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This paper investigates the reduced order projective and hybrid projective combination-combination synchronization of four
chaotic Josephson junctions consisting of two third order Josephson junctions as the drives and two second order chaotic Josephson
junctions as the response systems via active backstepping technique. The investigation confirms the achievement of reduced order
projective and hybrid projective combination-combination synchronization among four chaotic Josephson junctions via active
backstepping technique. Numerical simulations are validated to show the effectiveness of the synchronization scheme. Reduced
order combination-combination synchronization scheme has more significant applications to neural encoding and decoding of
information in biological systems and to the security of information transmission in communication systems than the usual one
drive system and one response system synchronization scheme.

1. Introduction

One of the most significant phenomenon in nonlinear
science is that of synchronization of dynamical systems.
Synchronization classically represents the entrainment of
frequencies of oscillations due to weak interactions between
two ormore dynamical systems. Many synchronization types
and schemes have been discovered and reported, such as
complete synchronization [1], phase synchronization [2],
generalized synchronization [3], lag synchronization [4],
antisynchronization [5], hybrid synchronization [6], projec-
tive synchronization [7], projective hybrid synchronization
[8], function projective synchronization [9], increased order
synchronization [10], and reduced order synchronization [11].
The discovery of various types of synchronization is due to
the prospective applications of synchronization in especially
chemical reactions, power converter, biological systems,

information processing, and secure communications. In
search of effective and efficient methods of synchronization
of chaotic systems, various linear and nonlinear control
techniques have been developed which include slide mode
control [12], adaptive control [13], active control [14, 15],
impulsive control [16], linear feedback control [17], and
backstepping control [18–21]. Meanwhile, the active control
and backstepping techniques have been reported as efficient
and excellent nonlinear control method for synchronization
of either identical or nonidentical chaotic systems [21, 22].
Based on the above discussion, a more powerful method
which is the combination of active control and backstepping
techniques known as active backstepping technique is chosen
as our preferred method of synchronization.

Projective synchronization behaviour was first reported
by Mainieri and Rehacek [23], where they explained the
mechanism of the realization of projective synchronization
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in three-dimensional partially linear systems. Projective syn-
chronization refers to the dynamical behaviour in which
the responses of two or more systems synchronize up to
a constant scaling factor 𝛼 ∈ R [24], where complete
synchronization and antisynchronization can be regarded as
the special cases of projective synchronization with 𝛼 =

1 and 𝛽 = −1, respectively. Projective synchronization
has been extensively studied because faster communication
can be realized with its proportional feature [6]. Hybrid
synchronization scheme is a synchronization scheme where
one part of the system is antisynchronized and the other part
is completely synchronized such that complete synchroniza-
tion and antisynchronization coexist in the system [6]. The
coexistence of complete synchronization and antisynchro-
nization enhances security in communication and chaotic
encryption schemes. Hybrid projective synchronization is
a synchronization scheme where one part of the system
synchronizes up to a constant positive scaling factor 𝛼 ̸= 1,
while the other part of the system synchronizes up to a
constant negative scaling factor 𝛽 ̸= − 1, so projective hybrid
synchronization is a combination of hybrid and projective
synchronization.

Synchronization of chaos in nonlinear dynamical sys-
tems with different dynamical structures and orders, called
reduced order or increased order synchronization, has not
been adequately explored despite its occurrence in bio-
logical science and social sciences [25–27]. For instance,
synchronous activity is inevitable in the thalamic and hip-
pocampal neurons network though the network consists
of neurons of different dynamical structures and orders
[26]. Furthermore, synchronization between the circulatory
system and respiratory systemmay involve dynamical organs
with different structures and orders [11]. In fact, synchroniza-
tion of systems of different dynamical structures and orders
can also be observed between the heart and the lung [28].The
main characteristic of reduced order synchronization is that
the order of the master is higher than that of the slave and
all the state variables of the slave system are synchronized
with those of the master. The synchronization of dynamical
systems with different structures and orders or reduced order
synchronization is very challenging and very important from
the perspective of real life applications.

