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The author’s recent investigations on plate theories form the basis to review development of plate theories. In spite of several review
articles on plate theories reported in the literature, the present work is essentially due to Jemielita’s inspiring article (1993). It is
shown that methods of analysis based on vertical displacement as domain variable deal with solution of associated torsion problem
in bending of plates. It is essential to use vertical displacement as face variable instead of domain variable in proper analysis of
bending problems.

1. Introduction

The author’s recent investigations on plate theories form
the basis to review development of plate theories. In spite
of several review articles on plate theories reported in the
literature, the present work is essentially due to Jemielita’s
inspiring article [1] “On the winding paths of the theory of
plates.” Some noteworthy highlights of Jemielita’s article are
the progress in the formulation of theories of plates made in
1789–1988 has been carefully reviewed in a 217 page survey
[2] encompassing more than 3000 items, about 1500 of them
being discussed. An attempt was made to answer the general
question, “To study or to create.” Facts in the development of
plate theories have proved that one is supposed to study the
previous works before creating a new theory. A significant
observation in the referred treatise by Toudhunter and
completed after his death by Pearson (1886) is that “the
would-be researcher either wastes much time in learning
the history of his subject, or else works away regardless of
earlier investigations.” One could think that Pearson’s words
written on 23rd June 1886 became out of date in times of a
stormy progress of communication but, unfortunately, it is
not the case. For the past two hundred years a great number
of theories of plates have been developed. Some of them fell
flat, soon after their birth, others have still been applicable.
For this period, pioneering papers have appeared indicating
new directions of research, inspiring others to supplement
and generalize the theories presented there.The old concepts

are again recovered, the names of truly dedicated authors
are forgotten, and their hypotheses and theories are often
associated with other personalities, sometimes with scientists
of a great authority.

A beginning towards the development of a plate theory
by the present author was made years ago [3]. It was, in
fact, due to the author’s attention drawn (by his colleague,
K. P. Rao) to Reissner’s article [4]. At that time, his intention
was confined only to the derivation of Reissner’s expected
sixth order equation of the form 𝐷∇

2
∇
2
𝑤 − 𝐶∇

2
∇
2
∇
2
𝑤 =

𝑞. He considered it superfluous to dwell in detail about
other aspects mentioned in Reissner’s article due to several
investigators including scientists of great authority involved
in the development of plate theories.The present paper is due
to significant academicwork resumed after a gap ofmore than
12 years since retirement in the year 1995.

Scope of the Present Review. Review of plate theories in
this paper is explicitly limited to plates under bending
within small deformation theory of elasticity. Any new theory,
particularly, on bending of plates has to be with reference to
elimination of deficiencies in the classical Kirchhoff ’s theory
(well-known and widely used even today) as applied to the
simple bending problem of simply supported (hard type)
square plate. Analysis of plates with different geometries and
material properties under different kinematic and loading
conditions does not provide much scope for development of
new theories other than those with the analysis of primary

Hindawi Publishing Corporation
International Scholarly Research Notices
Volume 2014, Article ID 291478, 9 pages
http://dx.doi.org/10.1155/2014/291478



2 International Scholarly Research Notices

problems of a square plate. As mentioned by Ghugal and
Shimpi [5] in their review paper, the development of refined
structural theories for laminated plates (made up from
advanced fiber reinforced composite materials) has their
origins in the refined theories of isotropic plates.

2. Preliminaries of 3D Plate Problems of
Isotropic Square Plate

Consider a square plate bounded within 0 ≤ 𝑋, 𝑌 ≤ 𝑎, and
𝑍 = ±ℎ planes with reference to Cartesian coordinate system
(𝑋,𝑌, 𝑍). Material of the plate is homogeneous and isotropic
with elastic constants𝐸 (Young’smodulus), ] (Poisson’s ratio),
and 𝐺 (shear modulus) that are related to one other by 𝐸 =

2(1 + ])𝐺. For convenience, coordinates 𝑋, 𝑌, and 𝑍 and
displacements (𝑈,𝑉,𝑊) in nondimensional form 𝑥 = 𝑋/𝑎,
𝑦 = 𝑌/𝑎, 𝑧 = 𝑍/ℎ, (𝑢, V, 𝑤) = (𝑈, 𝑉,𝑊)/ℎ, and half-thickness
ratio 𝛼 = (ℎ/𝑎) are used. With the above notation and
󴀘󴀯 indicating interchange, equilibrium equations in terms
of stress components are (with 3D stress components as
functions of 𝑥, 𝑦, and 𝑧)

𝛼 (𝜎
𝑥,𝑥

+ 𝜏
𝑥𝑦,𝑦

) + 𝜏
𝑥𝑧,𝑧

= 0 󴀘󴀯 (𝑥, 𝑦) , (1)

𝛼 (𝜏
𝑥𝑧,𝑥

+ 𝜏
𝑦𝑧,𝑦

) + 𝜎
𝑧,𝑧

= 0 (2)

in which suffix after “,” denotes partial derivative operator.
In displacement based models, stress components are

expressed in terms of displacements, via six strain-stress
constitutive relations and six strain-displacement relations.
These relations within the classical small deformation theory
of elasticity are as follows:

constitutive relations:

𝐸𝜀
𝑥
= 𝜎
𝑥
− ] (𝜎

𝑦
+ 𝜎
𝑧
) 󴀘󴀯 (𝑥, 𝑦) , (3)

𝐸𝜀
𝑧
= 𝜎
𝑧
− ] (𝜎

𝑥
+ 𝜎
𝑦
) , (4)

[𝜏
𝑥𝑦
, 𝜏
𝑥𝑧
, 𝜏
𝑦𝑧
] = 𝐺 [𝛾

𝑥𝑦
, 𝛾
𝑥𝑧
, 𝛾
𝑦𝑧
] ; (5)

strain-displacement relations:

[𝜀
𝑥
, 𝜀
𝑦
, 𝜀
𝑧
] = [𝛼𝑢

,𝑥
, 𝛼V
,𝑦
, 𝑤
,𝑧
] ,

[𝛾
𝑥𝑦
, 𝛾
𝑥𝑧
, 𝛾
𝑦𝑧
] = [𝛼 (𝑢

,𝑦
+ V
,𝑥
) , 𝑢
,𝑧
+ 𝛼𝑤
,𝑥
, V
,𝑧
+ 𝛼𝑤
,𝑦
] .

