The left shifts are limited to the bit width of

the target. All 𝐴 operations are used to build 𝐴 − 𝑔𝑟𝑎𝑝ℎ. For
a given set of target filter coefficients𝐶, we can find set 𝑆 such
that multiplierless digital filter is designed.
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Figure 5: Example for addressing MCM problem in digital filters.

3. Design and Analysis

EachDSPfilter block is associatedwith the critical pathwhich
limits maximum iteration period in the filter design [12].
This can be reduced by retiming where the clock period gets
reduced and increases the clock speed. To reduce the critical
path, we need to find the original critical path of the circuit
using critical path solving algorithm and then apply retiming
transformation to digital filter. While retiming, shortest path
algorithm is required for solving the system inequalities.
FPGAs are nothing but set of configurable logic blocks
with configurable interconnects. Designer can program it
to work like a specific hardware. These give great speedup
over general purpose processors for many long running
algorithms. Hence, for high performance systems, FPGAs
become a better choice. In the present work, path solvers are
implemented on FPGA to increase the performance.

3.1. Critical Path Solver Algorithm: Design and Analysis. The
critical path is defined as maximum delay path between the
output node and node causing the state change of the output
node with zero delay. The significance of the critical path
is that it determines the operating frequency of the design.
In retiming, which is one among the steps in high level
synthesis, it is imperative that we find the critical path [17]
in real time. To speed up this process, the use of a dedicated
FPGA hardware can speed up the process with low power.
Consider 𝛼 = Number of adder elements and 𝛽 = Number
of multiplier elements in the considered digital filter. Let
= {𝑛
1
, 𝑛
2
, . . . , 𝑛

𝑖
}, where 𝑖 = 𝛼 + 𝛽, which is maximum

combinational adder and multiplier elements. Consider 𝑂 =
𝑜
1
, 𝑜
2
, . . . , 𝑜

𝑗
where 𝑂 is the set of output nodes in the filter

circuit and 𝐼 = {𝑖
1
, 𝑖
2
, . . . , 𝑖

𝑘
}, where 𝐼 is the set of input

nodes in the filter circuit such that IN and ON. The critical
path of the circuit is defined in terms of 𝛾

𝑛
1

which is the
delay of individual combinational block. In this procedure
of computing critical path on FPGA, it sorts the vertices
such that vertices occurring early in the list are connected to
vertices later in the list by edges having zero delays. While

sorting, if the vertex is connected to previous one, then path
length is sum of its time with the sum of all the vertices found
in the path; otherwise, path length of the node is equal to
its own computation time. We need this for constructing the
retimed graph as well as verifying the retimed graph result.
The equation of the critical path is

𝛾
𝑚
=

𝑖=𝑁

∑

𝑖=1

𝑡
𝑚
1

, (9)

where 𝑁 is the sum of adder and multiplier elements in the
topologically sorted vertices connectedwith zero delay edges.
The delay of the circuit is given by 𝑡

𝑑
= max{𝛾

𝑚
} where

𝑡
𝑑
is the delay of the critical path. Algorithm 2 shows the

critical path formulation. In the considered optimization
environment, the below steps are used for critical path
computation.

(i) The filter network graph is considered as input to
critical path solver algorithm.

(ii) All the zero-weight edges in the network graph are
found and a matrix of their source and destination
nodes is formed.

(iii) For each row in the above matrix, if the destination
node of any zero-weight edge path is the same as the
source node of the zero-weight edge path, the two
paths are joined. This step is repeated to obtain a
matrix whose rows will have nodes of all the possible
zero-weight edge paths in the graph.

(iv) The computational time of each zero-weight edge
path from this matrix is calculated.

(v) The zero-weight edge path with the greatest compu-
tational time is found. This is the critical path and its
computational time is the critical path delay.

A critical path solver algorithm is designed in the present
work on FPGA. The state diagram for the implemented
critical path solver is given in Figure 6. In 𝑆0, the filter graph
or matrix is given as input to the critical path solver module.
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Figure 6: Critical path solver state diagram.