Most of the studies on synchronization of chaotic sys-
tems have been restricted to one drive system and one
response system which has limited flexibility and appli-
cability to real world systems such as insecure commu-
nication. However, recently, few scientific researches were
published on synchronization of chaotic systems of the
same order consisting of three chaotic systems and four
chaotic systems which are called combination synchroniza-
tion and combination-combination synchronization, respec-
tively [29–31]. The previous research works on combina-
tion synchronization and combination-combination syn-
chronization mainly focus their numerical simulation results
on complete synchronization and not on projective syn-
chronization or hybrid projective synchronization [29–31].
Combination synchronization of chaotic systems of different
orders has been considered [32], while a more challenging
case of combination-combination synchronization of systems

of different orders is not yet investigated. Also, Josephson
junction has not been used as a model for investigating
combination or combination-combination synchronization
despite its great physical importance. The reduced order
combination-combination proposed in this paper is more
generalized such that reduced order combination synchro-
nization is just a specific case of this proposed scheme.
This paper also provides numerical results of evidence of
projective and hybrid projective synchronization which has
not been considered in previous papers on combination-
combination synchronization.

The projective and hybrid projective combination-
combination synchronization scheme presented in this
paper has more flexibility and applicability to real life
system; for example, in secure communication scheme
information signal can be divided into several parts; then
each part is loaded in each of the different drive systems
and after synchronization the original information signal is
retrieved by combining the received signals from different
response systems correctly [31]. The case for the projective
combination-combination synchronization can be used
to achieve fast communication due to the proportionality
between the synchronized dynamical states, while the case for
projective hybrid synchronization can offer the opportunity
of transforming digital signals through the continuous trans-
formation between synchronization and antisynchronization
which will further enhance security in communication and
chaotic encryption schemes [33]. Moreover, combination-
combination synchronization of different orders gives
better insight into the synchronization of biological systems
wherein synchronization of different organs of different
dynamical structures and orders is involved. Reduced order
combination-combination synchronization gives a better
understanding of synchronization phenomenon in complex
biological systems since synchronization in real life system
is complex. The aim of this work is to present projective and
hybrid projective reduced order combination-combination
synchronization of four chaotic Josephson junctions. This
problem of projective and hybrid projective reduced order
combination-combination synchronization is reported here
for the first time to the best of our knowledge.

The rest of this paper is organized as follows. Section 2
gives the description of the systems. Section 3 presents
reduced order combination-combination synchronization
scheme of four chaotic systems. Section 4 deals with gen-
eralized reduced order combination-combination synchro-
nization between two third order Josephson junctions as the
drive systems and two second order Josephson junction as
the response systems via active backstepping technique with
projective and hybrid projective combination-combination
synchronization as a special cases, while Section 5 concludes
the paper.

2. Description of Josephson Junctions

2.1. Resistive-Capacitive-Inductive Shunted Josephson Junc-
tion (RCISJJ). The resistive-capacitive-inductive shunted
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Josephson junction in dimensionless form is described by the
set of first order differential equations below:

�̇� = 𝑦,

̇𝑦 =

1

𝛽
𝐶

(𝑖 − 𝑔 (𝑦) 𝑦 − sin𝑥 − 𝑧) ,

�̇� =

1

𝛽
𝐿

(𝑦 − 𝑧) ,

(1)

where 𝑔(𝑦) is the nonlinear damping function approximated
by current-voltage relation between the junctions and is
defined by

𝑔 (𝑦) = {

0.366 if 

𝑦




> 2.9

0.061 if 

𝑦




≤ 2.9.