(6)

For purposes of illustration, a simply supported square plate
subjected to asymmetric load 𝜎

𝑧
= ±(𝑞

0
/2) sin(𝜋𝑥) sin(𝜋𝑦)

and zero shear stresses along 𝑧 = ±1 faces is considered
throughout the present work. Conditions along 𝑥 (and 𝑦)
constant edges are

𝜎
𝑥
= 0 󴀘󴀯 (𝑥; 𝑦) ; V = 0 󴀘󴀯 (V; 𝑢) ;

𝑤 = 0.

(7)

Nature of solutions from different methods of analysis is
examined in the author’s article (submitted elsewhere) with
reference to the exact solution of the above mentioned text
book problem. Methods of analysis are with reference to (i)

exact solution of 3D problem in terms of displacements, (ii)
sequence of 2D problems based on plate element equilibrium
equations, and (iii) sequence of 2D problems based on
infinitesimal element equilibrium equations.

3. Exact Solution with 𝑤(𝑥, 𝑦, 𝑧)

as Domain Variable

Equilibrium equations (1) and (2) in terms of displacements
[6] are

(1 − 2]) (𝛼2Δ𝑢 + 𝑢
,𝑧𝑧

) + 𝛼 (𝛼𝑢
,𝑥𝑥

+ 𝛼V
,𝑦𝑥

+ 𝑤
,𝑧𝑥

) = 0

󴀘󴀯 (𝑥, 𝑦) , (𝑢, V) ,

(1 − 2]) (𝛼2Δ𝑤 + 𝑤
,𝑧𝑧

) + (𝛼𝑢
,𝑥𝑧

+ 𝛼V
,𝑦𝑧

+ 𝑤
,𝑧𝑧

) = 0

(8)

in which Δ = (𝜕
2
/𝜕𝑥
2
+ 𝜕
2
/𝜕𝑦
2
) is plane Laplace operator.

From satisfying the above equations with displacements

𝑢 = (𝐴
1
sinh𝛽𝑧 + 𝐴

2
𝑧 cosh𝛽𝑧)

× cos𝜋𝑥 sin𝜋𝑦 󴀘󴀯 (𝑥, 𝑦) , (𝑢, V) ,
(9)

𝑤 = (𝐶
1
cosh𝛽𝑧 + 𝐶

2
𝑧 sinh𝛽𝑧) sin𝜋𝑥 sin𝜋𝑦 (10)

in which 𝛽 = √2𝛼𝜋, one gets 𝐶
2

= √2𝐴
2

= (2𝛼𝜋𝐴
1
−

𝛽𝐶
1
)/(3 − 4]).
Zero shear stresses and vertical load condition along faces

give

𝐶
1
=

𝛽 tanh𝛽 + 2 (1 − ])
𝛽 tanh𝛽 − (1 − 2])

√2𝐴
1

= (1 + ])
𝛽 sinh𝛽 + 2 (1 − ]) cosh𝛽

𝛽 (sinh𝛽 cosh𝛽 − 𝛽)
(
𝑞
0

2𝐸
) .

(11)

Note that 𝛼(V
,𝑥

− 𝑢
,𝑦
) denoted by 𝜔

𝑧
is equal to zero from

(9). As such, equilibrium equations (1) and (2) in terms of
(𝑢, V, 𝜎

𝑧
) with 𝐸

󸀠
= 𝐸/(1 − ]2) and 𝜇 = ]/(1 − ]) become

𝐸
󸀠
𝛼
2
Δ𝑢 + 𝜇𝛼𝜎

𝑧,𝑥
+ 𝜏
𝑥𝑧,𝑧

= 0 󴀘󴀯 (𝑥, 𝑦) , (12)

𝛼 (𝜏
𝑥𝑧,𝑥

+ 𝜏
𝑦𝑧,𝑦

) + 𝜎
𝑧,𝑧

= 0. (13)

It is found that the use of displacements (9) and (10) in
solving the above equations gives the same solutions (11).
With 𝛼 = 1/6 and Poisson’s ratio ] = 0.3 (for which solutions
are available from various theories [7]), vertical displacement
parameters in the illustrative example are

(
𝐸

2𝑞
0

)𝑤(
1

2
,
1

2
, 0) = 3.49, (14)

(
𝐸

2𝑞
0

)𝑤(
1

2
,
1

2
, 1) = 4.12 (15)

(earlier reported values [6] are not correct due to error
in using 𝛽, unwittingly, in degrees instead of radians in
evaluating hyperbolic terms).
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Obviously, the above estimates correspond to those from
the associate torsion problem since face deflection 𝑤

0𝑓
is

greater than neutral plane deflection 𝑤
0𝑛
. Note that neutral

plane deflection is lower than that of face deflection by about
15% which decreases with decreasing thickness ratio.

4. Exact Solution with 𝑤
0
(𝑥, 𝑦) as Face Variable

Exact solution of the present illustrative example was
obtained earlier [8] with assumed in-plane displacements (9)
and shear stresses, in place of 𝑤(𝑥, 𝑦, 𝑧) in (10), in the form

𝜏
𝑥𝑧

= (𝐶
1
cosh𝛽𝑧 + 𝐶

2
𝑧 sinh𝛽𝑧)

× cos𝜋𝑥 sin𝜋𝑦 󴀘󴀯 (𝑥, 𝑦) .

(16)

Normal stress 𝜎
𝑧
from (13) is used in (12). Due to zero

face shear stresses, face deflection 𝑤
0
(𝑥, 𝑦) is evaluated

by replacing [𝑢
,𝑧
, V
,𝑧
] with [𝑢, V]

𝑧=1
in shear stress-strain

relations so that

𝛼𝑤
0
(𝑥, 𝑦) = −∫ [𝑢𝑑𝑥 + V𝑑𝑦]

𝑧=1
. (17)

Vertical displacement parameters thus obtained are

(
𝐸

2𝑞
0

)𝑤(
1

2
,
1

2
, 0) = 4.49;

(
𝐸

2𝑞
0

)𝑤(
1

2
,
1

2
, 1) = 4.17.

