
Research Article
Time-Dependent Evolving Null Horizons of
a Dynamical Spacetime

K. L. Duggal

Department of Mathematics and Statistics, University of Windsor, Windsor, ON, Canada N9B 3P4

Correspondence should be addressed to K. L. Duggal; yq8@uwindsor.ca

Received 20 November 2013; Accepted 19 December 2013; Published 22 January 2014

Academic Editors: U. Kulshreshtha and W.-H. Steeb

Copyright © 2014 K. L. Duggal. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Totally geodesic null hypersurfaces have been widely used in the study of isolated black holes. In this paper, we introduce a new
quasilocal notion of a family of totally umbilical null hypersurfaces called evolving null horizons (ENH) of a dynamical spacetime,
satisfied under an appropriate energy condition. We focus on a variety of examples of ENHs and in some cases establish their
relation with event and isolated horizons.We also present two specific physical models of an ENH in a black hole spacetime. Beside
the examples, for further study we propose two open problems on possible general existence of an ENH in a black hole spacetime
and its canonical or unique existence.The results of this paper have ample scope of working on totally umbilical null hypersurfaces
of Lorentzian and, in general, semiRiemannian manifolds.

1. Introduction

It is well-known that null hypersurfaces play an important
roll in the study of black hole horizons. A black hole is a
region of spacetime which contains a huge amount of mass
compacted into an extremely small volume. Shortly after
Einstein’s first version of the theory of gravitation that was
published in 1915, in 1916, Karl Schwarzschild computed the
gravitational fields of stars using Einstein’s field equations. He
assumed that the star is spherical, gravitationally collapsed,
and nonrotating. His solution is called a Schwarzschild
solution which is an exact solution of static vacuum fields
of the point-mass. Since then, considerable work has been
done on black hole physics of asymptotically flat and time-
independent spacetimes. Such isolated black holes deal with
the following concepts of event and isolated horizons.

1.1. Event Horizons. A boundary of a spacetime is called an
event horizon, briefly denoted by EH, beyond which events
cannot affect the observer. Note that an event horizon is
intrinsically a global concept since its definition requires the
knowledge of the whole spacetime to determine whether null
geodesics can reach null infinity. EHs have played a key role
and this includes Hawking’s area increase theorem, black
hole thermodynamics, black hole perturbation theory, and

the topological censorship results.Themost important family
is the Kerr-Newman black holes. Moreover, an EH always
exists in black hole asymptotically flat spacetime under a
weak cosmic censorship condition.We refer Hawking’s paper
on “event horizon” [1], three papers of Háj́ıček’s work [2–4]
on “perfect horizons” (later called “nonexpanding horizons”
by Ashtekar et al. [5]), and a paper by Galloway [6] in which
he has shown that the null hypersurfaces which arise most
naturally in spacetime geometry and general relativity, such
as black hole event horizons, are in general 𝐶0 but not 𝐶1.
Also Chruściel and his collaborators’ papers include key use
of EHs (see his review paper [7] on “Recent results in mathe-
matical relativity” and several latest papers, in particular “No
Hair” Theorems). However, an event horizon is too global to
be useful in a number of physical situations ranging from
quantum gravity to numerical relativity and to astrophysics.
In particular, since it refers to infinity, it cannot be used in
specially compact spacetime. Moreover, to actually locate a
black hole one needs to know the full spacetime metric up
to the infinite future. Even if one locates the event horizon,
using it to calculate the physical parameters is extremely
difficult. See Ashtekar-Krishnan [8] for more information on
why the notion of an event horizon is inappropriate for a
variety of physical situations. Therefore, attempts were made
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to find a quasilocal concept of a horizon which requires
only minimum number of conditions to detect a black hole
and study its properties. To achieve this objective, in a 1999
paper [5] Asktekar et al. introduced the following concept of
isolated horizons.

1.2. Isolated Horizons. Before giving the definition of isolated
horizons we recall some features of the intrinsic geometry
of 3-dimensional null hypersurface, say H, of a spacetime
(𝑀, 𝑔), where themetric 𝑔

𝑖𝑗
has signature (−, +, +, +). Denote

by 𝑞
𝑖𝑗
=
𝑔𝑖𝑗

←
the intrinsic degenerate induced metric on H

which is the pull back of 𝑔
𝑖𝑗
, where an under arrow denotes

the pullback toH. Degenerate 𝑞
𝑖𝑗
has signature (0, +, +) and

does not have an inverse in the standard sense, but, in the
weaker sense, it admits an inverse 𝑞𝑖𝑗 if it satisfies 𝑞

𝑖𝑘
𝑞
𝑗𝑚
𝑞
𝑘𝑚

=

𝑞
𝑖𝑗
. Using this, the expansion 𝜃

(ℓ)
is defined by

𝜃
(ℓ)
= 𝑞
𝑖𝑗
∇
𝑖
ℓ
𝑗
, (1)

where ℓ𝑖 is a future-directed null normal to H and ∇ is the
Levi-Civita connection on 𝑀. The vorticity-free Raychaud-
huri equation is given by

𝑑 (𝜃
(ℓ)
)

𝑑𝑠
= −𝑅
𝑖𝑗
ℓ
𝑖
ℓ
𝑗
− 𝜎
𝑖𝑗
𝜎
𝑖𝑗
−
𝜃
2

2
, (2)

where 𝜎
𝑖𝑗
= ∇
←
(𝑖
ℓ
𝑗)
−(1/2)𝜃

(ℓ)
𝑞
𝑖𝑗
is the shear tensor, 𝑠 is a

pseudoarc parameter such that ℓ is null geodesic, and 𝑅
𝑖𝑗
is

the Ricci tensor of𝑀. We say that two null normals ℓ𝑖 and ℓ̃𝑖

belong to the same equivalence class [ℓ] if ℓ̃𝑖 = 𝑐ℓ
𝑖 for some

positive constant 𝑐. The following are three notions of iso-
lated horizons, namely, nonexpanding, weakly, and stronger
isolated horizons, respectively.

Definition 1. A null hypersurface (H, 𝑞) of a 4-dimensional
spacetime (𝑀, 𝑔) is called a nonexpanding horizon (NEH) if

(1) H has a topology 𝑅 × 𝑆2;
(2) any null normal ℓ of H has vanishing expansion,

𝜃
(ℓ)
= 0;

(3) all equations of motion hold at H and stress energy
tensor 𝑇

𝑖𝑗
is such that −𝑇𝑖

𝑗
ℓ
𝑗 is future-causal for any

future-directed null normal ℓ𝑖.

Condition (1) is a restriction on topology of H which
guarantee that marginally trapped surfaces are related to a
black hole spacetime. Condition (2) and the energy condition

of (3) imply from the Raychaudhuri equation (2) that
𝑇𝑖𝑗ℓ
𝑗

←= 0

and = ∇
←
(𝑖
ℓ
𝑗)
≡ £
ℓ
𝑞
𝑖𝑗
= 0 on H, which further implies that

the metric 𝑞
𝑖𝑗
is time-independent. Note that £

ℓ
𝑞
𝑖𝑗
= 0 onH

does not necessarily imply that ℓ is a Killing vector of the full
metric 𝑔

𝑖𝑗
. In general, there does not exist a unique induced

connection onH due to degenerate 𝑞
𝑖𝑗
. However, on anNEH,

the property £
ℓ
𝑞
𝑖𝑗
= 0 implies that the spacetime connection

∇ induces a unique (torsion-free) connection, say D, on H
which is compatible with 𝑞

𝑖𝑗
.