(2)

𝑥, 𝑦, and 𝑧 represent the phase difference, the voltage in the
junction, and the inductive current, respectively. 𝛽

𝐶
and 𝛽

𝐿

are capacitive and inductive constant, respectively. 𝑖 is the
external direct current. Figure 1 shows the chaotic attractor
of the RCI shunted Josephson junction for the following set
of parameters: 𝑖 = 1 < 𝑖 < 1.3, 𝛽𝐶 = 2.6, and 𝛽𝐿 =
0.707, with the initial conditions (𝑥, 𝑦, 𝑧) = (0, 0, 0). The RCI
shunted Josephson has been found to be more appropriate
in high frequency applications. In RCI Josephson junction
chaotic oscillation has been modulated in response to both
the amplitude and frequency of an external sinusoidal signal.

2.2. Resistive-Capacitive Shunted Josephson Junction (RCSJJ).
The resistive-capacitive Josephson junction under the exter-
nal periodic force is given by the second order differential
equation below:

̈
𝜙 = −𝛼

̇
𝜙 − sin𝜙 + 𝑎 + 𝑏 sin𝜔𝑡, (3)

where 𝜙 is the phase difference between quantummechanical
wave functions of two superconductor junctions separated by
some nonsuperconducting material or barrier. 𝛼 and 𝑎 are
the dimensionless damping and applied current. 𝑏 sin𝜔𝑡 is
the external periodic sinusoidal force. 𝑏 and 𝜔, respectively,
are the amplitude and frequency of the external periodic
sinusoidal force. The second order differential equation in
(3) can be transformed into a set of first order differential
equations as follows:

�̇� = 𝑦,

̇𝑦 = −𝛼𝑦 − sin𝑥 + 𝑎 + 𝑏 sin𝜔𝑡.
(4)

Figure 2 shows the chaotic attractor for resistive-capacitive
shunted Josephson junction using the following parameter
values: 𝛼 = 0.5, 𝑎 = 0.89, 𝑏 = 0.4, and 𝜔 = 0.25.

3. Reduced Order Combination-Combination
Synchronization Scheme

In this drive response scheme, combination synchronization
of four chaotic systems will be considered. Suppose we have
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Figure 1: Phase portrait of chaotic attractors of resistive-capacitive-
inductive Josephson junction.
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Figure 2: Phase portrait of chaotic attractors of resistive-capacitive
shunted Josephson junction.

two drive systems and two response systems. The first drive
system is given as

�̇� = 𝐴𝑥 + 𝑓 (𝑥) , (5)

where 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇
∈ R𝑛, 𝐴 ∈ R𝑛 × R𝑛, 𝐴 is

a constant matrix, 𝑛 is the order of the system, and 𝑓(𝑥) is
nonlinear function of the system which is continuous and
differentiable. The second drive system is given as

̇𝑦 = 𝐵𝑦 + 𝑓 (𝑦) , (6)

where 𝑦 = (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑚
)
𝑇
∈ R𝑚, 𝐵 ∈ R𝑚 × R𝑚, 𝐵 is a

constant matrix, 𝑚 is the order of the system, and 𝑓(𝑦) is
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nonlinear function of the system which is continuous and
differentiable. The first response system is given as

�̇� = 𝐶𝑧 + 𝑓 (𝑧) + 𝑢 (𝑥, 𝑦, 𝑧, 𝑤) , (7)

where 𝑧 = (𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑞
)
𝑇
∈ R𝑞, 𝐶 ∈ R𝑞 ×R𝑞 is a constant

matrix, 𝑞 is the order of the matrix, and 𝑓(𝑧) is nonlinear
function of the systemwhich is continuous and differentiable.
The second response system is given as

�̇� = 𝐷𝑤 + 𝑓 (𝑤) + V (𝑥, 𝑦, 𝑧, 𝑤) , (8)

where 𝑤 = (𝑤1, 𝑤2, . . . , 𝑤𝑝)
𝑇

∈ R𝑝, 𝐷 ∈ R𝑝 ×

R𝑝 is a constant system matrix, 𝑝 is the order of the
matrix 𝐷, 𝑓(𝑤) is nonlinear function of the system
which is continuous and differentiable, and V(𝑥, 𝑦, 𝑧, 𝑤) =
(V1(𝑥, 𝑦, 𝑧, 𝑤), V2(𝑥, 𝑦, 𝑧, 𝑤), . . . , 𝑤𝑝(𝑥, 𝑦, 𝑧, 𝑤))

𝑇
∈ R𝑝 are

the controllers to be designed.