(1) //Algorithm for computing the critical path

(2) Input: a DFG of G = (V,E,t,d) Where c is the

(3) computation time of the node and d

(4) is the initial delay on edge E

(5) Output: Critical path C

(6) Sort all the vertices topologically in the DFG G

(7) with v fallowing u

(8) if there is a zero delay edge from 𝑢 → V
(9) For all vertices from the sorted list

(10) If non zero delay on the edge E in G then

(11) 𝛾
𝑖
= 𝑡V

(12) else
(13) 𝛾

𝑖
= 𝑡V + max(𝛾

𝑖
) ∈ edge 𝑒 : 𝑢 → V in 𝐺 with 𝑑

𝑒
= 0

(14) end if;

(15) 𝛾 = 𝛾
1
, 𝛾
2
, . . . , 𝛾

𝑚

(16) where m = number of entries in the topologically sorted list

(17) end for;

(18) compute 𝛾 = max{𝛾}

Algorithm 2

Since HDL does not provide a method to represent infinity,
some number, say 255, can be chosen which is always greater
than any otherweight in the incidencematrix. Also since edge
weight 0 is a valid input, any negative number, say −1, can
be used to denote the uninitialized matrix element. In state
𝑆1, all the zero weight edges in the DFG are found along
with their source and destination nodes and are stored in a
matrix called zero weight path.The zero weight pathmatrix
contains two columns. The first column contains the source
node of a directed zero-weight edge while the second column
has the destination node of the directed zero-weight edge.
Simultaneously, we will keep a count on the number of zero-
weight edges.

The state 𝑆2 is provided to enable looping action and
for updating of all the signals. In state 𝑆3, in each row of
zero weight path matrix, the module will find the next node

with a zero-weight edge connecting it to the node in the
previous column (if it exists). Thus, if the destination node in
any zero-weight path is same as the source node in another
zero-weight path, the two paths are concatenated, that is, if
the destination node in path 𝑎 is the source node in path 𝑏,
then we make the destination node in 𝑏 as the destination
node of 𝑎. The state 𝑆4 is provided to enable looping action
and for updating all the signals. At the end of this state, the
𝑧𝑒𝑟𝑜 𝑤𝑒𝑖𝑔ℎ𝑡 𝑝𝑎𝑡ℎ matrix will contain only those superset
paths that are a superset of the remaining zero weight paths.
In state 𝑆5, the module calculates the sum of all the node
weights through each of these paths. State 𝑆6 is provided for
looping action and for updating all signals.

In state 𝑆7 the path with the highest node weights sum is
found, which is the critical path of the DFG. All the nodes in
this path are then stored in order in amatrix called the critical
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(1) Algorithm for computing the shortest path

(2) Input: a DFG of G = (V,E,t,d) Where c is the computation time of the node and d

(3) is the initial delay on edge E

(4) Output: All pair shortest path matrix M

(5) for i = 1 to N

(6) for j = 1 to N

(7) if i = j, then

(8) M[i,j] = (0,0)

(9) else M[i,j] = inf

(10) end for

(11) end for

(12) for all the edges 𝑒 : 𝑢 → V,𝑀[𝑢, V] = 𝑑 for edge e

(13) for 𝑘 → 1 to N

(14) for 𝑖 → 1 to N

(15) for 𝑗 → 1 to N

(16) if 𝑀[𝑖, 𝑗] > 𝑀[𝑖, 𝑘] + 𝑀[𝑘, 𝑗]

(17) M[i,j] = M[i,k] + M[k,j]

(18) end for

(19) end for

(20) end for

(21) Output shortest path matrix M

Algorithm 3
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Figure 7: Zero path delays and critical path for 4th-order low pass
elliptic filter.

path matrix. These signals, in this matrix, are output as the
critical path.The state 𝑆8 is provided to enable looping action
and for updating all the signals. The state machine then goes
back to state 𝑆0 and awaits new inputs. Next, algorithm to find
the shortest path between two nodes in a graph is described.
For retiming technique in high level synthesis, we need the
shortest path to solve system of inequalities. It is seen that
time needed to compute critical path on FPGA is reasonably
less when compared to computation on general purpose
processor. This also reduces the retiming computation time.
The zero delay paths are computed for 4th-order elliptic filter
shown in Figure 7. The highlighted path delay is from1 →

9 → 5 → 14 → 8 where nodes 1, 5, 8 are adders and 9, 14

are multipliers. Maximum path delay which is highlighted is
considered to be the critical path.

3.2. Shortest Path Solver Algorithm and State Diagram. Let
𝐷(𝑢, V) be the maximum delay between nodes 𝑢 and V and
let 𝑇(𝑢, V) be total computation time of zero delay path from
𝑢 to V. We can check the condition 𝑇(𝑢, V) −min{𝑡(𝑢), 𝑡(V)} >
{𝑑𝑒𝑟𝑖V𝑒𝑑 𝑐𝑙𝑜𝑐𝑘 𝑝𝑒𝑟𝑖𝑜𝑑} then select those paths to retime so
that computation time in this path can be reduced. We
have to retime the edges by constructing system of linear
inequalities. This can be done using Floyd-Warshall shortest
path algorithmAlgorithm 3.This can be used for retiming the
graph further (Figure 6).

