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Highly precise tracking of a robotic manipulator in presence of uncertainties like noise, disturbances, and friction has been
addressed in this particular paper. An integrated proportional derivative and support vector machine (SVMPD) controller has
been proposed for manipulator tracking. To illustrate the efficiency of the proposed controller, simulations have been done on a
2-DOFmanipulator system. Performance of the proposed controller has been checked and verified with respect to to a simple PID
controller and the radial bias neural network proportional integral derivative (RBNNPD) controller. It has been proved that the
proposed controller can achieve better tracking performance as compared to other controllers as the range of errors is less and the
time taken by the controller has reduced up to 14 times as compared to RBNN.

1. Introduction

Despite of the increase in complexity of modern control
systems, due to simplicity and satisfactory performance,
most industrial robots employ simple independent PD/PID
controller [1–3]. In spite of so much popularity of PD
controllers, this controller has some of the major drawbacks
like frustrating tuning process and nonadaptability to time
varying, nonlinear and coupling problems. Hence, with the
growth of modern intelligent control techniques; PD is made
to hybrid with these intelligent control techniques. These
intelligent PD controllers have shown improved performance
in past like fuzzy PID [4, 5], neural network based PID [6, 7],
and genetic algorithm based PID [8].

Among all of the controllers, learning capability of the
NN and SVM is used for learning nonlinear functions and
any other characteristics of a systemhadmade the researchers
to pay a lot of attention. After learning, NN and SVM
networks have the capabilities of generalization and then
respond optimally to the unknown situations. In this, some
drawbacks ofNN the like; there is no general way for deciding
the network topology, that number of neurons required
are also has to be determined experimentally, and local
minima, limits its wide application. Hence, in recent years,

SVM theory, has replaced many of the control problems.
SVM was originally developed for pattern recognition and
classification tasks [9]. It has been proved that is newly
developed SVM by Vapnik [9] has better generalization and
easier to find global optimal solution in comparison to neural
networks with less number of training data [10, 11]. Vapnik in
1995 successfully extended the SVM to solve the regression
problems. With the passage of time SVM had shown a
great performance in regression and time series prediction
applications [12].

Uncertainties present in the robotic manipulator dynam-
ics are one of the major limitations in achieving a high
precision performance control. A few of these uncertainties
include the friction, noise and disturbances in the path of
the manipulator. To improve the performance of the tracking
performance of the manipulator, in this paper PD-SVM
integrated controller has been proposed. Supremacy of the
proposed controller has been proved by simulations on a
2-DOF robotic manipulator. Further paper is sectioned as
follows Section 2 has problem formulation in it, Section 3 has
the various controllers applied to themanipulator, simulation
example is given in Section 4 and lastly conclusions are given
in Section 5.
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Figure 1: Uniform random white noise.

2. Problem Formulation

The dynamic equations of the robot manipulator are found
through the use of the Lagrangian formulation, and the
dynamic equation of an 𝑛-degree of freedommanipulator can
be written as [13, 14] in

𝑀(𝑞) ̈𝑞 + 𝑉 (𝑞, ̇𝑞) + 𝐺 (𝑞) + 𝑇𝑑 + 𝐹 = 𝜏 (1)

with 𝑞 ∈ 𝑅
𝑛 as the join position variables, 𝜏 ∈ 𝑅

𝑛 as vector of
input torque, 𝑀(𝑞) ∈ 𝑅

𝑛×𝑛 being the inertia matrix which
is symmetric and positive definite, 𝑉(𝑞, ̇𝑞) ∈ 𝑅

𝑛×𝑛 being
the coriolis and centripetal matrix, 𝐺(𝑞) ∈ 𝑅

𝑛 includes the
gravitational forcesing and 𝑇𝑑 ∈ 𝑅

𝑛 being the uncertainties
in the robotic manipulator dynamics. 𝐹 ∈ 𝑅

𝑛 is the LuGre
friction model.

2.1. Disturbances. External changes that affect performance
of the system are referred to be as disturbances.Whatever the
source of the change-internal or external, it is desired that
the controller chosen is like that it makes the effects of the
change (disturbance) as small as possible.These disturbances
are the major limitations to achieve high precision perfor-
mance control of nonlinear systems like manipulators. Major
disturbances taken in this paper are as follows.

(a) Continuous disturbance: disturbance is changes con-
tinuously with time are continuous disturbance. affect
of this torque has been seen on the robotic manipula-
tor.

(b) Uniform randomwhite noise: uniform randomwhite
noise is a random signal with a flat (constant) power
spectral density. A pictorial view of inserted uniform
random white noise in the manipulator system is
Figure 1.