Definition 1. The drive systems (5) and (4) and the response
systems (7) and (8) are said to achieve generalized reduced
order combination-combination synchronization if there
exist four constant matrices𝑀1 ∈ R𝑛,𝑀2 ∈ R𝑚,𝑀3 ∈ R𝑞,
and𝑀4 ∈ R

𝑝 (𝑚, 𝑛 > 𝑞, 𝑝) such that lim𝑡→∞‖(𝑀4𝑤+𝑀3𝑧)−
(𝑀1

𝑥 +𝑀
2
𝑦)‖ = 0, where ‖ ⋅ ‖ represents the matrix norm.

Remark 2. The constant matrices 𝑀
1, 𝑀2, 𝑀3, and 𝑀4 are

called scaling matrices.

Remark 3. The generalized reduced order combination syn-
chronization scheme above can lead to reduced order mod-
ified projective synchronization, reduced order projective
synchronization, reduced order antisynchronization, and
asymptotic stability depending on the values assigned to the
scaling matrices𝑀

1
,𝑀
2
,𝑀
3
, and𝑀

4
.

4. Reduced Order Combination-Combination
Synchronization of Two Third Order and
Two Second Order Josephson Junctions

4.1. Design of Controller via Active Backstepping Technique.
In this section, two third order Josephson junctions in
(9) and (10) are taken as the drive systems while the two
second order nonautonomous Josephson junctions in (11)
and (12) are taken as the response systems in order to
achieve generalized reduced order combination-combination
synchronization among the four chaotic Josephson junctions
as follows:

�̇�
1
= 𝑥
2
,

�̇�
2
=

1

𝛽𝐶

(𝑖 − 𝑔 (𝑥
2
) 𝑥
2
− sin𝑥

1
− 𝑥
3
) ,

�̇�
3
=

1

𝛽
𝐿

(𝑥
2
− 𝑥
3
) .

(9)

The second drive system is

̇𝑦
1
= 𝑦
2
,

̇𝑦
2
=

1

𝛽
𝐶

(𝑖 − 𝑔 (𝑦
2
) 𝑦
2
− sin𝑦

1
− 𝑦
3
) ,

̇𝑦
3
=

1

𝛽𝐿

(𝑦
2
− 𝑦
3
) .

(10)

The first response system is given as

�̇�
1 = 𝑧2 + 𝑢1,

�̇�
2
= −𝛼𝑧

2
− sin 𝑧

1
+ 𝑎 + 𝑏 sin𝜔𝑡 + 𝑢

2
.

(11)

The second response system is given as

�̇�
1
= 𝑤
2
+ 𝑢
3
,

�̇�2
= −𝛼𝑤

2
− sin𝑤

1
+ 𝑎 + 𝑏 sin𝜔𝑡 + 𝑢

4
,

(12)

where 𝑢
1
, 𝑢
2
, 𝑢
3
, and 𝑢

4
are the controllers to be designed.We

define the error systems as follows:

𝑒
1
= 𝛿
1
𝑤
1
+ 𝛾
1
𝑧
1
− (𝛼
1
𝑥
1
+ 𝛽
1
𝑦
1
+ 𝛼
3
𝑥
3
+ 𝛽
3
𝑦
3
) ,

𝑒2
= 𝛿
2
𝑤
2
+ 𝛾
2
𝑧
2
− (𝛼
2
𝑥
2
+ 𝛽
2
𝑦
2
) .