(18)

It is to be noted that the corresponding face deflection in the
torsion problem is lower by about 1.2%.This difference in face
deflections decreases with decrease in 𝛼 and tends to zero in
principle with 𝛼 → 0. But it is constrained due to validity of
small deformation theory restricted to lower bound of 𝛼 from
Kirchhoff ’s theory.

5. Displacements with Assumptions in
the Kirchhoff’s Theory [9]

We note that [𝑤
0
, 𝑢
1
, V
1
] are primary variables in bend-

ing problems (shear stresses are also primary variables in
the associated torsion problems). Correspondingly, trans-
verse shear strains from strain-displacement relations are
[𝑢
1
+ 𝛼𝑤

0,𝑥
, V
1
+ 𝛼𝑤

0,𝑦
] with [𝑢

1
, V
1
] that are negative of

𝛼[𝑤
0,𝑥

, 𝑤
0,𝑦

] from assumption of zero transverse strains.
Normal strain 𝜖

𝑧
from constitutive relation with 𝑒 = (𝜖

𝑥
+ 𝜖
𝑦
)

is proportional to 𝑒
1
(𝑒 = 𝑧𝑒

1
) which is not zero in the plate.

It is neglected for design purposes in practical engineering
problems. Its inclusion is, however, necessary for obtaining
proper solutions of 3D problems.

Primary variables are determined from integrated equi-
librium equations, that is, plate element equilibrium equa-
tions with reduced stiffness coefficient 2𝐸/3(1 − ]2). The
term [𝐸/(1− ]2)] is from semi-inverted in-plane strain-stress
relations by neglecting 𝜖

𝑧
in constitutive relations. In view of

these assumptions, strain energy density is only due to in-
plane stresses and strains. It can be easily shown that in-plane

distributions of displacements thus obtained remain the same
with displacements 𝑧2𝑘𝑤

2𝑘
and (𝑧

2𝑘+1
/2𝑘 + 1)[𝑢, V]

2𝑘+1
(𝑘 ≥

1) with reference to the bending of plate subjected to the
same kinematic and stress resultant conditions in the Kirch-
hoff ’s theory. Hence, 𝑧-distributions of displacements are not
unique due to assumptions in Kirchhoff ’s theory. One should
note, however, that vertical face deflection is the same for all 𝑘
but [𝑢, V] along faces are maximum from Kirchhoff ’s theory.
Due to a priory satisfaction of zero face shear conditions,
[𝑢
1
, V
1
] are negative of 𝛼[𝑤

0,𝑥
, 𝑤
0,𝑦

] resulting in a fourth
order equation governing𝑤

0
along with two edge conditions

instead of three edge conditions required in a 3D problem.
Prescribed 𝜏

𝑥𝑦
along an edge is in the form of its tangential

gradient contributing an artificial additional vertical shear.
This additional shear is due to partial nullification of interior
𝜏
𝑥𝑦

in bending problem [10, 11].

5.1. Classical Sixth Order Theories. Minimum modification
of Kirchhoff ’s theory has to be a sixth order theory recti-
fying lacuna in the theory along with facility of providing
maximum face distribution of [𝑢

1
, V
1
]. Reissner’s pioneering

work [12] discussed in detail later in the present paper was an
attempt in this direction but not fully successful.

In Kirchhoff ’s theory, [𝜏
𝑥𝑧0

, 𝜏
𝑦𝑧0

] are assumed to be zero
due to zero face shear conditions. Normal stress 𝜎

𝑧
, though

identically zero from equilibrium equation (2), is assumed
to satisfy load condition 𝜎

𝑧
= ±𝑞/2 along the top and

bottom faces of the plate. It is based on 𝑓
3
(𝑧) = (1/2)(𝑧 −

𝑧
3
/3) distribution a priory in Reissner’s theory and from

statically equivalent (reactive) stress in Kirchhoff ’s theory. In
either case, transverse shear stresses correspond to parabolic
𝑓
2
(𝑧) = (1/2)(1 − 𝑧

2
) distributions. These distributions are

also used through shear correction factor 𝑘
2 (= 5/6) in

FSDT based on Hencky’s theory [13]. FSDT is a displacement
based theory in which in-plane distributions [𝜏

𝑥𝑧0
, 𝜏
𝑦𝑧0

] are
used through constitutive and strain-displacement relations,
whereas they are independent variables in Reissner’s theory
in applying Castigliano’s theorem of least work. There is no
need to use shear correction factor in Reissner’s theory and
its use is avoided in the displacement based Reddy’s theory
[14]. In stress based Reissner’s theory, complementary strain
energy due to 𝜎

𝑧
involves cubic 𝑓

3
(𝑧) distribution of 𝜀

𝑧
,

whereas work done by the applied vertical load is associated
with weighted vertical displacement. It must be noted here
that Reddy’s shear deformation theory is equivalent through
change of variables to an earlier Reissner’s displacement based
theory [15] without the strain energy due to 𝜎

𝑧
and both of

them are equivalent to Ambartsumyan theory [16] proposed
much earlier. As such, 𝜎

𝑧
= (𝑧𝜎

𝑧1
) satisfying face load

condition is ignored, whereas it plays an important role in
rectifying lacuna in shear deformation theories as discussed
later. In fact, these theories (which are based on plate element
equilibrium equations with 𝑤

0
(𝑥, 𝑦) as domain variable)

correspond to approximate associated torsion problems.
In the illustrative example with 𝛼 = 1/6 and ] = 0.3,

FSDT gives (𝐸/2𝑞
0
)𝑤
0
(1/2, 1/2) = 3.69 and the correspond-

ing value without shear correction factor is 3.41 [10]. The
value 3.69 is much higher than the exact value 3.49 in (14). In
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the earlier mentioned submitted article, it is shown to be
artificial from the following consideration.