Definition 2. The pair (H, [ℓ]) is called a weakly isolated
horizon (WIH) if H is an NEH and each normal ℓ ∈ [ℓ]

satisfies

(£
ℓ
D
𝑖
−D
𝑖
£
ℓ
) ℓ
𝑖
= 0. (3)

Condition (3) implies that, in addition to the metric 𝑞
𝑖𝑗
,

the connection componentD
𝑖
ℓ
𝑗 is also time-independent for

a WIH. Given a NEH, one can always have an equivalence
class [ℓ] (which is not unique) of null normals such that
(H, [ℓ]) is aWIH. Ashtekar et al. [9] have discussed the issue
of “Freedom of the choice of ℓ” in satisfying condition (3).

Definition 3. A WIH (H, [ℓ]) is called an isolated horizon
(IH) if the full connectionD is time-independent, that is, if

(£
ℓ
D
𝑖
−D
𝑖
£
ℓ
) 𝑉
𝑗
= 0 (4)

for arbitrary vector fields 𝑉 tangent toH.

An IH is stronger notion of isolation as its condition
(4) cannot always be satisfied by a choice of null normals.
Isolated horizons are quasilocal and do not require the
knowledge of the whole spacetime. The class of spacetimes
having isolated horizons is quite big. Any Killing horizon
which is topologically 𝑅×𝑆2 is a trivial example of an isolated
horizon. See Ashtekar and Krishnan [8], Ashtekar et al. [10],
Lewandowski [11], and Gourgoulhon and Jaramillo [12] for
examples and their physical use.

On the other hand, we know that the isolated horizons
model specifically quasilocal equilibrium regimes of black
hole spacetimes. However, in nature, black holes are rarely in
equilibrium. This led to research on a quasilocal framework
to describe the geometry of the surface of the dynamical
black hole, not just at its equilibrium state. First attempt in
this direction was made by Hayward [13], in 1994, using
the framework of (2 + 2)-formalism, based on the notion of
trapped surfaces. He proposed the following notion of future,
outer, and trapping horizons (FOTH).

Definition 4. A future, outer, and trapped horizon (FOTH)
is a three-manifold Σ, foliated by family of closed 2-surfaces
such that (i) one of its future-directed null normal, say ℓ, has
zero expansion, 𝜃

(ℓ)
= 0, (ii) the other null normal, k, has

negative expansion 𝜃
(k) < 0, and (iii) the directional deriva-

tive of 𝜃
(ℓ)

along k is negative; £n𝜃(ℓ) < 0.

Σ is either spacelike or null for which 𝜃
(k) = 0 and £k𝜃(ℓ) =

0. Hayward [13] derived the following general laws of black
hole dynamics.

(a) Zeroth Law. The total trapping gravity of a compact
outer marginal surface has an upper bound, attained
if and only if the trapping gravity is constant.

(b) First Law. The variation of the area form along an
outer trapping horizon is determined by the trapping
gravity and an energy flux.

After this, Ashktekar and Krishnan [14, 15] observed
that in dynamical situations Hayward’s condition (iii) is not
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required for most of the key physical results. For this reason,
they introduced in [14] the following quasilocal concept of
“dynamical horizons,” denoted by DH, which model the
evolving black holes and their asymptotic states are isolated
horizons.

Definition 5. A smooth, 3-dimensional spacelike submani-
fold (possibly with boundary) 𝐻 of a spacetime is said to be
a dynamical horizon (DH) if it can be foliated by a family of
closed 2-manifolds such that

(1) on each leaf 𝑆 its future-directed null normal ℓ has
zero expansion, 𝜃

(ℓ)
= 0,

(2) and the other null normal, k, has negative expansion
𝜃
(k) < 0.

They first required that 𝐻 be spacelike everywhere and
then studied the case in which portions ofmarginally trapped
surfaces lie on a spacelike horizon and the remainder on
a null horizon. In the null case, 𝐻 reaches equilibrium for
which the shear and the matter flux vanish and this portion is
represented by a weakly isolated horizon.The Vaidya metrics
are explicit examples of dynamical horizons with their equi-
librium states of the isolated horizons.The horizon geometry
of DHs is time-dependent. Compared to Hayward’s (2 + 2)-
formalism, the DH framework is based on the standard (1 +
3)-formulism and has the advantage that it only refers to the
intrinsic structure of 𝐻, without any conditions on the evo-
lution of fields in transverse directions to𝐻. In [15] Ashtekar
and Krishnan have obtained the following main results.

(i) Expressions of fluxes of energy and angular momen-
tum carried by gravitational waves across these hori-
zons were obtained.

(ii) A detailed area balance law relating to the change in
the area of𝐻 to the flux of energy across it provided.

(iii) The cross sections S of𝐻 have the topology 𝑆2 if the
cosmological constant (of Einstein’s filed equations)
is positive and of 𝑆2 or a 2-torus. The 2-torus case is
degenerate as the matter and the gravitational energy
flux vanish, the intrinsic metric on each S is flat, and
the shear of the (expansion free) null normal vanishes.

(iv) A generalization of the first and the second laws of
mechanics was obtained.

(v) A relation between DHs and IH was established.

DH has provided a new perspective covering all areas of
black holes, that is, quantum gravity, mathematical physics,
numerical relativity, and gravitational wave phenomenology,
leading to the underlying unity of the subject.

As explained in [15], the definition of DH rules out the
possibility of 𝐻 null, except when 𝐻 reaches equilibrium.
Thus, we do not have any null horizon which is time-
dependent and quasilocal, and is always a null geodesic
hypersurface. Such a null horizon is desired for information
on the geometry andphysics of the null surface of a dynamical
spacetime, along with DHs which are models of evolving
black holes. Moreover, there is a need to know the null

version of the known results provided by FOTH and the DH
frameworks. For these reasons, in this paper we study a new
class of null horizons as explained below.

Observe that all types of null horizons (defined above)
have a common condition that their future null normal
has vanishing expansion. This means that their underlying
null hypersurface is totally geodesic in the corresponding
spacetime and these horizons are time-independent. In this
paper, we use totally umbilical geometry to show the existence
of a class of null hypersurfaces, called “Evolving Null Horizons
(ENH)” (see Definition 8) (this notion is slightly general than
recently introduced in [16] fromwhere we take somematerial
to present their improved version) which is time-dependent,
quasilocal, and suitable for the null geometry of the surface of
a dynamical spacetime. We focus on a variety of examples of
ENHs, some of them having a totally geodesic null portion
which represents an event or an isolated horizon at the
equilibrium state of a black hole spacetime. This paper has
been written with a twofold objective inmind firstly, initiate a
newway of research on time-dependent null hypersurfaces of
dynamical spacetimes by using the totally umbilical geome-
try. Secondly, themathematical theory (using intrinsic geom-
etry) on the foliations of null hypersurfaces presented in this
paper (see also [16] for more general details) is expected to
generate interest in further research on differential geometry
of totally umbilical null hypersurfaces of Lorentzian and, in
general, semiRiemannian manifolds.