(13)

Using the error systems (13) and the systems defined in (9)–
(12) yields the following error dynamics:

̇𝑒
1
= 𝛿
1
𝑤
2
+ 𝛾
1
𝑧
2
− 𝛼
1
𝑥
2
− 𝛽
1
𝑦
2
−

𝛼
3

𝛽𝐿

(𝑥
2
− 𝑥
3
)

−

𝛽
3

𝛽𝐿

(𝑦
2
− 𝑦
3
) + 𝛿
1
𝑢
3
+ 𝛾
1
𝑢
1

=

𝛿
1

𝛿2

(𝑒
2
+ 𝛼
2
𝑥
2
+ 𝛽
2
𝑦
2
− 𝛾
2
𝑧
2
) − 𝛼
1
𝑥
2

− 𝛽
1
𝑦
2
−

𝛼
3

𝛽𝐿

(𝑥
2
− 𝑥
3
) −

𝛽
3

𝛽𝐿

(𝑦
2
− 𝑦
3
)

+ 𝛾1𝑧2 + 𝛿1𝑢3 + 𝛾1𝑢1,

̇𝑒2 = 𝛿2 (−𝛼𝑤2 − sin𝑤1 + 𝑎 + 𝑏 sin𝜔𝑡 + 𝑢4)

+ 𝛾
2
(−𝛼𝑧
2
− sin 𝑧

1
+ 𝑎 + 𝑏 sin𝜔𝑡 + 𝑢

2
)

−

𝛼
2

𝛽
𝐶

(𝑖 − 𝑔 (𝑥2) 𝑥2 − sin𝑥1 − 𝑥3)

−

𝛽
2

𝛽
𝐶

(𝑖 − 𝑔 (𝑦2) 𝑦2 − sin𝑦1 − 𝑦3)

= −𝛼 (𝑒2 − 𝛾2𝑧2 + 𝛼2𝑥2 + 𝛽2𝑦2)

+ 𝛿
2
(− sin𝑤

1
+ 𝑎 + 𝑏 sin𝜔𝑡)

+ 𝛾
2
(𝛼𝑧
2
− sin 𝑧

1
+ 𝑎 + 𝑏 sin𝜔𝑡)
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−

𝛼
2

𝛽
𝐶

(𝑖 − 𝑔 (𝑥
2
) 𝑥
2
− sin𝑥

1
− 𝑥
3
)

−

𝛽
2

𝛽
𝐶

(𝑖 − 𝑔 (𝑦
2
) 𝑦
2
− sin𝑦

1
− 𝑦
3
)

+ 𝛿
2
𝑢
4
+ 𝛾
2
𝑢
2
.

(14)

Thus, the error dynamics of the system can be written as

̇𝑒1 =

𝛿
1

𝛿
2

𝑒2 + 𝐴1 + 𝑈1,

̇𝑒
2
= −𝛼𝑒

2
+ 𝐴
2
+ 𝑈
2
,

(15)

where

𝐴
1 =

𝛿
1

𝛿
2

(𝛼2𝑥2 + 𝛽2𝑦2 − 𝛾2𝑧2) − 𝛼1𝑥2 − 𝛽1𝑦2

+𝛾1𝑧2 −

𝛼3

𝛽
𝐿

(𝑥2 − 𝑥3) −

𝛽
3

𝛽
𝐿

(𝑦2 − 𝑦3) ,

𝐴2 = −𝛼 (𝛼2𝑥2 + 𝛽2𝑦2) + 𝛾2 (− sin 𝑧1 + 𝑎 + 𝑏 sin𝜔𝑡)

+𝛿
2 (− sin𝑤1 + 𝑎 + 𝑏 sin𝜔𝑡)

−

𝛼
2

𝛽𝐶

(𝑖 − 𝑔 (𝑥
2
) 𝑥
2
− sin𝑥

1
− 𝑥
3
)

−

𝛽
2

𝛽
𝐶

(𝑖 − 𝑔 (𝑦
2
) 𝑦
2
− sin𝑦

1
− 𝑦
3
) ,

𝑈
1
= 𝛾
1
𝑢
1
+ 𝛿
1
𝑢
3
,

𝑈2 = 𝛾2𝑢2 + 𝛿2𝑢4.