In FSDT, the components (𝜏
𝑥𝑧2

, 𝜏
𝑦𝑧2

) of reactive shear
stresses are expressed earlier [10] in terms of (𝜏

𝑥𝑧0
, 𝜏
𝑦𝑧0

)

through distribution correction factor 𝛽
0

= (5/2) obtained
from

[
1

2
(1 − 𝑧

2
) 𝜏
∗
− 𝛽
0
𝜏] (1 − 𝑧

2
) 𝑑𝑧 = 0, (19)

integrated from bottom to top faces of the plate giving 𝜏
∗

=

𝛽
0
𝜏 so that

(𝜏
∗

𝑥𝑧
, 𝜏
∗

𝑦𝑧
) = (

5

4
) (1 − 𝑧

2
)𝐺 (𝑢

1
+ 𝛼𝑤
0,𝑥

, V
1
+ 𝛼𝑤
0,𝑦

) ,

(20)

resulting in shear energy correction factor 𝑘2 = 5/6.
Adapting the above concept of deriving shear correction

factor, higher order transverse shear terms with 𝑓
2𝑘+2

(𝑧)may
be expressed in terms of preceding shear terms with 𝑓

2𝑘
(𝑧)

through distribution correction factors 𝛽
2𝑘
so that

𝜏
𝑥𝑧

= ∑(1 + 𝛽
2𝑘
) 𝑓
2𝑘
𝜏
𝑥𝑧2𝑘

(𝑘 = 0, 1, 2, 3, . . .) 󴀘󴀯 (𝑥, 𝑦) .

(21)

In such a case, solutions of plate element equations give shear
strains [𝑢

1
+ 𝛼𝑤
0,𝑥

, V
1
+ 𝛼𝑤
0,𝑦

] tending to [0, 0] in the limit
𝑘 → ∞. Obviously, additional shear energy due to 𝛽

2𝑘
does

not belong to the physical problem.

6. Review of Recent Theories

Displacement based Ambartsumyan’s theory (equivalent
Reissner’s and Reddy’s theories) consists of two-term rep-
resentation of displacements. Only Kirchhoff ’s theory and
FSDT are with one term representation of displacements
(based on one variable 𝑤

0
(𝑥, 𝑦) in the former and three

primary variables [𝑤
0
, 𝑢
1
, V
1
] in the latter).Thepresent review

is with reference to several shear deformation and higher
order theories of this kind. Though most of them are used
in the analyses of laminated and functionally graded plates,
discussion of these theories is limited to the analyses of
homogeneous plates. Further, we recall Jemielita’s attempt in
his inspiring paper to answer the general question, “To study
or to create.” As such, discussion is restricted to the analyses
of primary problems of a square plate since variations in
geometry of the plate, material properties, presence of body
forces, kinematic, and static boundary conditions belong to
the category of study of various problems and do not play
much role in creation of new plate theories.

6.1. Higher OrderTheories. Thickness-wise distribution func-
tions 𝑓

𝑛
(𝑧) generated from recurrence relations with 𝑓

0
= 1,

𝑓
2𝑛+1,𝑧

= 𝑓
2𝑛
, and𝑓

2𝑛+2,𝑧
= −𝑓
2𝑛+1

such that𝑓
2𝑛+2

(±1) = 0 are

used in the recent investigations by the present author. They
are (up to 𝑛 = 5)

[𝑓
1
, 𝑓
2
, 𝑓
3
] = [𝑧,

1

2
(1 − 𝑧

2
) ,

1

2
(𝑧 −

𝑧
3

3
)] ,

[𝑓
4
, 𝑓
5
] = [

(5 − 6𝑧
2
+ 𝑧
4
)

24
,

𝑧 (25 − 10𝑧
2
+ 𝑧
4
)

120
] .

(22)

A 3D variable 𝐹(𝑥, 𝑦, 𝑧) is expressed in the series form
𝐹 = 𝑓

𝑛
𝐹
𝑛
(𝑥, 𝑦) with sum 𝑛 = 0, 1, 2, 3 . . .. Displacements,

strains, and stresses are expressed in the series form in four
convenient groups:

[𝑤, 𝑢, V] = 𝑓
𝑛[𝑤, 𝑢, V]𝑛,

[𝜀
𝑥
, 𝜀
𝑦
, 𝛾
𝑥𝑦
, 𝜀
𝑧
] = 𝑓
𝑛
[𝜀
𝑥
, 𝜀
𝑦
, 𝛾
𝑥𝑦
, 𝜀
𝑧
]
𝑛
,

[𝜎
𝑥
, 𝜎
𝑦
, 𝜏
𝑥𝑦
, 𝜎
𝑧
] = 𝑓
𝑛
[𝜎
𝑥
, 𝜎
𝑦
, 𝜏
𝑥𝑦
, 𝜎
𝑧
]
𝑛
,

[𝛾
𝑥𝑧
, 𝛾
𝑦𝑧
, 𝜏
𝑥𝑧
, 𝜏
𝑦𝑧
] = 𝑓
𝑛
[𝛾
𝑥𝑧
, 𝛾
𝑦𝑧
, 𝜏
𝑥𝑧
, 𝜏
𝑦𝑧
]
𝑛
.

(23)

Odd functions 𝑓
2𝑛+1

(𝑧) are replaced by

𝑓
∗

2𝑛+1
(𝑧) = 𝑓

2𝑛+1
(𝑧) − 𝛽

2𝑛−1
𝑓
2𝑛−1

(𝑧) (𝑛 ≥ 1) (24)

in which 𝛽
2𝑛−1

= 𝑓
2𝑛+1

(1)/𝑓
2𝑛−1

(1) so as to keep the
associated 2D variables as free variables.

The above 𝑓(𝑧) functions are even in vertical displace-
ment 𝑤 and odd in [𝑢, V] in bending and associated torsion
problems.

As discussed in the earlier work [8], Batista [17] generated
coordinate functions 𝑓

𝑘
(𝑧) by the method of successive

approximation satisfying zero transverse shear stress con-
ditions along faces of the plate. With zero vertical load
condition, he used plate element equilibrium equation so
that 𝜎

𝑧
is identically zero (physically invalid) in the domain.

In obtaining solution in the limit, he derived Cheng’s shear
equation [18] (same as Levy’s shear equation [19]) govern-
ing associated torsion problem in bending with respect to
rotation about 𝑥-axis or 𝑦-axis in the case of rectangular
plates. St. Venant’s torsion problem is often used to illustrate
sixth order theories though exact solution in the case 𝑞 ̸= 0

requires expansion of 𝑧 in sine series. In place of plate element
equilibrium equations in Batista’s work, Levy’s refined theory
was based on satisfying point-wise equilibrium equations
using the following displacement field including sinusoidal
functions (with sum on 𝑛 = 0, 1, 2, . . .):

𝑤 = 𝑧
2𝑛
𝑤
2𝑛
;

𝑢 = 𝑧
2𝑛+1

𝑢
𝑛
+ 𝜑
𝑛
sin (2𝑛 + 1)

𝜋

2
𝑧 󴀘󴀯 (𝑢, V) , (𝜑, 𝜓) .