(c) Friction: The LuGre model is a dynamic friction
model presented in [15]; Friction is modeled as the
average deflection force of elastic springs, when a
tangential force is applied the bristles will deflect
like springs, if the deflection is sufficiently large the
bristles start to slip. The average bristle deflection for
a steady state motion is determined by the velocity. It
is lower at low velocities, which implies that the steady
state deflection decreaseswith increasing velocity, this

Controller

Td (U)
q̇d

q̇

qqd Robotic

manipulator

Figure 2: General block diagram for manipulator control.

models the phenomenon that the surfaces are pushed
apart by the lubricant. LuGre Fiction can be modeled
mathematically as follows:

�̇� = V −

|V|
𝑔 (V)

𝑧,

𝐹 = 𝜎𝑜𝑧 + 𝜎1�̇� + 𝜎2V,

𝑔 (V) = 𝐹𝑐 + (𝐹𝑠 − 𝐹𝑐) exp(

V
V𝑠

)

2

,

(2)

where 𝑧 is average bristle deflection, 𝜎𝑜 is stiffness of
bristles, 𝜎1 is bristle damping coefficient, 𝜎2 is viscous
damping coefficient, V is relative velocity between
moving parts, 𝐹𝑐 is coulomb coefficient, 𝐹𝑠 is static
coefficient, and V𝑠 is stribeck velocity.

3. Controllers

The control problem in the manipulator can be defined as
finding out the input torque given to the manipulator joints,
in order to have the accurate tracking performance even in
the presence of the uncertainties. These input torqueses are
taken as the output from the controllers. Figure 2 represents
the general block diagram of the control system for the
manipulator.

The controller (𝑈) is PD, RBNNPD and SVMPD and
the 𝑇𝑑 are the various disturbances naming continuous
disturbance, white noise and 𝐹 is LuGrefriction.

Let the tracking error vector and error velocity be defined
in (3) as

𝑒 = 𝑞 − 𝑞
𝑑
, ∈ 𝑅𝑛,

̇𝑒 = ̇𝑞 − 𝑞𝑑, ∈ 𝑅𝑛.

(3)

3.1. Proportional Derivative (PD) Controller. The following
control term is obtained for the PD controller:

𝜏 = 𝐾𝑝𝑒 (𝑡) + 𝐾𝑑
̇𝑒 (𝑡) − 𝑇𝑑 − 𝐹, (4)

where𝐾𝑝 and𝐾𝑑 are suitable positive definite diagonal 𝑛 × 𝑛

matrices. Values of the controller constants, that is, 𝐾𝑑 and
𝐾𝑝, are being decided by TAE (Trial And Error) method.

3.2. Radial Bias Neural Network PD (RBNNPD) Controller.
One of the most important and widely used techniques for
regression is based on neural networks. Learning capability
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Figure 3: RBNNPD controller.

of the NN is used for learning nonlinear functions for
direct/indirect dynamics and any other characteristics of a
system had made the researchers to pay a lot of attention to
the field. After learning, NN has a capability of generalization
and then respond optimally to the unknown situations.
Radial bias function network (RBFN) is a type of neural
network having great mapping ability.

Input torque given to the manipulator is very important.
In this paper, a RBNN network is trained by using the data
of a simple PD controller. Input given to the NN is error
and velocity error (𝑒 and ̇𝑒) and output is taken as torque.
Gaussian function is used as the activation function of each
neuron in the hidden layer. The excitation values of these
Gaussian function are distributed between the input values
of the sliding surface value, 𝑠. The output of the network is
given by (5) as

𝑢 =

𝑛

∑

𝑗=1

𝑤𝑗 exp[

[

−






𝑠 − 𝑐𝑗







2

𝜎𝑗
2

]

]

, (5)

where 𝑗 is the 𝑗th neuron of the hidden layer, 𝑐𝑗 is the
central position of the neuron 𝑗, and 𝜎𝑗 is the spread
factor of Gaussian function. A general diagram representing
RBNNPD is shown in Figure 3.

This trained RBNNPD is used further to find the output
torque to be given to the manipulator.