2. Totally Umbilical Null Hypersurfaces

Recall that a hypersurface (H, ℎ) of a 4-dimensional space-
time (𝑀,𝑔) is null if there exists a nonvanishing null vector
field ℓ in 𝑇(H) which is orthogonal (with respect to ℎ) to all
vector fields in 𝑇(H); that is,

ℎ (ℓ, 𝑋) = 0, ∀𝑋 ∈ 𝑇 (H) , (5)

where ℎ is the degenerate metric of H. In this paper we
assume that the null normal ℓ is future-directed and it
is not entirely in H but is defined in some open subset
of 𝑀 around H. This will permit us to well define the
spacetime covariant derivative ∇ℓ and is suitable for the
intrinsic geometry. For general extrinsic geometry of null
hypersurfaces of semiRiemannian manifolds (where null
normal is taken entirely in the hypersurface) we refer Duggal
and Bejancu [17, Chapter 4] and Duggal and Jin [18, Chapter
7]. A simple way to take this extended ℓ is to consider a
foliation of𝑀 (in the vicinity ofH) by a family (H

𝑢
) so that

ℓ is in the part of𝑀 foliated by this family such that, at each
point in this region, ℓ is a null normal toH

𝑢
for some value of

𝑢. Denote by (ℎ
𝑢
) the respective family of degenerate metrics.

Although the family (H
𝑢
) is not unique, for our purpose we

can manage (with some reasonable condition(s)) to involve
only those quantities which are independent of the choice of
the foliation (H

𝑢
) once evaluated atH

𝑢=const.. For simplicity,
in this paper we consider (H, ℎ) amember of the family (H

𝑢
)

and its respectivemetricℎ for some value of𝑢, with the under-
standing that the results are the same for any other member.
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The “bending” ofH in𝑀 is described by the Weingarten
map:

W
ℓ
: 𝑇
𝑝
H ⇒ 𝑇

𝑝
H,

𝑋 ⇒ ∇
𝑋
ℓ.

(6)

W
ℓ
associates each 𝑋 of H the variation of ℓ along 𝑋,

with respect to the spacetime connection ∇. The second
fundamental form, say𝐵, ofH is the symmetric bilinear form
and is related to the Weingarten map by

𝐵 (𝑋, 𝑌) = ℎ (W
ℓ
𝑋,𝑌) = ℎ (∇

𝑋
ℓ, 𝑌) . (7)

𝐵(𝑋, ℓ) = 0 for any null normal ℓ and for any 𝑋 ∈

𝑇(H) imply that 𝐵 has the same ℓ degeneracy as that of
the induced metric ℎ. Hence, it is natural to study a class of
null hypersurfaces such that 𝐵 is conformally equivalent to
the metric ℎ. Geometrically, this means that (H, ℎ) is totally
umbilical in𝑀 if and only if there is a smooth function 𝑓 on
H such that

𝐵 (𝑋, 𝑌) = 𝑓ℎ (𝑋, 𝑌) , ∀𝑋, 𝑌 ∈ 𝑇 (H) . (8)

The above definition does not depend on particular choice
of ℓ. H is called proper totally umbilical if and only if 𝑓 is
nonzero on entire H. In particular, a portion of H is called
totally geodesic if and only if 𝐵 vanishes, that is, if and only
if 𝑓 vanishes on that portion of H. From (7), 𝐵(𝑋, ℓ) = 0

for any null normal ℓ, and (8), we conclude that H is totally
umbilical in 𝑀 if and only if, on each neighborhood U the
conformal function 𝑓 satisfies

W
ℓ
𝑋 = 𝑓𝑋, ∀ non-null 𝑋 ∈ Γ (𝑇H) . (9)

The following result is important in the study of null hyper-
surfaces.

Proposition 6. Let (H
𝑢
) be a family of null hypersurfaces of

a Lorentzian manifold. Then each member (H, ℎ) of (H
𝑢
) is

totally umbilical if and only if its null normal ℓ is a conformal
Killing vector of the degenerate metric ℎ.

Proof. Consider a member (H, ℎ) of (H
𝑢
). Using the expres-

sion £
ℓ
ℎ(𝑋, 𝑌) = ℎ(∇

𝑋
ℓ, 𝑌) + ℎ(∇

𝑌
ℓ, 𝑋) and 𝐵(𝑋, 𝑌)

symmetric in the above equation we obtain

𝐵 (𝑋, 𝑌) =
1

2
£
ℓ
ℎ (𝑋, 𝑌) , ∀𝑋, 𝑌 ∈ 𝑇 (H) , (10)

which is well defined up to conformal rescaling (related to the
choice of ℓ). SupposeH is totally umbilical; that is, (8) holds.
Using this in (10) we have £

ℓ
ℎ = 2𝑓ℎ on H. Therefore, ℓ is

conformal Killing vector of the metric ℎ. Conversely, assume
£
ℓ
ℎ = 2𝑓ℎ onH. Then,

£
ℓ
ℎ (𝑋, 𝑌) = ℎ (∇

𝑋
ℓ, 𝑌) + ℎ (∇

𝑌
ℓ, 𝑋) = 2ℎ (∇

𝑋
ℓ, 𝑌)

= 2ℎ (W
ℓ
𝑋,𝑌) = 2𝑓ℎ (𝑋, 𝑌) ,

(11)

which implies that (9) holds soH is totally umbilical.

2.1. Normalization of ℓ and Projector onto (H,ℎ). Due to
degenerate metric ℎ, there is no canonical way from the null
structure alone of H, to define a projector mapping II :

𝑇
𝑝
𝑀 → 𝑇

𝑝
(H). Thus to obtain normalized expressions

for ℓ there is a need for some extrastructure on 𝑀. For this
purpose, we consider a (1+3)-spacetime (𝑀, 𝑔).This assumes
a thin sandwich of𝑀 evolved from a spacelike hypersurface
Σ
𝑡
at a coordinate time 𝑡 to another spacelike hypersurface

Σ
𝑡+𝑑𝑡

at coordinate time 𝑡 + 𝑑𝑡 whose metric 𝑔 is given by

𝑔
𝑖𝑗
𝑑𝑥
𝑖
𝑑𝑥
𝑗
= (−𝜆

2
+ |𝑈|
2
) 𝑑𝑡
2
+ 2𝑔
𝑎𝑏
𝑈
𝑎
𝑑𝑥
𝑏
𝑑𝑡 + 𝑔

𝑎𝑏
𝑑𝑥
𝑎
𝑑𝑥
𝑏
,

(12)

where 𝑥0 = 𝑡 and 𝑥𝑎 (𝑎 = 1, 2, 3) are spatial coordinates of
Σ
𝑡
with 𝑔

𝑎𝑏
its 3-metric induced from 𝑔, 𝜆 = 𝜆(𝑡, 𝑥

1
, 𝑥
2
, 𝑥
3
)

is the lapse function, and 𝑈 is a spacelike shift vector. The
choice of (1+3)-spacetime comes from the works of Ashtekar
and Krishnan [14, 15] and Gourgoulhon and Jaramillo [12] on
dynamical and isolated horizons, respectively.The coordinate
time vector t = 𝜕/𝜕𝑡 is such that 𝑔(𝑑𝑡, t) = 1. For the (1 + 3)-
spacetime𝑀, one can write

t = 𝜆n + 𝑈, with n ⋅ 𝑈 = 0, (13)

where n is the future timelike unit vector field. The question
is how to normalize ℓ. In general, each spacelike hypersurface
Σ
𝑡
intersects the null hypersurfaceH on some 2-dimensional

submanifold S
𝑡
; that is, S

𝑡
= H ∩ Σ

𝑡
. Consider a familyF =

(H
𝑢
) in the vicinity ofH defined by

S
𝑡,𝑢
= H
𝑢
∩ Σ
𝑡
, (14)

where S
𝑡,𝑢=1

is an element of this family (S
𝑡,𝑢
). Let s ∈ Σ

𝑡
be a

unit vector normal to S
𝑡
defined in some open neighborhood

of H. Taking (S
𝑡
) a foliation of H, the coordinate 𝑡 can

be used as a nonaffine parameter along each null geodesic
generating H. We normalize ℓ of H such that it is tangent
vector associated with this parameterization of the null
generators; that is,

ℓ
𝑖
=
𝑑𝑥
𝑖

𝑑𝑡
. (15)

This means that ℓ is a vector field “dual” to the 1-form 𝑑𝑡.
Equivalently, the function 𝑡 can be regarded as a coordinate
compatible with ℓ; that is,

𝑔 (𝑑𝑡, ℓ) = ∇
ℓ
𝑡 = 1. (16)

Based on this, it is easy to see that ℓ has the following
normalization:

ℓ = 𝜆 (n + s) , where s ⋅ 𝑠 = 1, V ∈ 𝑇
𝑝
(S
𝑡
) ⇐⇒ s ⋅ V = 0,

(17)

which implies that ℓ is tangent toH with the property of Lie
dragging the family of surfaces (S

𝑡,𝑢
).