(25)

Kienzler [20] used power series in 𝜁 (= 𝛼𝑧) andGol’denveizer
and Kolos [21] used power series in 𝛾 (= 𝑍 = ℎ𝑧) in
the derivation of plate equations. By using the recurrence
relations mentioned above, one can generate 𝑓

𝑘
(𝛼𝑧) and

𝑓
𝑘
(ℎ𝑧) with integration limits 1 and ℎ, respectively, so that 𝑓

𝑘

functions in (3) become homogeneous polynomials of degree
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𝑘 in (𝛼, 𝜁) and (ℎ, 𝑍). It implies that 𝛼
𝑘 and ℎ

𝑘 are scale
factors of 𝑓

𝑘
(𝑧). 2D variables in Kienzler and Gol’denveizer

and Kolos are connected to the present variables through
linear transformations by equating coefficients of powers of
𝑧. In fact, plate element equilibrium equations from using
polynomials in 𝑧 (e.g., power series, Taylor series, orthogonal
polynomials, and functions described in the beginning of
this section) in higher order theories other than one-term
representation of displacements in Kirchhoff ’s theory and
FSDT become equivalent to one other with appropriate
change of 2D variables.

6.2. Theories with 2-Term Representation of Displacements.
Several two-term representations of displacements are used
primarily intended to avoid the use of shear correction factor
in FSDT. These displacements are of the form

𝑤 = 𝑤
0
(𝑥, 𝑦) + 𝑓

,𝑧
(𝑧) 𝑤
2
(𝑥, 𝑦) ;

[𝑢, V] = 𝑧 [𝑢
1
, V
1
] + 𝑓 (𝑧) [𝑢

3
, V
3
] .

(26)

Various theories are due to the choice of 𝑓(𝑧) and six 2D
variables in the above equation. Lower order theories based
on a priory satisfying zero face shear conditions are

𝑤 = 𝑤
0
(𝑥, 𝑦) + 𝑓

,𝑧
(𝑧) 𝑤
2
(𝑥, 𝑦) ;

[𝑢, V] = −𝑧𝛼 [𝑤
0,𝑥

, 𝑤
0,𝑦

] + 𝑓 (𝑧) [𝑢
3
, V
3
]

(27)

with assumed 𝑓(𝑧) in different forms (to the author’s best of
knowledge) listed below:

(i) 𝑓
3
(𝑧) ,

(ii) 2

𝜋
sin 𝜋

2
𝑧,

(iii) sinh 𝑧

2
−

𝑧

2
cosh 1

2
,

(iv) 𝑧 exp(−
1

2
𝑧
2
) ,

(v)
(7𝑧 − 4𝑧

3
+ 𝑧
5
)

8
,

(vi) (tan−1𝑧 − 𝑧) ,

(vii) tan−1 (sin 𝜋

2
𝑧) ,

(viii) 𝑧 [sec(𝑟𝑧
2
) −

sec (𝑟/2)
1 + (𝑟/2) tan (𝑟/2)

]

(28)

(the parameter 𝑟 is the shape parameter and its value is
obtained as 0.1 in the postprocessing step by employing the
inverse method [22]).

Note that (27) and (26) contain terms in Kirchhoff ’s
theory and FSDT, respectively. Static equation (2) is satisfied
in Kirchhoff ’s theory with 𝜎

𝑧
≡ 0 whereas it is satisfied with

𝜎
𝑧

= (𝑧𝑞/2) in FSDT but ignored even in the constitutive
relations. Corresponding transverse stresses in FSDT do not,

however, participate in the in-plane equilibrium equations
(1). To satisfy these equations even in the Kirchhoff ’s theory,
one requires successive integrations in 𝑧-direction. All func-
tions in (28) are approximations to this integration process.
Theories based on plate element equations do not, however,
rectify the lacuna in Kirchhoff ’s theory and FSDT.

Equations governing 2D variables from stationary prop-
erty of total potential with each of the above functions form a
tenth order system.They reduce to an eighth order system in
shear deformation theories. Other eighth order systems are
with 𝑤

2
(𝑥, 𝑦) along with assumption of [𝑢

3
, V
3
] as gradients

𝛼[𝑤
2,𝑥

, 𝑤
2,𝑦

]. Another eighth order system is by replacing
𝑤
0
(𝑥, 𝑦) + 𝑓

,𝑧
(𝑧)𝑤
2
(𝑥, 𝑦) with 𝑤

𝑏
(𝑥, 𝑦) + 𝑤

𝑠
(𝑥, 𝑦) along with

𝑢 = −𝛼[𝑧𝑤
𝑏
+ 𝑧
3
/3𝑤
𝑠
]
,𝑥
and V = −𝛼[𝑧𝑤

𝑏
+ 𝑧
3
/3𝑤
𝑠
]
,𝑦
. But

it is equivalent to the above mentioned eighth order shear
deformation theory with 𝑤

0
(𝑥, 𝑦) = [𝑤

𝑏
(𝑥, 𝑦) + 𝑤

𝑠
(𝑥, 𝑦)].

Apart from FSDT, one could consider several sixth order
theories using𝑓(𝑧) in (28) in conjunctionwith displacements

𝑤 = 𝑤
0
(𝑥, 𝑦) ;

[𝑢, V] = −𝑧𝛼 [𝑤
0,𝑥

, 𝑤
0,𝑦

] + 𝑓 (𝑧) 𝛼 [𝜓
,𝑥
, 𝜓
,𝑦
] .

(29)

One should note from Lewinski’s article [7] that estimates to
the vertical displacement parameter from various 12th order
theories are more or less equal to the exact neutral plane
deflection 3.49 given in (14).

In the case of higher order theories applied to the present
illustrative example, solutions of the plate element equa-
tions without shear correction factors would give increasing
sequence of estimates to neutral plane deflection from 3.41
to 3.49. Corner reactions and vertical stress resultant 𝑉

𝑛
(𝑠)

in Kirchhoff ’s theory are due to approximation of torsion
problem but not widely believed bending problem.Moreover,
FSDT describes an artificial approximation of torsion prob-
lem. Face and neutral plane deflections and solutions from
various theories in the case of thin plates cluster together at
lower bound of thickness ratio from Kirchhoff ’s theory for
validity of small deformation theory. There is no reason to
discuss about merits and demerits of these theories.