(16)

Then, we obtain the following results.

Theorem 4. If the controllers are chosen as

𝑈
1 =

𝛼3

𝛽
𝐿

(𝑥2 − 𝑥3) +

𝛽
3

𝛽
𝐿

(𝑦2 − 𝑦3) − 𝛾1𝑧2 − 𝑘𝑞1

−

𝛿
1

𝛿
2

(𝛼2𝑥2 + 𝛽2𝑦2 + 𝛾2𝑧2) + 𝛼1𝑥2 + 𝛽1𝑦2,

𝑈
2 = 𝛼 (𝛼2𝑥2 + 𝛽2𝑦2) − 𝛾2 (− sin 𝑧1 + 𝑎 + 𝑏 sin𝜔𝑡)

− 𝛿
2
(− sin𝑤

1
+ 𝑎 + 𝑏 sin𝜔𝑡) − 𝑘𝑞

2

+

𝛼2

𝛽
𝐶

(𝑖 − 𝑔 (𝑥
2
) 𝑥
2
− sin𝑥

1
− 𝑥
3
)

+

𝛽
2

𝛽
𝐶

(𝑖 − 𝑔 (𝑦
2
) 𝑦
2
− sin𝑦

1
− 𝑦
3
) + 𝛼𝑞

2
−

𝛿1

𝛿
2

𝑞
1
,

(17)

where 𝑞
1
= 𝑒
1
and 𝑞

2
= 𝑒
2
, then, the drive systems (9)

and (10) will achieve reduced order combination-combination
synchronization with the response systems (11) and (12).

Proof. Our goal is to find the control functions which
will enable the drive systems (9) and (10) to achieve
reduced combination-combination synchronization with the
response systems (11) and (12) via the active backstepping
technique. The design procedures include three steps as
shown below.

Step 1. Let 𝑞
1
= 𝑒
1
, its time derivative is

̇𝑞
1
= ̇𝑒
1
=

𝛿
1

𝛿2

𝑒
2
+ 𝑈
1
+ 𝐴
1
, (18)

where 𝑒
2
= 𝛼
1
(𝑞
1
) can be regarded as virtual controller.

In order to stabilize 𝑞
1
-subsystem, we choose the Lyapunov

function V
1
= (1/2)𝑞

2

1
. The time derivative of V

1
is

V̇
1
= 𝑞
1
̇𝑞
1
= 𝑞
1
(

𝛿
1

𝛿
2

𝛼
1
(𝑞
1
) + 𝐴
1
+ 𝑈
1
) . (19)

Suppose 𝛼
1
(𝑞
1
) = 0 and the control function 𝑈

1
is chosen as

𝑈
1
= − (𝐴

1
+ 𝑘𝑞
1
) ; (20)

then V̇1 = −𝑘𝑞
2

1
< 0, where 𝑘 is a positive constant which

represents the feedback gain.Then, V̇1 is negative definite and
the subsystem 𝑞1 is asymptotically stable. Since the virtual
controller 𝛼1(𝑞1) is estimative, the error between 𝑒2 and
𝛼1(𝑞1) can be denoted by 𝑞2 = 𝑒2 − 𝛼1(𝑞1). Thus, we have
the following (𝑞1, 𝑞2) subsystems:

̇𝑞
1
=

𝛿1

𝛿
2

𝑞
2
− 𝑘𝑞
1
,

̇𝑞
2
= −𝛼𝑞

2
+ 𝑈
2
+ 𝐴
2
.