Floyd-Warshall all pair shortest path algorithm is
designed and implemented as a part of path solvers on FPGA
[17] which reduces the computational burden of general
purpose processor where actual retiming has been carried
out. The speed of computation is also increased by a larger
extent. The HDL program for the shortest path solver on
FPGA was designed based on the state diagram shown in
Figure 8. Updating of the looping variables is done in 𝑆1 and
then transition from 𝑆1 to 𝑆0 occurs. The transition from 𝑆0

to 𝑆2 occurs after the incidence matrix is completely copied
to the signal weight temp. In state 𝑆2, the signal weight temp
is operated upon to obtain the pair wise shortest path matrix
with state 𝑆3 enabling looping action. Transition from 𝑆2 to
𝑆3 takes place after each pair wise path distance is found.
Updating of the looping variables is done in 𝑆3 and then
transition from 𝑆3 to 𝑆2 occurs. The transition from 𝑆2 to
𝑆4 occurs after all the pair wise shortest paths are stored in
the signal weight temp. In the state 𝑆4, the elements of the
signal matrix weight temp are copied to the output matrix.
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The state 𝑆5 enables looping action for 𝑆4. Transition from 𝑆4

to 𝑆0 occurs after the output matrix is available with all the
pair wise shortest paths. The state machine is then initialized
and awaits new inputs.

SPM =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

inf 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

3 2 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3

inf inf inf inf 3 2 1 0 inf inf inf inf inf 0 inf inf inf
inf inf inf inf 1 3 2 1 inf inf inf inf inf 1 inf inf inf
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]
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]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(10)

3.3. Multiplierless Digital Filters. The digital FIR filters and
the transposed IIR filters will have block of multipliers in the
filter structure. This is shown in Figure 9.

For a target set 𝑇 = {𝑡
1
, 𝑡
1
, . . . , 𝑡

𝑛
} in digital filter, we

have to find the ready set 𝑅 = {𝑟
0
, 𝑟
1
, . . . , 𝑟

𝑚
} that is small

and 𝐴𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 composed of minimum number of addi-
tion, subtraction, and shift operations. After this target set
is obtained, multiplierless multiple constant multiplication
filters can be designed with this target set. Multiple constant
multiplication (MCM) is an efficient way of implementing
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Figure 9: General structure of MCM block for (a) FIR filter, (b) transposed direct form-I IIR filter, and (c) transposed direct form-II IIR
filter.

several constant multiplications with the input data [18, 19].
The coefficients are implemented using shifts, adders, and
subtracters. By removing the redundancy between the coeffi-
cients, the number of adders and subtracters is reducedwhich
results in a low complexity implementation. Retiming for
multiplierless MCM filters is still unexplored in the literature
and authors have combined retiming for multiplierlessMCM
filters which shows decrease in the combinational path delay.
For filter graph 𝐺, multiplierless MCM filter can be designed
using target set and 𝐴𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠, and multiplierless MCM
filter graph 𝐺

𝑖
is obtained. This is again retimed to increase

the speed performance of 𝐺
𝑖
by modifying the critical path

of the filter. The graph after retiming of multiplierless MCM
filter is considered as𝐺

𝑟
. In the present work,𝐻cub algorithm

is used for 𝐺
𝑖
computation. The input to the 𝐻cub algorithm

is target set 𝑇 and algorithm computes a ready set 𝑅 which is
the output solution. The 𝑅 set computation requires multiple
iterations and, in each iteration, successor set 𝑆 of 𝑅 is chosen
as the next fundamental based on the heuristic. Here, 𝑆which
is set of constants of distance 1 from 𝑅 is given as

𝑆 = {𝑠 | dist (𝑅, 𝑠) = 1} = 𝐴
𝑠
(𝑅, 𝑅) . (11)

For the target set of constants 𝑇 for the considered
filter graph 𝐺, using 𝐻cub algorithm compute set 𝑅 =

{𝑟
1
, 𝑟
2
, . . . , 𝑟

𝑚
} with 𝑇 ∈ 𝑅. If the targets are found in

the 𝑆, then it is optimal synthesis. Here, heuristic function
𝐻(𝑅, 𝑆, 𝑇) of an algorithm can be chosen when no more
targets are found in 𝑆. This can happen when all the targets
aremore than one𝐴𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 away.The optimal part is when
(𝑇 ∩ 𝑆 ̸= 𝜙), then there is a target in the successor set and it
can be synthesized. Optimal set is the one in which the entire
target is synthesized in this way and the solution is optimal.
In heuristic part, the computation can be done by two ways:

(i) maximum benefit,
(ii) cumulative benefit.