As anyH is defined by 𝑢 = a constant, the gradient 𝑑𝑢 is
its normal; that is,

ℎ (𝑑𝑢,𝑋) = 0 ⇐⇒ ∀𝑋 ∈ 𝑇 (H) . (18)
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Thus, the 1-form ℓ associated with the null normal ℓ is
collinear to 𝑑𝑢, that is,

ℓ = 𝑒
𝜌
𝑑𝑢, (19)

where 𝜌 ∈ H is a scalar field. Now the question is how to find
some direction transverse toH. We see from the normalized
equation (17) that there are timelike and spacelike transverse
directions n and s (as they both do not belong toH), respec-
tively, which are normal to the 2-dimensional spacelike sub-
manifold S

𝑡
. Since we already have the outgoing null normal ℓ

tangent toH, we define a transversal vector fieldk of𝑇
𝑝
𝑀not

belonging toH expressed as another suitable linear combina-
tion of n and s such that it represents the light rays emitted in
the opposite direction, called the ingoing direction, satisfying

𝑔 (ℓ, k) = −1, 𝑔 (k, k) = 0. (20)

Using the normalization (17) of ℓ and (20) we get the follow-
ing normalized expression of the null transversal vector k:

k = 1

2𝜆
(n − s) . (21)

Since two null normals ℓ and ℓ̃ of H belong to the same
equivalence class [ℓ] if ℓ̃ = 𝑐ℓ for some positive constant 𝑐, it
follows from (20) that with respect to change of ℓ to ℓ̃ there
is another k̃ = (1/𝑐) k satisfying (20). Now we define the
projector ontoH along k by

II : 𝑇
𝑝
𝑀 → 𝑇

𝑝
H,

𝑋 → 𝑋 + 𝑔 (ℓ,𝑋) k.
(22)

The above mapping is well defined; that is, its image is in
𝑇
𝑝
H. Indeed,

∀𝑋 ∈ 𝑇
𝑝
𝑀, 𝑔 (ℓ, II (𝑋)) = 𝑔 (ℓ, 𝑋) 𝑔 (ℓ, k) = 0. (23)

Observe that II leaves any vector in 𝑇
𝑝
H invariant and

II(k) = 0.Moreover, the definition of the projector IIdoes not
depend on the normalization of ℓ and k as long as they satisfy
the relation (20). In other words, II is determined only by the
foliation of the family (S

𝑡,𝑢
) ofH

𝑢
and not by any rescaling of

ℓ.
Consider a spacelike orthonormal frames field 𝐸 =

{𝑒
1
, 𝑒
2
} on S

𝑡
of H. Since 𝐵(ℓ, ℓ) = 0, the expansion scalar

field (also called null mean curvature) 𝜃
(ℓ)

ofH with respect
to ℓ can be defined by

𝜃
(ℓ)
= 𝐵 (𝑒

1
, 𝑒
1
) + 𝐵 (𝑒

2
, 𝑒
2
) (24)

which is equivalent to trace (𝐵) and therefore it does not
depend on the frame 𝐸. For a totally umbilicalH this means
that

𝜃
(ℓ)
= 𝐵 (𝑒

1
, 𝑒
1
) + 𝐵 (𝑒

2
, 𝑒
2
) = 𝑓 {ℎ (𝑒

1
, 𝑒
1
) + ℎ (𝑒

2
, 𝑒
2
)} = 2𝑓.

(25)

Then, H is totally geodesic (also called minimal) if 𝜃
(ℓ)

vanishes; that is,

𝐵 (𝑒
1
, 𝑒
1
) + 𝐵 (𝑒

2
, 𝑒
2
) = 0. (26)

2.2. Induced Extrinsic Structure Equations. Recall that Dug-
gal and Bejancu [17, Chapter 4] used a screen distribution to
obtain induced extrinsic objects of a lightlike hypersurface.
Although we are not using any screen for H, we do have a
vector bundle 𝑇𝑆 of the 2-dimensional submanifolds of 𝑀.
In order to use the extrinsic structure equations given in [17,
Chapter 4], we replace the role of screen by the vector bundle
𝑇𝑆 of 𝑀 which has the added advantage that it is obviously
integrable. With this understanding, from (20) we have the
following decomposition of 𝑇𝑀

|H:

𝑇𝑀
|H = 𝑇H⊕orth tr (𝑇H) , (27)

where tr(𝑇H) = {k} denotes a null transversal vector bundle
of rank 1 over H. Using the above decomposition and the
second fundamental form𝐵, we obtain the following extrinsic
Gauss and Weingarten formulas [17, Chapter 4]:

∇
𝑋
𝑌 = D

𝑋
𝑌 + 𝐵 (𝑋, 𝑌) k, (28)

∇
𝑋
k = −𝐴k𝑋 + 𝜏 (𝑋) k, ∀𝑋, 𝑌 ∈ Γ (𝑇H) , (29)

where𝐴k is the shape operator on𝑇𝑝H in𝑀, 𝜏 is a 1-formon
H, andD is the induced linear connection on a pair (H, [ℓ]).
By setting 𝑌 = ℓ in (28) the Weingarten mapW

ℓ
, defined by

(6), will satisfy.

D
𝑋
ℓ = W

ℓ
𝑋, ∀𝑋 ∈ 𝑇H, (30)

with respect to the induced linear connection D on a pair
(H, [ℓ]). In general,D is not a Levi-Civita connection and it
satisfies

(D
𝑋
ℎ) (𝑌, 𝑍) = 𝐵 (𝑋, 𝑌) 𝜂 (𝑍) + 𝐵 (𝑋, 𝑍) 𝜂 (𝑌) ,

∀𝑋, 𝑌, 𝑍 ∈ Γ (𝑇H
|U) ,

(31)

where 𝜂(𝑋) = 𝑔(𝑋, k) ∀𝑋 ∈ Γ(𝑇H
|U). Let 𝑅 andR denote

the curvature tensors of the Levi-Civita connection ∇ on𝑀
and the induced linear connectionD onH, respectively.The
Gauss-Codazzi equations are

𝑔 (𝑅 (𝑋, 𝑌)𝑍, 𝑉) = ℎ (R (𝑋, 𝑌)𝑍, 𝑉) , ∀𝑉 ∈ 𝑇𝑆.

𝑔 (𝑅 (𝑋, 𝑌)𝑍, ℓ) = ℎ (R (𝑋, 𝑌)𝑍, ℓ)

= (∇
𝑋
𝐵) (𝑌, 𝑍) − (∇

𝑌
𝐵) (𝑋, 𝑍)

+ 𝐵 (𝑌, 𝑍) 𝜏 (𝑋) − 𝐵 (𝑋, 𝑍) 𝜏 (𝑌) .