(21)

Step 2. In order to stabilize subsystem (21), the following
Lyapunov function can be chosen as V

2
= V
1
+ (1/2)𝑞

2

2
. Its

time derivative is

V̇2 = −𝑘𝑞
2

1
+ 𝑞
2
(

𝛿
1

𝛿
2

𝑞
1
− 𝛼𝑞
2
+ 𝑈
2
+ 𝐴
2
) . (22)

If the control function 𝑈
2 is chosen as

𝑈
2
= −𝐴

2
− 𝑘𝑞
2
+ 𝛼𝑞
2
−

𝛿
1

𝛿2

𝑞
1
, (23)

then V̇
2
= −𝑘𝑞

2

1
−𝑘𝑞
2

2
< 0, where 𝑘 is a positive constant which

represents the feedback gain. Then, V̇
2
is negative definite

and the subsystems (𝑞
1
, 𝑞
2
) in (21) are asymptotically stable.

This implies that reduced order combination-combination
synchronization of the drive systems (9) and (10) with
the response systems (11) and (12) is achieved. Finally, the
subsystem (21) becomes

̇𝑞1 =

𝛿
1

𝛿
2

𝑞2 − 𝑘𝑞1,

̇𝑞2
= −

𝛿
1

𝛿
2

𝑞
1
− 𝑘𝑞
2
.

(24)

This completes the proof. Several corollaries can be deduced
from Theorem 4. However, we will consider only one corol-
lary related to our result.
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Figure 3: Error dynamics of the drive and the response systemswith
controllers deactivated for 0 ≤ 𝑡 ≤ 300, where 𝑒
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Suppose 𝛿
1
= 𝛿
2
= 𝛾
1
= 𝛾
2
= 1, 𝑢

1
= 𝑢
3
, and 𝑢

2
= 𝑢
4
in

(17); then, we have Corollary 5.

Corollary 5. If the controllers are chosen as

𝑢
1
= 𝑢
3
=

1

2

( (𝛼
1
− 𝛼
2
) 𝑥
2
+ (𝛽
1
− 𝛽
2
) 𝑦
2

+

𝛼
3

𝛽
𝐿

(𝑥
2
− 𝑥
3
) +

𝛽
3

𝛽
𝐿

(𝑦
2
− 𝑦
3
) − 𝑘𝑞

1
) ,

𝑢
2
= 𝑢
4
=

1

2

( (𝛼 − 𝑘) 𝑞2
− 𝑞
1
+ 𝛼 (𝛼

2
𝑥
2
+ 𝛽
2
𝑦
2
)

+ (sin 𝑧
1
− 𝑎 − 𝑏 sin𝜔𝑡)

+ (sin𝑤
1
− 𝑎 − 𝑏 sin𝜔𝑡)

+

𝛼
2

𝛽
𝐶

(𝑖 − 𝑔 (𝑥2) x2 − sin𝑥1 − 𝑥3)

+

𝛽
2

𝛽
𝐶

(𝑖 − 𝑔 (𝑦2) 𝑦2 − sin𝑦1 − 𝑦3)) ,

(25)

where 𝑞
1
= 𝑤
1
+ 𝑧
1
− (𝛼
1
𝑥
1
+ 𝛽
1
𝑦
1
+ 𝛼
3
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3
+ 𝛽
3
𝑦
3
) and

𝑞
2
= 𝑤
2
+𝑧
2
−(𝛼
2
𝑥
2
+𝛽
2
𝑦
2
), then, the drive systems (9) and (10)

achieve generalized reduced order combination-combination
synchronization with the response systems (11) and (12).

Two cases of Corollary 5 will be considered as follows.

Case 1. Suppose the scaling parameters are chosen as 𝛼
1
=
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2
= 0.4, 𝛼

3
= 0.2, 𝛽
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2
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3
= 0.3; then,
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Figure 4: Error dynamics of the drive and the response systemswith
controllers activated for 𝑡 ≥ 0, where 𝑒
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the drive systems (9) and (10) achieve reduced order gener-
alized projective combination-combination synchronization
with the response systems (11) and (12).