3.3. Support Vector Machine PD (SVMPD) Controller. Sup-
port vector machine is used to replace the neural networks by
overcoming all the drawbacks of the neural network [11]. In a
short time of span, control using SVM technique has shown
the better results [16]. The main objective of the regression is
to estimate a function from a set of samples given. Defining
some of the basics of the 𝜀-SVM regression as 𝑁 data points
{𝑥𝑘, 𝑦𝑘} (𝑘 = 1 ⋅ ⋅ ⋅ 𝑁) with 𝑥𝑘 ∈ 𝑅

𝑛 and output 𝑦𝑘 ∈ 𝑅
𝑛. The

models take the form as in (6)

𝑓 (𝑥) = ⟨𝑤, 𝑥⟩ + 𝑏, (6)

where ⟨⋅, ⋅⟩ denotes inner product. Optimal regression func-
tion is determined by the minimum of

𝜙 (𝑤) =

1

2

‖𝑤‖
2
. (7)

𝜀 is the tolerance loss function. 𝜀-SVR is defined as maximiz-
ing the geometric margin and minimizing the training error.
This can be formulated as

min
(𝑤,𝑏,𝜉𝑖 ,𝜉

∗

𝑖
)

(

1

2

‖𝑤‖ + 𝐶

𝑙

∑

𝑖=1

(𝜉𝑖 + 𝜉
∗

𝑖
))

subject to 𝑦𝑖 − ⟨𝑤, 𝑥𝑖⟩ − 𝑏 ≤ 𝜀 + 𝜉𝑖

⟨𝑤, 𝑥𝑖⟩ + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜉
∗

𝑖

𝜉𝑖, 𝜉
∗

𝑖
≥ 0,

(8)

where ‖𝑤‖ is the Euclidean norm of weights representing
model complexity. 𝐶 > 0 determines the tradeoff between
model complexity and empirical loss function. 𝜉𝑖, 𝜉

∗

𝑖
are the

slack variables representing upper and lower constraints on
output of system. The most common choice for the loss
function is the following 𝜀-insensitive loss function defined
by Vapnik [9]:

𝐿𝑔 [𝑦, 𝑓 (𝑥)] = {

0,




𝑦 − 𝑓 (𝑥)





≤ 𝜀





𝑦 − 𝑓 (𝑥)





− 𝜀,





𝑦 − 𝑓 (𝑥)





> 𝜀.

(9)

Introducing Lagrange multiplier and Kernel techniques, the
resulting convex programming problem expressed in (10) is
solved by its Wolfe dual formulation

𝐿 = min
∝𝑖 ,∝
∗

𝑖

(

1

2

𝑙

∑

𝑖,𝑗=1

(∝
∗

𝑖
− ∝𝑖) (∝

∗

𝑗
− ∝𝑗)𝐾 (𝑥𝑖, 𝑥𝑗)

−

𝑙

∑

𝑖=1

(∝
∗

𝑖
− ∝𝑖) 𝑦𝑖 + 𝜀

𝑙

∑

𝑗=1

(∝
∗

𝑖
+ ∝𝑖))

Subject to
𝑙

∑

𝑖=1

(∝
∗

𝑖
− ∝𝑖) = 0,

(10)

where

0 ≤ ∝𝑖, ∝
∗

𝑖
≤ 𝐶, 𝑖 = 1 ⋅ ⋅ ⋅ 𝑙. (11)

∝𝑖, ∝
∗

𝑖
are nonzero Lagrange multipliers [17] and 𝐾(𝑥𝑖, 𝑥𝑗)

is the kernel function. For linearly separable data linear
kernels are used and for nonlinear separable data non linear
kernels are used. In this paper non linear 𝜀-SVM regression
technique with Radial Bias kernel function is used which can
be formulated as

𝐾(𝑥𝑖, 𝑥𝑗) = exp
(−𝛾|𝑢−V|2)

. (12)

Using KKT conditions offset 𝑏 can be calculated as in (13)

𝑏 =

{
{
{
{
{

{
{
{
{
{

{

𝑦𝑖 −

𝑙

∑

𝑗=1

(∝
∗

𝑗
− ∝𝑗)𝐾 (𝑥𝑖, 𝑥𝑗) + 𝜀 ∝𝑖 > 0,

𝑦𝑖 −

𝑙

∑

𝑗=1

(∝
∗

𝑗
− ∝𝑗)𝐾 (𝑥𝑖, 𝑥𝑗) − 𝜀 ∝

∗

𝑖
> 0.

(13)
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Figure 4: Desired trajectories by joint 1 and joint 2.

Finally output of SVM is given as

̂
𝑓 (𝑥) =

𝑙

∑

𝑖=1

(∝
∗

𝑖
− ∝𝑖)𝐾 (𝑥𝑖, 𝑥𝑗) + 𝑏, (14)

where 𝑏 is the average of 𝑏 by using (13).
Error of the system should be







̂
𝑓 (𝑥) − 𝑓 (𝑥)






≤ 𝜀. (15)

This 𝜀-SVM regression controller is trained by using the data
of a PD controller. Same as RBNNPD inputs given to the 𝜀-
SVM regression model is error and velocity error (𝑒 and ̇𝑒)
and output is taken as torque.