To build the heuristic, we can define the benefit function
as 𝐵(𝑅, 𝑠, 𝑡):

𝐵 (𝑅, 𝑠, 𝑡) = dist (𝑅, 𝑡) − dist (𝑅 + 𝑠, 𝑡) . (12)

A successor 𝑠 ∈ 𝑆 needs to be picked which is closest to
the target set to minimize the cost. This is possible if we can
compute or estimate the A-Distance. It is useful to also take
into account the current estimate of the distance between 𝑅
and 𝑇. Thus, to build the heuristic, we must first define the
benefit function 𝐵(𝑅, 𝑠, 𝑡) to quantify to what extent adding
a successor s to the ready set 𝑅 improves the distance to a
fixed, but arbitrary, target 𝑡. However, for remote targets, the
estimate becomes less accurate; hence, we can have weighted
benefit function given as

𝐵
𝑏
(𝑅, 𝑠, 𝑡) = 10

dist(𝑅+𝑠,𝑡)
(dist (𝑅, 𝑡) − dist (𝑅 + 𝑠, 𝑡)) , (13)

where 10dist(𝑅+𝑠,𝑡) is a weight factor and decreases exponen-
tially as 𝑡 grows. The benefit function for different targets 𝑡
can be added and joint optimization can be achieved by using
cumulative benefit which is used in the present work. Hence,
heuristic function for cumulative benefit is given by

𝐻cub (𝑅, 𝑆, 𝑇) = arg[max[∑
𝑡∈𝑇

𝐵
𝑏
(𝑅, 𝑆, 𝑡)]] . (14)

Here, cumulative benefit heuristic adds up the weighted
benefit considering all the targets. With this particular
method, target set is calculated. With this target set, filter
graph which is multiplierless MCM based can be designed. It
is found that multiplierless designs reduce the combinational
path delays and due to sharing of intermediate results in the
MCM approach. The performance can be further improved
by retiming 𝐺

𝑖
to give 𝐺

𝑟
. These two different optimization

techniques reduce the combination delay and critical path
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Figure 10: Multiplierless MCM based 4th-order elliptic filter.

without changing the functionality which further increases
the clock speed.The 4th-order lattice filter withmultiplierless
MCM concept using𝐻cub algorithm is shown in Figure 10. It
is seen from the synthesis that combination delay is reduced.
It is further retimed either for clock period minimization or
register minimization. This requires solving a set of linear
inequalities with a computation complexity of𝑂(𝑛3) where 𝑛
is the number of nodes using the Floyd-Warshall algorithm,
where 𝑛 is the number of nodes [8]. The clock period
minimization and register minimization retiming algorithms
are designed and implemented with FPGA based path solvers
which reduces computation timewhen compared to previous
methods [8, 16] to design multiplierless digital filters.

The algorithm starts by building a new graph from
the original DFG. The new graph can give us a set of
inequalities called the critical path constraints. The original
DFG also presents a set of equalities called the feasibility
constraints. A constraint graph can be built from the critical
path constraints and the feasibility constraints. The retiming
values for each node can be derived by applying a Floyd-
Warshall shortest path algorithm to the constraint graph.The
weight for each edge in the retimed DFG can be calculated
using the original weight and the retiming values of the two
nodes connected by this edge. The improvement in the clock

frequency is shown in Figure 11. Here, 4th-order lattice filter
is considered. 𝐷𝑒𝑠𝑖𝑔𝑛1 is the filter with multipliers and
without retiming,𝐷𝑒𝑠𝑖𝑔𝑛2 is multiplierlessMCMbased filter
without retiming, 𝐷𝑒𝑠𝑖𝑔𝑛3 is the filter with multipliers with
retiming, and 𝐷𝑒𝑠𝑖𝑔𝑛4 is multiplierless MCM based lattice
filter with retiming. The maximum operating frequency of
the filter has increased by 19.6% in multiplierless MCM
approach as multipliers will get eliminated and get replaced
by adders which have much less computation delay. Further,
it is observed that by combining this approach with retiming,
operating frequency increases by 35.4%which is a significant
increase. However, with this technique, the number of regis-
ters increases from 9 to 11.

Hence, when the filter is designed without multipliers
(that is using only adders/subtractors and shifters) along with
the retiming technique, operating clock speed is found to
increase which gives a greater speed advantage for the design
under consideration.