7. Poisson’s Theory

In the author’s recent investigations, 𝑤
0
(𝑥, 𝑦) is used as

face variable. New theory dealing with parabolic distribu-
tion of reactive transverse shear stresses is designated as
“Poisson’s theory of plates in bending” and its extension in
which assumed transverse shear stresses are independent of
𝑧-coordinate, like 𝑤

0
(𝑥, 𝑦) in Kirchhoff ’s theory and shear

deformation theories, is designated as “Extended Poisson’s
theory” [6, 23].

In Kirchhoff ’s theory, basic variable is 𝑤
0
(𝑥, 𝑦) and [𝑢, V]

are from [𝛾
𝑥𝑧
, 𝛾
𝑦𝑧
] ≡ 0 in the plate. In FSDT, 𝑤

0
is associated

with 𝑧[𝑢
1
, V
1
] through [𝛾

𝑥𝑧
, 𝛾
𝑦𝑧
]. In these theories and other

shear deformation theories, 𝜎
𝑧
is neglected in constitutive

relations. In the present analysis as in Kirchhoff ’s theory
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and FSDT, 𝜎
𝑧
is neglected initially in the semi-inverted

constitutive relations

𝜎
𝑥
= 𝐸
󸀠
(𝜀
𝑥
+ ]𝜀
𝑦
) + 𝜇𝜎

𝑧
󴀘󴀯 (𝑥, 𝑦) , (30a)

𝜀
𝑧
= −𝜇𝑒 +

(1 − 2]𝜇) 𝜎
𝑧

𝐸

(30b)

in which 𝑒 = (𝜀
𝑥
+ 𝜀
𝑦
), 𝐸󸀠 = 𝐸/(1 − ]2), and 𝜇 = ]/(1 − ]).

In-plane variables (𝑢
1
, V
1
) uncoupled from 𝑤

0
are basic

variables as in the earlier investigations [6, 11, 24]. Due to
the condition 𝜔

𝑧
= 0 required to decouple bending and

torsion problems, one obtains reactive transverse stresses
from thickness-wise integration of equilibrium equations

𝜏
𝑥𝑧

= 𝐸
󸀠
𝑓
2
(𝑧) 𝛼𝑒

1,𝑥
󴀘󴀯 (𝑥, 𝑦) ,

𝜎
𝑧3

= −𝐸
󸀠
𝑓
3
(𝑧) 𝛼
2
Δ𝑒
1
.

(31)

Constitutive relation gives 𝜀
𝑧
= −𝜇𝑓

1
𝑒
1
. From satisfying face

load condition, one gets the equation governing 𝑒
1
as

(
2

3
)𝐸
󸀠
𝛼
2
Δ𝑒
1
+ 𝑞 = 0. (32)

In Poisson’s theory, 𝑒
1
in the above equation is replaced by

𝜓
2
(𝑥, 𝑦) and it is solved with edge condition 𝜓

2
= 0 in the

simply supported plate problem. As mentioned earlier, the
function 𝜓

2
is related to normal strain 𝜀

𝑧
and 𝜓

2
= 0 implies

𝜀
𝑧
= 0.
Equations governing 𝑢

1
and V
1
are given by

𝛼 (𝑢
1,𝑥

+ V
1,𝑦

) = 𝜓
2
, 𝛼 (𝑢

1,𝑦
− V
1,𝑥

) = 0 (33)

so that

𝛼
2
Δ𝑢
1
= 𝛼𝜓
2,𝑥

, 𝛼
2
ΔV
1
= 𝛼𝜓
2,𝑦

. (34)

Equations (33) are homogeneous without 𝜓
2
and the cor-

responding 𝑢
1
and V

1
are conjugate harmonic functions

coupled through 𝑥 (and 𝑦) constant edge conditions with
prescribed 𝑇

𝑥
and 𝑇

𝑥𝑦

𝑢
1
= 0 or 𝐸

󸀠
𝑢
1,𝑥

= 𝑇
𝑥
(𝑦) 󴀘󴀯 (𝑥, 𝑦) , (𝑢, V) , (35a)

V
1
= 0 or 2𝐺V

1,𝑥
= 𝑇
𝑥𝑦

(𝑦) 󴀘󴀯 (𝑥, 𝑦) , (𝑢, V) . (35b)

From zero face shear conditions, one obtains 𝑤
0
(𝑥, 𝑦) in

terms of known [𝑢
1
, V
1
] in the form

𝛼𝑤
0
(𝑥, 𝑦) = −∫ [𝑢

1
𝑑𝑥 + V

1
𝑑𝑦] . (36)

Vertical deflection thus obtained corresponds to face deflec-
tion (note that zero face shear conditions do not participate
in the 3D domain equations unlike in Kirchhoff ’s theory). Its
zero value along the edge requires simply a support to prevent
vertical deflection of intersection of the face with wall of the
plate. Such a support also ensures zero deflection of neutral
plane along its edge. It is because the face and neutral plane

deflections (𝑤
0𝑓

, 𝑤
𝑜𝑛
) are one and the same since 𝑤(𝑥, 𝑦, 𝑧)

with (𝑤
2
+ 𝜀
𝑧1
) = 0 can be expressed as

𝑤 (𝑥, 𝑦, 𝑧) = 𝑤
0𝑓

(𝑥, 𝑦) + 𝑓
2
(𝑧) 𝑤
2

= 𝑤
0𝑛

(𝑥, 𝑦) −
𝑧
2
𝜀
𝑧1

2
.

(37)

However, 𝑓
2
(𝑧) of second order correction 𝑤

2
to vertical

deflection 𝑤 is parabolic; thereby, applied or reactive trans-
verse shear stress along an edge is parabolic.