Case 2. Suppose the scaling factors are chosen as 𝛼
1
=

0.5,𝛼
2
= −0.4, 𝛼

3
= 0.2,𝛽

1
= 0.7,𝛽

2
= −1.2, and

𝛽
3
= 0.3; then, the drive systems (9) and (10) achieve

reduced order generalized hybrid projective combination-
combination synchronization with the response systems (11)
and (12).

4.2. Numerical Simulation Results. To verify the effectiveness
of the designed controllers, we used ode45 fourth order
Runge-Kutta algorithm run on MATLAB. In the numerical
simulation procedure, we use the system parameter values
as shown in Figures 1 and 2 to ensure chaotic dynamics
of the state variables. The initial conditions of the drive
systems and response systems are given, respectively, as
(𝑥1, 𝑥2, 𝑥3) = (0, 0, 0), (𝑦1, 𝑦2, 𝑦3) = (1, 1, 1), (𝑧1, 𝑧2) =
(2, 2), and (𝑤1, 𝑤2) = (2, 2). The numerical results will be
considered under two cases.

Case 3. The numerical results are as follows. Figure 3 shows
the error dynamics of the state variables when the controllers
are deactivated for 𝑡 ≥ 0; Figure 4 shows that reduced
order generalized projective combination-combination syn-
chronization is achieved between the two third order drive
JJs and the two second order response JJs as indicated by
the convergence of the error dynamic of state variables to
zero as soon as the controllers are switched on for 𝑡 ≥ 0;
and Figure 5 shows the projection of the state variables of
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Figure 5: Dynamics of the drive (dashed line) and the response (solid line) variables with controllers at 𝑡 ≥ 0.
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Figure 6: Dynamics of the drives (dashed line) and the response
(solid line) variables with controllers activated for 𝑡 ≥ 0.

the third order JJs (drive) on the second order JJs (response)
when the controllers are activated for 𝑡 ≥ 0 which again
confirms reduced order generalized projective combination-
combination synchronization among the systems.

Case 4. The numerical results are as follows. Figure 7 shows
the error dynamics of the state variables when the controllers
are deactivated for 𝑡 ≥ 0; Figure 8 shows that reduced order
generalized hybrid projective combination-combination syn-
chronization is achieved between the two third order drive
JJs and the two second order response JJs as indicated by the
convergence of the error dynamic of state variables to zero
as soon as the controllers are switched on for 𝑡 ≥ 0; and
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Figure 7: Error dynamics of the drive and the response systemswith
controllers deactivated for 0 ≤ 𝑡 ≥ 300, where 𝑒
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Figure 6 shows the projection of the state variables of the third
order JJs (drive) on the second order JJs (response) when
the controllers are activated for 𝑡 ≥ 0 which again confirms
reduced order generalized hybrid projective combination-
combination synchronization among the systems.

5. Conclusion

We employed the active backstepping technique to achieve
reduced-order generalized projective and hybrid projective
combination-combination synchronization of four chaotic
Josephson junctions consisting of two third order chaotic
Josephson junctions as drives and two second order chaotic
Josephson junctions as response systems. The theoretical
analysis revealed that with a suitable choice of controllers
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master-slave synchronization involving two systems and
three systems (combination synchronization) can be realized
as special cases of the combination-combination synchro-
nization scheme. The realization of a more secure com-
munication scheme has been implemented via combination
synchronization of three chaotic systems [31]. In general,
the generalized reduced-order combination synchronization
has potential applications in biological, social, physical, and
financial systems which involve different dynamical struc-
tures and orders; hence, this type of synchronization deserves
further investigation. This work confirms that the realization
of combination-combination synchronization is not only
limited to identical or nonidentical systems of the same
order but can be realized in systems of different dynamical
structures and orders.
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