3.4. Computer Aided Design Tool. This section presents the
DiFiDOT tool which is designed as the part of research
work. Initially, the design of filters is performed using retimed
architecture where user can choose either clock period
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Figure 11: Comparison of operating frequency and number of
registers for different filter designs of 4th-order elliptic filter.

minimization or register minimization retiming as per his
need. The tool will retime the digital filter by optimizing
the critical path and generate verilog/VHDL based filter RTL
for the same.The performance of a filter can also be increased
by varying the choice combinational adder and multiplier
elements in the RTL filter description. A graphical user
interface (GUI) is created in DiFiDOT using Nokia QT 4.8.0
for component selection and optimization of digital filters.
Here, user has to input the HDL file which was automatically
generated after retiming for further component optimization.
The user can choose adders and multipliers of his choice
according to the design requirements for the retimed digital
filters using drop down menu. The original HDL is auto-
matically modified with respect to the components chosen
which is again synthesizable and is given as the output to
the user. This easy to use GUI helps designer to optimize
and generate digital filter RTL with the adder and multipliers
of his choice. With this, designer can conveniently explore
the solution space of possible architectures and also analyze
the trade-offs in the energy-area-performance space [20].The
different adder and multipliers considered in the tool are as
below.

Multiplier Architecture. Themost critical function carried out
by any filter is multiplication. Digital multiplication [19] is
the most extensively used operation in signal processing.
Innumerable schemes have been proposed for realization
of the operation. In this paper, we consider three types of
multipliers.

Array Multiplier. It is the basic type of multiplier. Consider
two binary numbers 𝐴 and 𝐵, of 𝑛 bits, respectively. The
multiplication is given as

𝐴 =

𝑛−1

∑

𝑖=0

𝐴

𝑖
2

𝑖
, 𝐵 =

𝑛−1

∑

𝑗=0

𝐴

𝑖
𝐵

𝑖
2

𝑖+𝑗

𝑃 =

𝑛

∑

𝑖=0

𝑛−1

∑

𝑗=0

𝐴

𝑖
𝐵

𝑖
2

(𝑖+𝑗)
𝐴

𝑖
𝐵

𝑖
2

𝑖+𝑗
.

(15)

In each stage, the partial products 𝑃
𝑖
are generated that are

added to obtain final product 𝑃. In general, for 𝑚 ∗ 𝑛 array
multiplier, we need𝑚∗𝑛AND gates, 𝑛 half adders, and (𝑚−
2) ∗ 𝑛 full adders.

Radix 4 Booth Multiplier. It has the advantage of lesser area
and fastermultiplication comparedwith arraymultiplication.
Radix 4 Booths Algorithm can scan strings of three bits and
is converted depending on modified Booth encoder table.
The design of Booths multiplier in this project consists of
four Modified Booth Encoders (MBE), four sign extension
correctors, four partial product generators (comprises of 5 : 1
multiplexer), and finally a Ripple carry Adder. This Booth
multiplier technique is to increase speed by reducing the
number of partial products by half. Since a 32-bit booth
multiplier is used in this project, there are only sixteen partial
products that need to be added instead of 32 partial products
generated using conventional multiplier.

VedicMultiplier. It is used for faster multiplication operations
in higher order bits. It has less combinational path delay
[21] compared with others when the bit size is higher.
However, it consumes more area than Booth multiplier and
array multiplier. The multiplier is based on an algorithm
Urdhva Tiryakbhyam (vertical & crosswise) Sutra which is
a general multiplication formula applicable to all cases of
multiplication. It means vertically and crosswise. It is based
on a novel concept throughwhich the generation of all partial
products can be done with the concurrent addition of these
partial products. The speed advantage is compromised with
increased power dissipation and area. Due to its regular
structure, layout of this can be easily generated.

The different multipliers are designed for different bit
sizes and results are compared. This is as shown in Table 1.

3.5. Adders. In this paper, qualitative evaluations of the
classified binary adder architectures are performed since
adder is another basic component of FIR filter. Here, Ripple-
carry adder, BruntKung adder, and Ling adder are considered
to emphasize the performance properties. Adders affect the
critical path delay and area.

Ripple Adder. It is the basic adder type. This is composed
of cascaded full adders for 𝑛-bit adder. It is constructed by
cascading full adder blocks in series. The carry-out of one
stage is fed directly to the carry-in of the next stage. For an
𝑛-bit parallel adder, it requires n full adders.

Parallel-Prefix Adders. Parallel prefix adders [22] offer a
highly efficient solution to the binary addition problem.
Among all the parallel prefix adders, Brunt Kung adder has
a good balance between area, power, and performance. It
is found that Ling adder using Kogge-Stone parallel prefix
adder is also having the advantage of faster addition operation
[22], but it consumes more power than Brunt Kung Adder.
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Table 1: Comparison of multipliers for delay, power, and area.