4. Simulation Example

4.1. Robot Dynamics. In order to show the effectiveness of
the proposed intelligent control law, this have been applied
to two-links robot with the parameters given below. The
dynamics of a 2-DOF manipulator used in all types of
controllers and satisfying (1) is given as

𝑀(𝑞) = [

8.77 + 1.02 ∗ cos 𝑞2 0.76 + .51 ∗ cos 𝑞2
0.76 + .51 ∗ cos 𝑞2 0.62

] ,

𝑉 (𝑞, ̇𝑞) = [

−.51 sin (𝑞2)
̇𝑞2 −.51 sin (𝑞2) (

̇𝑞1 +
̇𝑞2)

−.51 sin (𝑞2)
̇𝑞1 0

] ,

𝐺 (𝑞) = [

74.48 sin (𝑞1) + 6.174 sin (𝑞1) + 𝑞2

6.174 sin (𝑞1) + 𝑞2

] .

(16)

This 2-DOF manipulator has been commanded to track the
path shown in Figure 4 and given by

𝑞
𝑑

1
= [.3 sin(.7𝑡 −

Π

2

) + .3 sin(.1𝑡 −

Π

2

) + .7] ,

𝑞
𝑑

2
= [.5 sin(.9 ∗ 𝑡 −

Π

2

) + .5 sin(.1𝑡 −

Π

2

) + 1.1] .

(17)

Table 1: Comparative results for the various controllers.

Controllers
(with uncertainties)

Mean square error (MSE) Time taken
(in sec)Joint 1 Joint 2

PD 0.0035 0.0142 1.24
RBNNPD 0.0024 0.0062 79.589
SVMPD 4.65𝐸 − 06 7.39𝐸 − 04 5.891

4.2. Disturbances. Continuous disturbance in the path of
manipulator is taken as

𝑇𝑑 = [

2 cos (.02𝑡)
1.7 sin (.02𝑡)

] . (18)

And the LuGre Friction model is defined by constants as

𝜎0 = .6, 𝜎1 = .009, 𝜎2 = .6, V𝑠 = .04,

𝐹𝑠 = .01, 𝐹𝑐 = 10.

(19)

4.3. Controllers Parameters. Design parameters for PD con-
troller are taken as

𝐾𝑝 = [

800 0

0 120
] , 𝐾𝑑 = [

70 0

0 50
] . (20)

For RBNNPD controller spread is taken as 2.
For 𝜀-SVM regression, two MATLAB SVM libraries,

namely, svmtrain and svmpredict, are used.
These libraries have the given format. For training SVM

model = svmtrain(training output, training input,
“libsvm options”).

To predict class of new input data according to pretrained
model

predict label = svmpredict(testing output, testing
input, “libsvm options”).

Values for radial bias kernel function are [𝛾, 𝐶] = [1991,

.5064]; [.73, 9099] for joint 1 and joint 2, respectively.
Figures 5 and 6 represent the actual trajectory tracked

by the robotic manipulator with different controllers. It has
been clearly represented in Figures 5 and 6 that for both
the joints 1 and 2 the tracking performance of the SVMPD
is much improved than the PD and RBNNPD controllers.
Figures 7 and 8 are giving the continuous errors in joints 1
and 2 with different controllers. In Figures 7 and 8, it can
be observed that the range of errors in joint 1 and joint 2 is
minimum for SVMPD. RBNNPD has lesser continuous error
when compared to a classical PD controller. Comparative
results for the three controllers, namely, PD, RBNNPD and
SVMPD have been tabulated in Table 1.

It can be observed from Table 1 that mse error of SVMPD
is about 106 and 104 times lesser than the other two PD and
RBNNPD controllers. Time taken by SVMPD is about 14
times lesser than the time taken by RBNNPD for control
purpose.
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Figure 5: Trajectory tracked by joint 1. Path of joint 1 with different
controllers.
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Figure 6: Trajectory tracked by joint 2. path of joint 2 with different
controllers.

5. Conclusion

In this paper, problemof path tracking of roboticmanipulator
with disturbances has been solved upto the best level. Along
with the widely used controllers like PD, RBNNPD one
of the advance upcoming controller, namely, SVMPDd has
been implemented. Results have been checked by simulations
on a 2-DOF manipulator. It has been found in the results
that the proposed SVMPD controller takes less time for
control and is the most robust controller. Even in presence of
various disturbances, SVMPD performs better than the other
controllers.
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