𝑔 (𝑅 (𝑋, 𝑌)𝑍, k) = ℎ (R (𝑋, 𝑌)𝑍, k) .

(32)

The induced Ricci tensor of (H, ℎ) is given by the following
formula:

R (𝑋, 𝑌) = trace {𝑍 → R (𝑋, 𝑍) 𝑌} , ∀ 𝑋, 𝑌 ∈ Γ (𝑇H) .

(33)

Since D on H is not a Levi-Civita connection, in general,
Ricci tensor is not symmetric. Indeed, let 𝐹 = {ℓ, k, 𝑒

1
, 𝑒
2
}

be a quasiorthonormal frame on𝑀. Then, we obtain

R (𝑋, 𝑌) = ℎ (R (𝑒
1
, 𝑋) 𝑌, 𝑒

1
)

+ ℎ (R (𝑒
2
, 𝑋) 𝑌, 𝑒

2
) + ℎ (R (ℓ, 𝑋) 𝑌, k) .

(34)
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Using Gauss-Codazzi equations and the first Bianchi identity
we get

R (𝑋, 𝑌) −R (𝑌,𝑋) = 2𝑑𝜏 (𝑋, 𝑌) . (35)

Also, the 1-form 𝜏 in (29) depends on the choice of the normal
ℓ.Therefore, wemust require thatR is symmetric (otherwise
it has no geometric or physical meaning) and 𝜏 vanishes so
that𝐴k is independent of the choice of the foliation (H𝑢). To
fix this problem we assume the following known result.

Proposition 7 (see [17, page 99]). Let (H, ℎ) be a null
hypersurface of a semiRiemannian manifold (𝑀, 𝑔). If the
induced Ricci tensor ofH is symmetric then there exists a local
null pair {ℓ, k : 𝑔(ℓ, k) = −1} such that the corresponding 1-
form 𝜏 from (29) vanishes.

For a Ricci symmetric totally umbilical H (28)–(30)
reduce to

∇
𝑋
𝑌 = D

𝑋
𝑌 + 𝑓𝑔 (𝑋, 𝑌) k,

∇
𝑋
k = −𝐴k𝑋,

(D
𝑋
ℎ) (𝑌, 𝑍) = 𝑓 {𝑔 (𝑋, 𝑌) 𝜂 (𝑍) + 𝑔 (𝑋, 𝑍) 𝜂 (𝑍)} ,

∀𝑋, 𝑌, 𝑍 ∈ Γ (𝑇H
|U) .

(36)

3. Evolving Null Horizons

Here we state the notion of an “Evolving Null Horizon,”
denoted by ENH, explain the implications of its conditions,
construct some examples of ENHs, establish their relation
with event and isolated horizons, and construct two physical
models of an ENH of a black hole spacetime.

Definition 8. A null hypersurface (H, ℎ) of a 4-dimensional
spacetime (𝑀, 𝑔) is called an evolving null horizon (ENH) if

(i) H is totally umbilical and may include a totally
geodesic portion;

(ii) all equations of motion hold at H and stress energy
tensor 𝑇

𝑖𝑗
is such that −𝑇𝑖

𝑗
ℓ
𝑗 is future-causal for any

future-directed null normal ℓ𝑖.

For condition (i), it follows from Proposition 6 that £
ℓ
ℎ =

2𝑓ℎ on H; that is, ℓ is a conformal Killing vector (CKV) of
themetric ℎ. IfH includes a totally geodesic portion, then on
its portion 𝑓 vanishes and ℓ reduces to a Killing vector. This
does not necessarily imply that ℓ is a CKV (or Killing vector)
of the full metric 𝑔. The shear tensor 𝜎 is given by

𝜎 = £
ℓ
ℎ −

1

2
𝜃
(ℓ)
ℎ = (2𝑓 −

1

2
𝜃
(ℓ)
) ℎ. (37)

The energy condition of (ii) requires that 𝑅
𝑖𝑗
ℓ
𝑖
ℓ
𝑗 is nonnega-

tive for any ℓ; which implies (see Hawking and Ellis [19, page
95]) that 𝜃

(ℓ)
monotonically decreases in time along ℓ, that is,

𝑀 obeys the null convergence condition. Condition (i) also
implies that we have two classes of ENHs, namely, generic
ENH (𝑓 does not vanish on H) and nongeneric ENH for

which 𝑓may vanish on a possible totally geodesic portion of
H. Themetric on a generic ENHwill be time-dependent and
𝜃
(ℓ)

will not vanish onH. In the case of a non-generic ENH,
𝜃
(ℓ)

may eventually vanish on its totally geodesic portion for
which its transformed metric will be time-independent. We
give examples of both classes.

3.1. Mathematical Model. Let (H, ℎ) be a member of the
family (H

𝑢
) of null hypersurfaces of a spacetime (𝑀, 𝑔)

whose metric 𝑔 is given by (12). With respect to each S
𝑡
, the

shift vector 𝑈 can be expressed as

𝑈 = 𝛼s − 𝑉, 𝛼 = s ⋅ 𝑈, 𝑉 ∈ 𝑇
𝑝
(S
𝑡
) . (38)

Using (13), (17), and (38) we obtain

ℓ = t + 𝑉 + (𝜆 − 𝛼) s. (39)

To relate, above decomposition of ℓ with the conformal
function 𝑓 of the totally umbilical condition (8), we choose
𝜆 − 𝛼 = 𝑓 on H, which means that a portion of H may be
totally geodesic if and only if 𝜆 = 𝛼 on that portion. Thus,

ℓ
H
= t + 𝑉 + 𝑓s. (40)

Consider a coordinate system (𝑥
𝐴
) = (𝑡, 𝑥

2
, 𝑥
3
) on (H, ℎ)

defined by {𝑥1 = constant}. Then, the degenerate metric ℎ
is

ℎ = ℎ
𝐴𝐵
𝑑𝑥
𝐴
𝑑𝑥
𝐵
= ℎ
𝑡𝑡
𝑑𝑡
2
+ 2ℎ
𝑡𝑘
𝑑𝑡 𝑑𝑥
𝑘
+ ℎ
𝑘𝑚
𝑑𝑥
𝑘
𝑑𝑥
𝑚
,

(41)

where 2 ≤ 𝑘,𝑚 ≤ 3, and

ℎ
𝑡𝑡
= 𝑉
𝑘
𝑉
𝑘
+ 𝑓
2
, ℎ

𝑡𝑘
= 𝑈
𝑘
= 𝛼s
𝑘
− 𝑉
𝑘
= −𝑉
𝑘
. (42)

Observe that one can also take 𝑥2 or 𝑥3 constant. Assume
that (H, ℎ) is proper totally umbilical in (𝑀, 𝑔) and𝑀 obeys
the null convergence condition, with respect to each future-
directed null normal of this family (H

𝑢
). Then, a member

(H, ℎ, 𝑥
1
= constant) of this family is a model of a generic

ENH whose degenerate metric is given by (41).

Nongeneric ENH. Consider a null hypersurface H = Σ ∪ Δ

such that Σ and Δ are null proper totally umbilical and totally
geodesic portions of H and 𝑀 obeys the null convergence
condition. Thus, as per Definition 8, H is an ENH which
includes a totally geodesic portion (Δ, 𝑞), where 𝑞 denotes
its metric. Since 𝜃

(ℓ)
monotonically decreases in time along

ℓ and for this case 𝑓 can vanish on Δ, a state may reach at a
time when 𝜃

(ℓ)
vanishes on the portionΔ ofH and by putting

𝑓 = 0 in the metric (41) we recover the metric 𝑞 of Δ given by

𝑞 = 𝑞
𝐴𝐵
𝑑𝑥
𝐴
𝑑𝑥
𝐵
= 𝑞
𝑘𝑚
(𝑑𝑥
𝑘
− 𝑉
𝑘
𝑑𝑡) (𝑑𝑥

𝑚
− 𝑉
𝑚
𝑑𝑡) ,

(43)

where £
ℓ
𝑞 = 0 and

𝛼
(H,𝑞)
= 𝜆 is constant on (H, 𝑞) ,

ℓ
(H,𝑞)
= t + 𝑉.