Type of multiplier Delay in ns Power in mW Number of LUTs
32 bit 16 bit 8 bit 32 bit 16 bit 8 bit 32 bit 16 bit 8 bit

Array 76.1 39.9 21 21 11 7 1519 375 91
Booth 86.1 27.99 14.9 25 15 12 1277 317 77
Vedic 70.7 39.02 24.4 28 18 12 2378 565 126

The basic equations used in parallel prefix adders are given
below. The equations of bit generate and propagate are

𝐺
0:0
= 𝐺
0
= 𝑐in

𝑃
0:0
= 𝑃
0
= 0

𝐺
𝑖:𝑗
= 𝐺
𝑖:𝑘
+ 𝑝
𝑖:𝑘
∗ 𝑔
(𝑘−1):𝑗

𝑃
𝑖:𝑗
= 𝑃
𝑖:𝑘
∗ 𝑝
(𝑘−1):𝑗

.

(16)

The sum generation is given by

𝑆
𝑖
= 𝑃
𝑖
XOR𝐺

(𝑖−1):0
. (17)

Different Adders are designed for different bit sizes and their
VLSI design metrics are compared as shown in Table 2. The
delay generated is based on the combinational path delay after
synthesis. It is measured in 𝑛𝑠.

In the GUI, an option is crested for particular adder
and multiplier combination also depending on whether the
performance parameter is speed, power, or area and also
based on the bit size. For example, if the design constraint
that user chooses is power then Brent-Kung adder and array
multiplier pair are considered as the best combination to
implement the filter in the design optimizationGUI. User can
also choose any one of his choice among area, power, or speed
constraint for digital filter HDL generation. Along with this,
an option is created formultiplierless filter design description
as well based on MCM approach. It is seen that the retimed
MCMcircuits outperform the existingMCMmethods [23] in
terms of speed.Using this tool, user can design retimeddigital
filter which has combination elements of his choice which are
specific to particular design constraint and generate the RTL
for the same.TheobtainedRTL can be synthesizedwith any of
the commercially available synthesis tools.TheGUI designed
is shown in Figure 12. A 𝐻cub based algorithm is considered
for implementingMCM blocks in multiplierless digital filters
for specific user defined option in DiFiDOT. Since all the
multipliers can be realised as a block in transposed IIR and
FIR filters, they are well suited for MCM implementation.
After retiming, the multiplier blocks in digital filter can
be replaced by a block constructed by adderssubtractors,
negation operations, and shifters in multiplierless design
approach. The generated MCM block will have tree depth in
terms of different components and this depth in our work
is assumed to be infinity. The tool DiFiDOT automatically
generates the HDL of retimed digital filter which is under
consideration which can be directly synthesizable. With this
tool and automation, even if reiteration of the design cycle
happens due to specification change, time taken to reiterate
is very little.

Figure 12: GUI for dDesign optimization environment created to
generate synthesizable retimed digital filterHDLoptimized forVLSI
design metrics.

4. Experimental Results

This section is divided in to three parts: the first part presents
the results of retiming with FPGA based path solvers, second
part presents comparison of various retiming techniques,
and third part presents the timing results of retimed filter
structures with MCM blocks.

4.1. Results on Path Solvers for Retiming. The main idea of
implementing path solver algorithms on FPGA is to speed up
the results for retiming purposes.The inputs are passed to the
FPGA based path solver block by a processor where retiming
algorithm is implemented. The computations are performed
in FPGA based block and shortest path along with critical
path is computed and communicated back to the processor
where retiming will be performed. For comparison, a set of
designs is used to test the path solver algorithms.The designs
are a diverse set of DSP functions of varying complexity
which includes recursive and nonrecursive filter structures.
The considered target device for path solver implementation
is Spartan6 family based XC6SSLX16. The simulation and
synthesis of path solvers are performed using Xilinx ISE tool
suit and the synthesis and the timing results after synthesis
are shown in Table 1. The FPGA based path solver computes
critical path and shortest path and communicates the results
to the processor where retiming is performed. This reduces
the burden on main processor (Table 3).
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Table 2: Comparison of adders for delay, power, and area.

Type of Delay in ns Power in mW Number of LUTs
adder 32 bit 16 bit 8 bit 32 bit 16 bit 8 bit 32 bit 16 bit 8 bit
Ling 8.854 15.24 20.21 6 9 18 23 53 107
BrentKung 10.4 18.39 25.83 4 6 9 15 30 63
Ripple 12.12 20.63 37.6 2 7 14 9 18 36

Table 3: Device utilization and timing summary of path solvers.