Equations (32) and (34) form a sixth order system
for determination of 𝜓

2
, 𝑢
1
, and V

1
. Relevant three-edge

conditions correspond to those required by Poisson. Hence,
the theory is designated asPoisson’s theory of plates in bending,
parallel to Kirchhoff ’s theory. It is significant to note that the
condition 𝑤

0
= 0 prescribed along segments of the edge

has no effect on the displacements [𝑢
1
, V
1
, 𝑤
0
] obtained from

Poisson’s theory. It is to be noted that Poisson’s theory gives an
additional value of 0.27 to 𝑤(𝑥, 𝑦, 1) due to 𝜀

𝑧1
to the earlier

𝑤
0𝑓

estimate from Kirchhoff ’s theory.
The above described Poisson’s theory is based on point-

wise satisfaction of (1) and (2). Higher order corrections
to the solutions from this theory are obtained through an
iterative procedure [23] with initial solutions from Poisson’s
theory. At the first stage of iteration, displacements 𝑓

3
[𝑢
3
, V
3
]

(thereby, 𝜀
𝑧3
) consistent with 𝑓

2
[𝜏
𝑥𝑧2

, 𝜏
𝑦𝑧2

], and reactive
transverse stresses (𝜏

𝑥𝑧4
, 𝜏
𝑦𝑧4

, 𝜎
𝑧5
) are obtained with 𝜎

𝑧5
as a

free variable by replacing 𝑓
5
with 𝑓

∗

5
. Displacements [𝑢

3
, V
3
]

are modified in the form

𝑢
∗

3
= 𝑢
3
+ 𝛾
𝑥𝑧2

− 𝛼(𝑤
2
− 𝜀
𝑧1
)
,𝑥

󴀘󴀯 (𝑥, 𝑦) , (𝑢, V) . (38)

The displacements [𝑢
3
, V
3
] are determined through satisfac-

tion of both static and integrated equilibrium equations.
Higher order correction to𝑤

0
uncoupled from torsion is 1.26

so that total correction to the value from Kirchhoff ’s theory
is about 1.54 giving 𝑤

0𝑓
(= 𝑤
0𝑛
) = 3.81.

Supplementary Problem. Neutral plane deflection 𝑤
0𝑛

is cor-
rected from the solution of a supplementary problem with
assumed displacements in the form

[𝑢, V, 𝑤] = [sin(
𝜋𝑧

2
) 𝑢
𝑠3
, sin(

𝜋𝑧

2
) V
𝑠3
,

(
𝜋

2
) cos(𝜋𝑧

2
)𝑤
𝑠2
] .

(39)

They are added as corrections to [𝑢
∗

3
, V∗
3
] obtained from

iterative method so that [𝑢, V] in supplementary problem are
given by

[𝑢, V] = sin(
𝜋𝑧

2
) [(𝑢
∗

3
+ 𝑢
𝑠3
) , (V∗
3
+ V
𝑠3
)] . (40)

Here, total correction over face deflection is about 0.66 giving
a value of 4.46 which is very close to the exact value 4.49.
Hence, it is safe to conclude that second order corrections in
the displacements and transverse stresses from the iterative
method serve the purpose of assessing data from Kirchhoff ’s
theory and FSDT.
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Solution for 𝑤
0
consists of satisfying (i) zero face shear

conditions and (ii) edge support conditions on 𝑤
0
. In Kirch-

hoff ’s theory, both these requirements are met through the
single variable 𝑤

0
governed by a fourth order equation. In

Reissner’s theory [15], average vertical displacement satisfies
condition (ii) and, in FSDT, condition (i) is not satisfied, but
its effect is included through shear energy correction factor.
In any case, both of them are approximations to associated
torsion problem [10]. The present analysis provides some
clarity with regard to preliminary solution of primary flexure
problem. It shows that determination of in-plane displace-
ments, bending stresses, and reactive transverse stresses from
integration of equilibrium equations is uncoupled from 𝑤

0
.

However, edge condition𝑤
0
= 0 or contracted stress resultant

𝑉
𝑥
= 𝑉
𝑥𝑜
in Kirchhoff ’s theory is different from the condition

𝜀
𝑧
= 0 or 𝜏

𝑥𝑧2
= 𝑇
𝑥𝑧

󴀘󴀯 (𝑥, 𝑦) (41)
along constant 𝑥 (and 𝑦) edge.

Error in the estimated value (= 3.81) of 𝑤
0𝑓

is relatively
high compared to the accuracy achieved in neutral plane
deflection. In the earlier work [6], estimation of 𝑤

0𝑓
is fur-

ther improved by modifying in-plane displacements (𝑢∗
3
, V∗
3
)

such that (𝜏
𝑥𝑧2

, 𝜏
𝑦𝑧2

) are independent of 𝜀
𝑧1
. In the present

example, correction to the face deflection changes to 1.43 so
that face deflection value is 3.97 (= 2.27 + 0.27 + 1.43) which
is under 4.7% from the exact value. The correction 1.43 to
the face deflection is due to 𝜀

𝑧3
from the constitutive relation.

Determination of 𝜀
𝑧3
in terms of (𝜎

𝑧3
, 𝑢
3
, V
3
) involves lengthy

algebra and arithmetical work.
The above analysis consists of a basic sixth order system

and a supplementary fourth order system. Since the second
order corrections are mainly due to inclusion of 𝜎

𝑧1
in the

in-plane constitutive relations, it is shown much simpler to
find its effect from the extended Poisson’s theory without
consideration of higher order displacement components
(𝑢
3
, V
3
).

7.1. Extended Poisson’s Theory. Assumptions in Kirchhoff ’s
theory are eliminated in the extended Poisson’s theory [6, 23].
Here, primary variables are [𝑢

1
, V
1
, 𝜓
0
] in which 𝜓

0
(𝑥, 𝑦)

is solution of an auxiliary problem governing transverse
stresses.These transverse stresses are independent ofmaterial
constants so that they are global solutions and shown to
be extremely useful in the analysis of homogeneous and
laminated plates with anisotropic material constants in each
ply [23].