(44)
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For this case the transformed coordinate system (𝑥
𝐴
) is

stationary with respect to the hypersurface (H, 𝑞) as its
metric (43) is time-independent. In other words, the location
of S
𝑡
is fixed as 𝑡 varies. Moreover,

((𝑥
𝐴
) stationary w.r.t. (H, 𝑞)) ⇐⇒

𝜕𝑢

𝜕𝑡
= 0

⇐⇒ t ∈ 𝑇 (H) .

(45)

At this state of transition, Raychaudhuri equation (2) implies
that shear also vanishes. Consequently, the two conditions
of the definition of a totally geodesic evolving null horizon
(H, 𝑞) reduce to conditions (2) and (3) of a nonexpanding
horizon (NEH). In case (H, 𝑞) is a null horizon of some black
hole, then the vector 𝑉 ∈ 𝑇

𝑝
(S
𝑡
) is called the surface velocity

of the black hole (see Damour [20]).We present the following
mathematical model.

Monge Null Hypersurfaces. Consider a smooth function 𝐹 :

Ω → R, where Ω is an open set of R3. Then a hypersurface
H of R4

1
is called a Monge hypersurface [17, page 129] given

by the equation

𝑡 = 𝐹 (𝑥, 𝑦, 𝑧) , (46)

where (𝑡, 𝑥, 𝑦, 𝑧) are the standard Minkowskian coordinates
with origin 0. The scalar 𝑢 generates a family of Monge
hypersurfaces (H

𝑢
) as the level sets of 𝑢 and is given by

𝑢 (𝑡, 𝑥, 𝑦, 𝑧) = 𝐹 − 𝑡 + 𝑏, (47)

where 𝑏 is a constant and we takeH
𝑏
= H a member of the

family (H
𝑢
). ∇
𝑖
𝑢 = (−1, 𝐹



𝑥
, 𝐹


𝑦
, 𝐹


𝑧
).H is null if and only if 𝐹

is a solution of the following partial differential equation:

(𝐹


𝑥
)
2

+ (𝐹


𝑦
)
2

+ (𝐹


𝑧
)
2

= 1. (48)

From (19) the null normal ℓ ofH is

ℓ
𝑖
= 𝑒
𝜌
(1, 𝐹


𝑥
, 𝐹


𝑦
, 𝐹


𝑧
) , ℓ

𝑖
= 𝑒
−𝜌
(−1, 𝐹



𝑥
, 𝐹


𝑦
, 𝐹


𝑧
) . (49)

The components of the transversal vector field k can be taken
as

k𝑖 = 1

2
𝑒
𝜌
(−1, −𝐹



𝑥
, −𝐹


𝑦
, −𝐹


𝑧
) ,

k
𝑖
=
1

2
𝑒
−𝜌
(1, −𝐹



𝑥
, −𝐹


𝑦
, −𝐹


𝑧
) ,

(50)

so that ℎ(ℓ, k) = −1. The corresponding base vectors, say
{𝑊
1
,𝑊
2
}, of St are

{𝑊
1
= 𝐹


𝑧

𝜕

𝜕𝑥
− 𝐹


𝑥

𝜕

𝜕𝑧
; 𝑊
2
= 𝐹


𝑧

𝜕

𝜕𝑦
− 𝐹


𝑦

𝜕

𝜕𝑧
} , (51)

where we take 𝐹


𝑧
̸= 0 on H. Then, the 1-form 𝜏 in (29)

vanishes. Indeed, 𝜏(𝑋) = 𝑔(∇
𝑋
k, ℓ) = −(1/2)𝑔(∇

𝑋
ℓ, ℓ) = 0.

Therefore, it is quite straightforward (see [17, page 121]) that
the Ricci tensor of the linear connection D on this Monge
hypersurface H is symmetric. Consequently, our extrinsic

objects on null Monge hypersurfaces are independent of
the choice of a family (H

𝑢
). To find the expansion 𝜃

(ℓ)
of

H we use the base vectors (51) to construct the following
orthonormal basis {𝑒

1
, 𝑒
2
} of St:

𝑒
1
=

1

𝑊1


𝑊
1
;

𝑒
2
=

1

𝐹


𝑧



𝑊1


{
𝑊1



2
𝑊
2
− 𝑔 (𝑊

1
,𝑊
2
)𝑊
1
} .

(52)

Then by direct calculations we obtain

𝐵 (𝑒
1
, 𝑒
1
) + 𝐵 (𝑒

2
, 𝑒
2
)

=
1

(𝐹


𝑧
)
2
ℎ
11

× {((𝐹


𝑧
)
2

+ (ℎ
12
)
2
) 𝐵
11
− 2ℎ
11
ℎ
12
𝐵
12
+ (ℎ
11
)
2
𝐵
22
} ,

(53)

where we put ℎ
𝛼𝛽
= ℎ(𝑊

𝛼
,𝑊
𝛽
) and 𝐵

𝛼𝛽
= 𝐵(𝑊

𝛼
,𝑊
𝛽
), 𝛼, 𝛽 ∈

{1, 2}. Taking into account that

ℎ
11
= 1 − (𝐹



𝑦
)
2

, ℎ
12
= 𝐹


𝑥
𝐹


𝑦
, ℎ

22
= 1 − (𝐹



𝑥
)
2

,

(54)

we finally (see pages 118–132 in [17] for some missing details)
obtain

𝜃
(ℓ)
= 𝐵 (𝑒

1
, 𝑒
1
) + 𝐵 (𝑒

2
, 𝑒
2
) = −

1

(𝐹


𝑧
)
2
ℎ
11

(𝐹


𝑥𝑥
+ 𝐹


𝑦𝑦
+ 𝐹


𝑧𝑧
) .

(55)

Consider a family (H
𝑢
) of null Monge hypersurfaces of

R4
1
whose each member (H, ℎ) obeys the null convergence

condition; that is, 𝜃
(ℓ)

monotonically decreases in time along
ℓ. Thus, it follows from (26) and (55) that (H, ℎ) may have a
totally geodesic portion, say Δ, if and only if a state reaches
when 𝜃

(ℓ)
vanishes and at that state 𝐹 satisfies the Laplace

equation:

𝐹


𝑥𝑥
+ 𝐹


𝑦𝑦
+ 𝐹


𝑧𝑧
= 0, (56)

which means that 𝐹 is harmonic on Δ. As explained in
Section 2, take a family (H

𝑢
) of null Monge hypersurfaces of

R4
1
whose eachmember (H, ℎ) is totally umbilical (𝐵 = 2𝑓ℎ).

Then, as per (24) and (55), we have

𝜃
(ℓ)
= −

1

(𝐹


𝑧
)
2
𝑔
11

(𝐹


𝑥𝑥
+ 𝐹


𝑦𝑦
+ 𝐹


𝑧𝑧
) = 2𝑓, (57)

which implies that 𝐹 is harmonic on Δ if and only if 𝑓
vanishes on Δ. Thus, there exists a model of a class of Monge
null hypersurfaces which is union of a family of generic ENHs
and its totally geodesic null portions.