Path solver name Device utilization summery Timing summery Max. frequency (Hz)
Logic utilization Used Min period in ns Setup time in ns Hold time in ns

Critical path solver
Number of slices 5804

9.068 ns 15.72 ns 6.141 ns 110.277Number of LUTs 10462
Number of slice Flipops 3664

Shortest path solver
Number of slices 4147

14.089 ns 10.477 ns 4.114 ns 70.978Number of LUTs 7511
Number of slice Flipops 1496

Here, various IIR and FIR filters have been considered to
analyze the FPGA based path solvers and execution time of
FPGAdesign is comparedwith the general purpose processor
(GPP) based design. Also, GPP denotes the required CPU
time in milliseconds of the path solver to find the minimum
solution on a PC with Intel Pentium 5 machine at 2GHz
and 4 GB of memory. FPGA based design solves for critical
path and shortest path in very less time when compared to
the general purpose processor based path solvers. The time
taken by the FPGA path solvers is compared in Table 4 to the
time taken by the algorithms run using general purpose pro-
cessor with Matlab environment. The time overhead needed
for general purpose processor where retiming algorithm is
implemented in MATLAB to communicate with the FPGA
based path solvers is around 210 ns for each computation.
Including this, the time gain achieved is quite substantial
when compared to designs without FPGA based path solvers.
These time gains are good and can really help speed up the
results, which is crucial for retiming.

4.2. Comparison of Clock Period Minimization and Register
Minimization Retiming Technique. Different filter structures
are designed and they are compared with respect to the
clock period and register count before and after retiming.
It is observed that after retiming, the clock period gets
reduced. The register count gets altered depending on the
filters iteration bound. Here, three models are considered.
𝑀𝑜𝑑𝑒𝑙1 is the filter without retiming and with adder, sub-
tractor, multiplier, and delay elements. 𝑀𝑜𝑑𝑒𝑙2 is retimed
filter based on clock period minimization algorithm.𝑀𝑜𝑑𝑒𝑙3
is retimed filter based on register minimization algorithm.
After retiming, the results are compared with the original
circuit [24]. The comparison results are shown in Figure 13.
After retiming, the finite state machine is extracted from the
retimed circuit and it is compared with original circuit for its
functionality. It is observed that clock period minimization
retiming algorithm is efficient in terms of reduction critical
path, thereby increase in the clock frequency. However, this
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Figure 13: Clock period and register count before and after retiming
for various digital filter blocks.

might increase the register count. In register minimization
retiming [18], the number of registers after retiming will be
reduced while compromising the clock period.

4.3. Area, Power, and Timing Results for Digital Filter before
and after Retiming for Different Adder and Multiplier Com-
binations. The FIR and IIR filters are designed with respect
to different adders and multipliers combinations. As an
application example, IIR and FIR filters [25] of order 10
are considered. Table 5 shows the results of FIR/IIR filters
before and after retiming for particular adder and multiplier
combinations. User can choose any adder and multiplier for
the filter circuit depending on the design requirement. In
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Table 4: Computation time comparison.

Filter order
Critical path solver algorithm Shortest path solver algorithm

IIR filter FIR filter IIR filter FIR filter
FPGA based GPP based FPGA based GPP based FPGA based GPP based FPGA based GPP based

(ns) (ms) (ns) (ms) (ns) (ms) (ns) (ms)
2 4.60 13.8 9.06 12.83 2.78 3.05 3.05 12.80
4 15.71 15.78 16.31 14.46 3.68 13.91 13.91 13.19
6 29.98 19.18 19.23 15.47 3.98 15.42 15.42 17.31
8 31.62 21.90 29.71 16.42 4.52 25.23 25.23 32.94
10 39.81 26.27 36.53 18.61 5.36 42.93 42.93 45.34
12 46.72 31.42 43.28 23.52 6.71 55.34 55.34 51.61

Table 5: Comparison results of different adder/multiplier combinations for digital filters.

Filter block Adder/multiplier combinations Before retiming After retiming
Number
of LUTs

Max. operating
freq in MHz

Power in
mw

Number
of LUTs

Max. operating
freq in MHz

Power in
mw

IIR-10
Brentkung Adder/Array Multiplier 2222 62.526 99 2411 76.977 89

Ling Adder/Vedic Multiplier 2214 69.702 112 2193 95.381 94
Ripple carry Adder/Booth

Multiplier 2146 50.861 114 1809 65.248 95

FIR-10
Brentkung Adder/Array Multiplier 1736 62.526 94 1811 99.43 85

Ling Adder/Vedic Multiplier 2162 72.493 111 2271 100.72 95
Ripple carry Adder/Booth

Multiplier 1637 52.302 105 1615 71.345 87

the GUI, particular adder andmultiplier combination is con-
sidered depending on whether the performance parameter is
delay, power, or area and also based on the bit size. If user
does not want to use these in built combinations, user can
choose any one of his choice among the available for FIR/IIR
digital filter HDL generation with specific combinational
components.

4.4. Results for Optimization of Latency, Multiplier Compo-
nents, and Power in Multiplierless Multiple Constant Multipli-
cation Based Filter Designs Using Retiming Algorithm. Table 6
presents the results of the filters designed usingmultiplierless
MCM approach and optimization using retiming algorithm.
Here, 3 models are used.