In the auxiliary problem, transverse shears along faces
of the plate are assumed in the form [𝜏

𝑥𝑧0
, 𝜏
𝑦𝑧0

] =

[𝑇
𝑥𝑧
(𝑥, 𝑦), 𝑇

𝑦𝑧
(𝑥, 𝑦)]. It is more reasonable and practical to

assume that they are the same in face parallel planes instead of
𝑤
0
(𝑥, 𝑦). Correspondingly, [𝜏

𝑥𝑧0
, 𝜏
𝑦𝑧0

] along constant 𝑥 (and
𝑦) edges are

𝜏
𝑥𝑧0

= 𝑇
𝑥𝑧

(𝑦) 󴀘󴀯 (𝑥, 𝑦) . (42)
They are more realistic edge conditions and more practical if
they are independent of in-plane coordinates. In view of (2),
[𝜏
𝑥𝑧0

, 𝜏
𝑦𝑧0

] are expressed as

[𝜏
𝑥𝑧0

, 𝜏
𝑦𝑧0

] = 𝛼 [𝜓
0,𝑥

, 𝜓
0,𝑦

] (43)

so that 𝜓
0
(𝑥, 𝑦) with 𝜎

𝑧
= 𝑧𝑞/2 is governed by

𝛼
2
Δ𝜓
0
+

𝑞

2
= 0. (44)

The above equation is to be solved with edge condition either
𝜓
0

= 0 or its normal gradient equal to applied transverse
shear stress along the edge. Assumed face stresses [𝑇

𝑥𝑧
, 𝑇
𝑦𝑧
]

correspond to [𝜏
𝑥𝑧0

, 𝜏
𝑦𝑧0

] in (43) consistent with applied
or reactive vertical shears along the edges. Here also, the
function 𝜓

0
is related to normal strain 𝜀

𝑧
and 𝜓

0
= 0 implies

𝜀
𝑧
= 0.
With the aid of the above global solutions for transverse

stresses, primary bending problem governing in-plane dis-
placements is in terms of (12) and (13) along with statically
equivalent transverse stresses and edge conditions

[𝜏
𝑥𝑧
, 𝜏
𝑦𝑧
] = 𝑓
2
(𝑧) [𝜏
𝑥𝑧2

, 𝜏
𝑦𝑧2

] ,

𝜎
𝑧
=

𝑧𝑞

2
+ 𝑓
3
(𝑧) 𝜎
𝑧3
.

(45)

Here also, [𝑢
1
, V
1
] are determined through satisfaction of both

static and integrated equilibrium equations with modified
displacements

𝑢
∗

1
= 𝑢
1
+ 𝛾
𝑥𝑧0

− 𝛼𝑤
0,𝑥

󴀘󴀯 (𝑥, 𝑦) , (𝑢, V) (46)

along with edge conditions

𝑢
1
(𝑦) = 0 or 𝜎

𝑥1
(𝑦) = 𝑇

𝑥1
(𝑦) 󴀘󴀯 (𝑥, 𝑦) , (𝑢, V) ,

(47a)

V
1
(𝑦) = 0 or 𝜏

𝑥𝑦1
(𝑦) = 𝑇

𝑥𝑦1
(𝑦) 󴀘󴀯 (𝑥, 𝑦) , (𝑢, V) ,

(47b)

𝜓
2
(𝑦) = 0 or 𝜏

𝑥𝑧2
(𝑦) = 𝜏

𝑥𝑧0
(𝑦) 󴀘󴀯 (𝑥, 𝑦) . (48)

If 𝑞 = 0 and in-plane edge conditions are homogeneous,
edge conditions (48) become the conditions used in obtaining
global solution.

In the case of the present illustrative example, estimated
face deflection (𝐸/2𝑞

0
) 𝑤
0𝑓

= 4.08 which is fairly close to
the exact value 4.17. It shows that the solution for w from the
present analysis provides proper correction to the estimation
of face deflection. It is underestimated by 2.16% [11, 23].

Supplementary Problem. Corrective in-plane displacements
in the supplementary problem are assumed in the form:

𝑢
𝑠
= 𝑢
1𝑠
sin(

𝜋𝑧

2
) 󴀘󴀯 (𝑢, V) . (49)

In-plane distributions 𝑢
1𝑠
and V
1𝑠
are added as corrections to

the known modified in-plane displacements (𝑢
∗

1
, V∗
1
), like in

Poisson’s theory, so that (𝑢, V) in the supplementary problem
are

𝑢 = (𝑢
∗

1
+ 𝑢
1𝑠
) sin(

𝜋𝑧

2
) 󴀘󴀯 (𝑢, V) . (50)
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In the present illustrative example, estimated neutral plane
deflection 𝑤

0𝑛
= 4.36(2𝑞

0
/𝐸) which is underestimated by

2.90% from the exact value 4.49.
Evaluation of neutral plane deflection involves 𝑢

1
and

𝑢
1𝑠

associated with 𝑓
2
(𝑧) and cos(𝜋𝑧/2) distributions of

transverse shear stresses, respectively. As such, the solution
of the present auxiliary problem provides second order
corrections to the solutions of primary problem. Moreover,
wide variation of percentage variations of errors from 0.67 in
𝑤
0𝑓

to 4.80 in 𝑤
0𝑛

at the first stage of Iteration using (𝑢
3
, V
3
)

in Poisson’s theory is reduced from 2.16 to 2.90 without
using (𝑢

3
, V
3
) in the extended Poisson’s theory. One iteration

using (𝑢
3
, V
3
) satisfying both static and integrated equilibrium

equations is expected to reduce this gap even further along
with decreased percentage errors. Significant implication of
this observation is that the solution of auxiliary problem is
necessary so as to obtain more or less uniform approximation
to thickness-wise distributions of vertical displacement like in
Kirchhoff ’s and shear deformation theories.

8. Conclusions

(i) 3D equations in displacements and sequence of 2D
problems with vertical displacement as domain vari-
able correspond to associated torsion problems.

(ii) Kirchhoff ’s theory is a zeroth order shear deformation
theory.

(iii) FSDT and higher order shear deformation theories
with shear correction factors deal with artificial tor-
sion problems.

(iv) It is mandatory to satisfy thickness-wise integrated
equilibrium equations for determination of in-plane
displacements. Facility of satisfying static equations
improves solutions of these displacements.

(v) Poisson’s theory and extended Poisson’s theory are
based on satisfaction of both static and integrated
equilibrium equations.

(vi) Thickness-wise distribution of displacements in
terms of polynomials 𝑓

𝑛
(𝑧) is not adequate for

finding interior solutions of these displacements.
(vii) Solutions of auxiliary and supplementary problems

are necessary to rectify lacuna in Kirchhoff ’s theory.
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