Generic ENHs. Now we show by the following example that
there are some Monge ENHs which are generic; that is, they
do not evolve into a totally geodesic ENH.
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Example 9 (see [16]). Let (Λ3
0
)
𝑢
be a family of Monge null

cones in R4
1
given by

𝑡 = 𝐹 (𝑥, 𝑦, 𝑧) = 𝑟 = √𝑥
2
+ 𝑦
2
+ 𝑧
2
, (58)

where (𝑡, 𝑥, 𝑦, 𝑧) are the Minkowskian coordinates with
origin 0. Exclude 0 to keep each null cone smooth. LetΛ3

0
be

a member at the level 𝑢 = 𝑏 ̸= 0. Then, the scalar 𝑢 generates
a family of Monge null cones ((Λ3

0
)
𝑢
) given by

𝑢 (𝑡, 𝑥, 𝑦, 𝑧) = 𝑟 − 𝑡 + 𝑏, with 𝑡 = √𝑥2 + 𝑦2 + 𝑧2 (59)

∇
𝑖
𝑢 = (−1, 𝑥/𝑡, 𝑦/𝑡, 𝑧/𝑡). Thus, the components of the null

normal to Λ3
0
are

ℓ
𝑖
= 𝑒
𝜌
(1,

𝑥

𝑡
,
𝑦

𝑡
,
𝑧

𝑡
) , ℓ

𝑖
= 𝑒
−𝜌
(−1,

𝑥

𝑡
,
𝑦

𝑡
,
𝑧

𝑡
) . (60)

Since ℓ is the position vector field for the above construction
of the set of null cones, it follows from the Gauss equation
(28) that

∇
𝑋
ℓ = D

𝑋
ℓ = 𝑢𝑋, ∀𝑋 ∈ (Λ

3

0
)
𝑢
, (61)

where 𝑢 ̸= 0 as 0 is excluded.Then, using theWeingartenmap
equation (6), we obtain

W
ℓ
𝑋 = 𝑢𝑋 = 𝑓𝑋, ∀ non-null 𝑋 ∈ (Λ

3

0
)
𝑢
. (62)

Hence, by (9) we conclude that any member of the set of
null cones ((Λ3

0
)
𝑢 ̸= 0

) is proper totally umbilical with the
conformal function𝑓 = 𝑢 ̸= 0.Theunit timelike and spacelike
normals n and s in the normalized expression of ℓ are

n𝑖 = (1, 0, 0, 0) , s𝑖 = (0, 𝑥
𝑡
,
𝑦

𝑡
,
𝑧

𝑡
) . (63)

Therefore, it follows from (19) that𝜆 = 𝑓+𝛼 = 𝑒𝜌. To calculate
the expansion 𝜃

(ℓ)
= 2𝑓, we use (57) for 𝐹 = 𝑟 and obtain

𝜃
(ℓ)
= −

1

(𝑟


𝑧
)
2
ℎ
11

(𝑟


𝑥𝑥
+ 𝑟


𝑦𝑦
+ 𝑟


𝑧𝑧
)

= −
2𝑡
3

𝑧
2
(𝑡
2
− 𝑦
2
)
= −

2𝑡
3

𝑧
2
(𝑥
2
+ 𝑧
2
)
= 2𝑓 ̸= 0.

(64)

Since𝑓 does not vanish onH, subject to the null convergence
condition, the above is an example of an ENHwhich does not
evolve into an event or isolated horizon.

4. Two Physical Models Having an ENH of
a Black Hole Spacetime

Nongeneric Model. Let (𝑀, 𝑔) be a spacetime which admits a
totally geodesic null hypersurface (H, 𝑞, ℓ), where its degen-
erate metric 𝑞 is the pull back of 𝑔 and ℓ is its future-directed
null normal defined in some open subset of 𝑀 around H
(see details in Section 1). Then, we know that £

ℓ
𝑞 = 0;

that is, ℓ is Killing with respect to the metric 𝑞, which is not
necessarily Killing with respect to full metric 𝑔. Consider a
metric conformal transformation defined by

𝐺 = Ω
2
𝑔, (65)

whereΩ is a scalar function on𝑀 and (𝑀,𝐺) is its conformal
spacetime manifold. Since the causal structure and null
geodesics are invariant under a conformal transformation, as
discussed in Section 2, we have a family of null hypersurfaces
(H
𝑢
) in (𝑀,𝐺) with its corresponding family of induced

metrics (ℎ
𝑢
) such that each one is conformally related to 𝑞

by the following transformation:

ℎ
𝑢
= Ω
2

𝑢
𝑞, (66)

for some value of the parameter 𝑢 of scalar functions (Ω
𝑢
) on

H and ℓ is in the part of (𝑀,𝐺) foliated by this family such
that at each point in this region, ℓ is a future null normal to
H
𝑢
for some value of 𝑢. Set (H, ℎ, Ω) as a member of (H

𝑢
)

for some 𝑢. It is easy to show that £
ℓ
ℎ = 2ℓ(ln(Ω))ℎ; that is, ℓ

is conformal Killing with respect to the metric ℎ, which is the
image of the corresponding Killing null vector with respect
to the metric 𝑞. Thus, as per Proposition 6, ((H

𝑢
), (ℎ
𝑢
)) is a

family of totally umbilical null hypersurfaces of (𝑀,𝐺) such
that the second fundamental form 𝐵 of its each member
(H, ℎ, Ω) satisfies

𝐵 (𝑋, 𝑌) = ℓ (ln (Ω)) ℎ (𝑋, 𝑌) , ∀𝑋, 𝑌 ∈ 𝑇 (H) , (67)

where the conformal function 𝑓 = ℓ(ln(Ω)). Thus, subject to
condition (ii) ofDefinition 8 eachmember of (H

𝑢
) is an ENH

of (𝑀,𝐺) for some value of 𝑢. Suppose the null hypersurface
(H, 𝑞) of (𝑀, 𝑔) is an event or an isolated horizon such that
(65) and (66) hold. Then, the family ((H

𝑢
), (ℎ
𝑢
)) of ENHs

evolves into the corresponding event or isolated horizon
(H, 𝑞) when 𝐺 → 𝑔; that is, Ω → 1. The following is an
example of such an ENH of a BH spacetime which evolves
into a weakly isolated horizon.

Example 10. Let (𝑀, 𝑔) be Einstein static universe with
metric 𝑔 given by

𝑔 = −𝑑𝑡
2
+ 𝑑𝑟
2
+ 𝑟
2
(𝑑𝜃
2
+ sin2𝜃𝑑𝜙2) , (68)

where (𝑡, 𝑟, 𝜃, 𝜙) is a spherical coordinate system.This metric
is singular at 𝑟 = 0 and sin 𝜃 = 0. We, therefore, choose the
ranges 0 < 𝑟 < ∞, 0 < 𝜃 < 𝜋, and 0 < 𝜙 < 2𝜋 for which it
is a regular metric. Take two null coordinates V and 𝑤, with
respect to a pseudo-orthonormal basis, such that V = 𝑡+𝑟 and
𝑤 = 𝑡 − 𝑟 (V ≥ 𝑤). We get the following transformed metric:

𝑔 = −𝑑V𝑑𝑤 + (
V − 𝑤
2

)

2

(𝑑𝜃
2
+ sin2𝜃𝑑𝜙2) , (69)

where−∞ < V,𝑤 < ∞.The absence of the terms𝑑V2 and𝑑𝑤2
in (69) implies that the hypersurfaces {𝑤 = constant} and {V =
constant} are null future and past-directed hypersurfaces,
respectively, since 𝑤

;𝑎
𝑤
;𝑏
𝜂
𝑎𝑏

= 0 = V
;𝑎
V
;𝑏
𝜂
𝑎𝑏. Consider a

future-directed null hypersurface (H, 𝑞, 𝑤 = constant) of
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(𝑀, 𝑔). It is easy to see that the degenerate metric 𝑞 of this
H is given by

𝑞 = (
V − 𝑤
2

)

2

(𝑑𝜃
2
+ sin2𝜃 𝑑𝜙2) , 𝑤 = constant (70)

which is time-independent and has topology 𝑅 × 𝑆2. There-
fore, £

ℓ
𝑞 = 0; that is, H, 𝑞, 𝑤 = constant is totally geodesic

in (𝑀, 𝑔) which further implies that its future-directed null
normal ℓ has vanishing expansion, 𝜃

(ℓ)
= 0. Thus, subject to

the energy condition (3) of Definition 1, this H is an NEH
which (see Ashtekar-Fairhust-Krishnan [9]) can be a weakly
isolated horizon.