(i) 𝑀𝑜𝑑𝑒𝑙 1: Filter with adder, multiplier, and delay
elements.

(ii) 𝑀𝑜𝑑𝑒𝑙 2: Filter based on multiplierless multiple con-
stant multiplication approach.

(iii) 𝑀𝑜𝑑𝑒𝑙 3: Retimed multiplierless multiple constant
multiplication based filter.

All the three models are compared for the performance
parameters such as area, power, and delay. Here, it is
ensured that functionality of the circuits after and before
retiming is retained. The frequency improvement seen for
different filters by considering the above models is given in
Figure 14. It is seen that frequency parameter is improved
when retiming technique is applied for multiplierless MCM
based digital filters.
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5. Application Example

The electrocardiogram (ECG) is the most commonly used
diagnostic method for heart diseases. Good quality ECG is
utilized by physicians for interpretation and identification of
physiological and pathological phenomena. ECG recordings
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Table 6: Comparison of area, delay, and power for different models of various digital filters.

Filter block Adder multipliers Flipflops DelayMax Freq in MHz Power in Watts
Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

FIR-2 5/2/3 5/0/3 5/0/4 51.54 192.14 340.62 0.056 0.063 0.065
FIR-4 10/3/5 11/0/5 11/0/8 59.41 108.41 222.04 0.047 0.057 0.060
FIR-6 7/2/7 17/0/7 17/0/14 62.91 67.64 259.47 0.051 0.062 0.064
FIR-8 15/5/9 22/0/9 22/0/16 54.82 65.92 117.91 0.054 0.058 0.065
FIR-10 18/6/11 25/0/11 25/0/11 48.22 56.37 100.72 0.058 0.061 0.063
FIR-12 20/7/13 29/0/13 29/0/13 46.34 54.86 193.40 0.060 0.063 0.067
IIR-2 9/4/3 11/0/3 11/0/3 55.03 75.53 89.10 0.047 0.050 0.050
IIR-4 16/7/5 20/0/5 19/0/6 22.78 113.88 151.65 0.059 0.062 0.063
IIR-6 24/11/7 35/0/7 35/0/8 38.71 42.54 53.142 0.051 0.059 0.058
IIR-8 30/11/10 33/0/10 33/0/7 29.46 70.14 110.21 0.044 0.064 0.081
IIR-10 37/16/13 54/0/13 54/0/14 36.43 48.85 95.381 0.051 0.067 0.085
IIR-12 42/20/17 63/0/17 63/0/19 39.73 50.74 101.52 0.063 0.071 0.088
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Figure 15: Structure of ECG block for power noise removal; (a) block diagram; (b) filter block expanded.

are often corrupted by high-frequency noises, such as power-
line interference, electromyography (EMG) noise, and instru-
mentation noise. An ECG is usually affected by the 50/60Hz
noise in the power supply lines. This noise can be eliminated
by using a digital filter. The model is constructed in matlab
and tested for ECG signals for removing the noise. The
constructed model uses retimed multiplierless MCM filter
which is implemented on FPGA and tested for ECG signal
which is corrupted by power-line noise. The filter efficiently
filters out the noise and outputs the clean ECG signal. The
ECG noise removal block using the optimized filter structure
is shown in Figure 15.

6. Conclusions

In this paper, we introduced the retiming approach for
designing multiplierless MCM based digital filters with
speed and area as the constraint. The implementation cost
at the gate level is reduced by using addition, subtrac-
tion, and shift operations instead of multiplication and by
using register sharing and register minimization retiming
algorithm approach. Since there are still instances with
which multiplierless designs can not cope, we also proposed

the combination of adder and multiplier blocks which can
be used in retimed filter design which is applicable for
specific VLSI design constraint such as power, area, and
timing. This yields the optimal clock speed and gate-level
area in design and implementation of digital filters. This
paper also introduced the design architectures for the digital
filter and a CAD tool for the realization of retimed digital
filters which can be either multiplierless MCM based or
with adder/subtractor, multiplier, and delay elements. This
tool directly gives the synthesizable filter RTL which reduces
lot of designers’ time and effort in the design cycle. The
experimental results indicate that the retiming algorithm
efficiency can be further increased by using FPGA based
path solver algorithms proposed in this paper. It was shown
that the realization of path solver architectures for solving
critical path and shortest path in retiming computation and
communicating the results to the processor where retiming
algorithm is implemented yields significant increase in com-
putation time gain when compared to the filter designs for
which path solver algorithms are implemented as a part of
retiming algorithm in the processor. It is observed that a
designer can find the synthesizable digital filter RTL that fits
best in an application.
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