Consider (𝑀,𝐺) the de-Sitter spacetime [19] which is of
constant positive curvature and is topologically 𝑅1 × 𝑆3 with
its metric 𝐺 given by

𝐺 = −𝑑𝑡
2
+ 𝑎
2cosh2 ( 𝑡

𝑎
) {𝑑𝑟
2
+ 𝑟
2
(𝑑𝜃
2
+ sin2𝜃 𝑑𝜙2)} ,

(71)

where 𝑎 is nonzero constant. Its spacial slices (𝑡 = constant)
are 3-spheres. Introducing a new timelike coordinate 𝜏 =

2 arctan(exp(𝑡/2)) − (𝜋/2), we get

𝐺 = 𝑎
2cosh2 (𝜏

𝑎
) 𝑔, (−

𝜋

2
< 𝜏 <

𝜋

2
) , (72)

where the metric 𝑔 is given by (69).Thus, the de-Sitter space-
time (𝑀,𝐺) is locally conformal to the Einstein static uni-
verse (𝑀, 𝑔) with the conformal function Ω = 𝑎 cosh(𝜏/𝑎).
As discussed above, we have a family of null hypersurfaces
((H
𝑢
), (ℎ
𝑢
)) in (𝑀,𝐺) whose metrics (ℎ

𝑢
) are conformally

related to the metric 𝑞 by the transformation:

ℎ
𝑢
= 𝑎
2cosh2 (𝜏

𝑎
) 𝑞 = 𝑎

2cosh2 (𝜏
𝑎
)

× {(
V − 𝑤
2

)

2

(𝑑𝜃
2
+ sin2𝜃𝑑𝜙2)} ,

(73)

for some value of the parameter 𝑢 = 𝜏 of scalar functions
(Ω
𝜏
) on H, where 𝑤 = constant and 𝑞 is the metric of the

null hypersurface (H, 𝑞) of (𝑀, 𝑔). Set (H, ℎ, ℓ) as a member
of this family ((H

𝑢
), (ℎ
𝑢
)). Then, the following holds:

£
ℓ
ℎ = 2𝑎ℓ (ln(cosh (𝜏

𝑎
)) ℎ) ,

𝐵 (𝑋, 𝑌) = 𝑓ℎ (𝑋, 𝑌) = 𝑎ℓ (ln(cosh (𝜏
𝑎
)) ℎ (𝑋, 𝑌)) ,

∀𝑋, 𝑌 ∈ 𝑇 (H) .

(74)

Therefore, we have a family of totally umbilical time-
dependent null hypersurfaces ((H

𝑢
), (ℎ
𝑢
)) of (𝑀,𝐺). Subject

to the condition (ii) of Definition 8 this is a family of ENHs of
the de-Sitter spacetime (𝑀,𝐺) which can evolve into a WIH
when 𝐺 → 𝑔 at the equilibrium state of𝑀.

Generic Model. Consider a spacetime (𝑀, 𝑔) with
Schwarzschild metric:

𝑔 = −𝐴(𝑟)
2
𝑑𝑟
2
+ 𝐴(𝑟)

−2
𝑑𝑟
2
+ 𝑟
2
(sin2𝜃 𝑑𝜙2 + 𝑑𝜃2) ,

(75)

where 𝐴(𝑟)2 = 1 + 2𝑚/𝑟 and 𝑚 and 𝑟 are the mass and the
radius of a spherical body. Construct a 2-dimensional sub-
manifold S of𝑀 as an intersection of a timelike hypersurface
𝑟 = constant with a spacelike hypersurface 𝑡 = constant.
Choose at each point of S a null direction perpendicular in
S, smoothly depending on the foot-point. There are two such
possibilities: the ingoing and the outgoing radical directions.
Let H be the union of all geodesics with the chosen (say
outgoing) initial direction. This is a submanifold near S.
Moreover, the symmetry of the situation guarantees that H
is a submanifold everywhere, except at points where it meets
the centre of symmetry. It is very easy to verify that H is a
totally umbilical null hypersurface of 𝑀. Since H does not
include the points where it meets the centre of symmetry, it is
proper totally umbilical in𝑀; that is,H does not evolve into
a totally geodesic portion.Therefore, subject to condition (ii)
of Definition 8 and considering H a member of the family
(H
𝑢
) we have a physical model of generic ENHs of the black

hole Schwarzschild spacetime (𝑀, 𝑔).

5. Discussion

In this paper, we introduced a quasilocal definition of a family
of null hypersurfaces called “evolving null horizons (ENH)”
of a spacetime manifold. This definition uses some basic
results taken from the differential geometry of totally umbil-
ical hypersurfaces as opposed to present day use of totally
geodesic geometry for event and isolated horizons. The first
part of this paper includes enough background information
on the event, three types of isolated and dynamical horizons,
with a brief on their respective use in the study of black hole
spacetimes, and need for introducing evolving null horizons.

The rest of this paper is focused on a variety of examples to
justify the existence of ENHs and in some cases relate them
with event and isolated horizons of a black hole spacetime.
Thus, we have shown that an ENH describes the geometry of
the null surface of a dynamical spacetime, in particular, a BH
spacetime that also can be evolved into an event or isolated
horizon at the equilibrium state of a landing spacetime.There
is ample scope of further study on geometric/physical prop-
erties of ENHs. An input of the interested readers on what is
presented so far is desired before one starts working on prop-
erties of ENHs, in particular reference to the null version of
some known results on dynamical horizons. As is the case of
introducing any new concept, there may be several questions
onwhat we have presented in this paper. At this point in time,
the following two fundamental issues need to be addressed.

We know that an event horizon always exists in black
hole asymptotically flat spacetimes under a weak cosmic
censorship condition and isolated horizons are precisely
meant to model specifically quasilocal equilibrium regimes
by offering a precise geometric approximation. Since so far
we only have two specific models of an ENH in a black hole
spacetime, one may ask. Does there always exist an ENH in a
black hole spacetime?

Secondly, since an ENHH comes with an assigned folia-
tion of null hypersurfaces its unique existence is questionable.
Therefore, one may ask. Is there a canonical or unique choice
of an evolving null horizon?
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Interested readers are invited for an input on these two
and any other issues.

Finally, it is well-known that the rich geometry of totally
umbilical submanifolds has a variety of uses in the world
of mathematics and physics. Besides the needed study on
the properties of evolving null horizons in black hole theory,
further study on the mathematical theory of this paper alone
has ample scope to a new way of research on the geometry of
totally umbilical null hypersurfaces in a general semiRieman-
nian and for physical applications a spacetime manifold.
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