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This paper is concerned with an internal crack problem in an infinite functionally graded elastic layer. The crack is opened by an
internal uniform pressure𝑝

0
along its surface.The layer surfaces are supposed to be acted on by symmetrically applied concentrated

forces of magnitude 𝑃/2 with respect to the centre of the crack. The applied concentrated force may be compressive or tensile in
nature. Elastic parameters 𝜆 and 𝜇 are assumed to vary along the normal to the plane of crack. The problem is solved by using
integral transform technique. The solution of the problem has been reduced to the solution of a Cauchy-type singular integral
equation, which requires numerical treatment. The stress-intensity factors and the crack opening displacements are determined
and the effects of graded parameters on them are shown graphically.

1. Introduction

The study relating the behaviour of elastic material under
applied load needs special attention and care when the elastic
body develops a crack in it. It is obvious that the presence of
a crack in a structure not only affects the stress distribution
but also drastically reduces the life span of the structure.
Propagation of elastic disturbance in a solid is also disturbed
by the presence of a crack. But cracks are present essentially
in all structural materials, either as natural defects or as a
result of fabrication processes. Stress distribution in a body
which develops a crack in it is entirely different from that
in a body without a crack. In literature, considerable effort
has been devoted to the study of cracks in solids, due to
their applications in industry in general and in fabrication of
electronic components in particular.

Presence of a crack in a solid significantly affects its
response to the applied load. Stress distributions in the solid
with a crack are studied in two regions: the region in the
neighbourhood of crack, called the near field region, and

the region far away from the crack, called the far field region.
Study of stress distribution in the near field region is very
important. Stress-intensity factor, crack energy, and so forth
are some of the quantities responsible for spreading of a crack.
For a solidwith a crack in it loadedmechanically or thermally,
determination of stress-intensity factor (SIF) becomes a very
important topic in fracturemechanics.The SIF is a parameter
that gives a measure of stress concentration around cracks
and defects in a solid. SIF needs to be understood if we are to
design fracture tolerant materials used in bridges, buildings,
aircraft, or even bells. A crack detected on the surface of a
body can not be removed just by polishing. Typically formost
materials whenever a crack develops in the solid, the solid is
very close to the critical state of stress predicted by the SIF.

With increasingly wide application of functionally graded
materials in practical engineering, the study of crack prob-
lems in functionally gradedmedia has receivedmuch interest.
Functionally graded materials (FGMs) [1, 2] can usually be
viewed as special inhomogeneousmaterials whose properties
vary gradually with location within the body. In FGMs,
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Figure 1: Geometry of the problem.

due to the continuous change of material properties in
space, the absence of interfaces between different constituents
or phases largely reduces the degree of material property
mismatch and brings appealing physical behaviors superior
to homogeneous and conventional materials. For example,
for the classic ceramic/metal FGMs, the ceramic phase
offers thermal barrier effects and protects the metal from
corrosion and oxidation, and the FGM is toughened and
strengthened by the metallic constituent. FGMs formed
by appropriately combining two or more materials in a
perfectly designed manner can be more resistant to crack
initiation and propagation. FGMs have potential applications
in automotive brakes and clutches. FGMs offer great promise
in applications where the operating conditions are severe: for
example, as wear-resistant linings for handling large heavy
abrasive ore particles, rocket heat shields, heat exchanger
tubes, thermoelectric generators, and so forth. Because of
enormous application of FGMs in industry and in various
engineering designs like aerospace, submarine structures,
civil engineering structures, and so forth the study of these
material structures has been of increasing interest to scientists
and engineers. Thus the study of solid mechanics problems
should not be restricted to the isotropic and homogeneous
elastic medium only, it should be extended to much more
applicable fields and materials.

Crack problem in isotropic elastic medium has been
extensively studied in literature following classical theory.
A comprehensive list of work on crack problems by earlier
investigators has been provided in Chaudhuri and Ray [3],
Ozturk and Erdogan [4], Yong and Hanson [5], Fabrikant
et al. [6], Fabrikant [7], Dag and Erdogan [8], Sherief and El-
Maghraby [9], Birinci et al. [10], Barik et al. [11, 12], Chen et al.
[13], Zhao et al. [14], Matysiak and Pauk [15], Lee [16], Gupta
and Erdogan [17], and Matbuly [18].

The present investigation aims at finding the elastostatic
solution in an infinite functionally graded layer weakened by
an internal crack. Following the integral transform technique
the problem has been reduced to a problem of Cauchy-type
singular integral equation, which has been solved numeri-
cally. Numerical computations have been done to assess the
effects of graded parameter considered in the problem on
various subjects of interest and the results have been shown
graphically.

2. Formulation of the Problem

We consider an infinitely long functionally graded layer of
thickness 2ℎ weakened by the presence of an internal crack
of length 2𝑏, which is opened by a uniform internal pressure
𝑝
0
along its surface. The layer is subjected to two different

types of loadings on its surfaces in a direction perpendicular
to its length: (i) a symmetric pair of compressive concentrated
normal loads 𝑃/2 and (ii) a symmetric pair of tensile
concentrated normal loads 𝑃/2 (Figures 1(a) and 1(b)). The
gravitational force has not been taken into consideration.The
problem is formulated in Cartesian coordinate system (𝑥, 𝑦)

in which crack lies along 𝑥-axis with origin at the centre of
the crack. In deriving analytical solution in the present study
the elastic parameters 𝜆 and 𝜇 have been assumed to vary
exponentially in the direction perpendicular to the plane of
crack; that is,

𝜆 = 𝜆
0
𝑒
𝛽|𝑦|
, 𝜇 = 𝜇

0
𝑒
𝛽|𝑦|
, −ℎ ≤ 𝑦 ≤ ℎ, (1)

where 𝜆
0
and 𝜇

0
are the elastic parameters in the homo-

geneous medium and 𝛽 is the nonhomogeneity parameter
controlling the variation of the elastic parameters in the
graded medium. The strain displacement relations, linear
stress-strain relations, and equations of equilibrium are,
respectively, given by

𝜀
𝑥
=
𝜕𝑢

𝜕𝑥
, 𝜀

𝑦
=
𝜕V
𝜕𝑦
, 𝛾

𝑥𝑦
=
1

2
(
𝜕𝑢

𝜕𝑦
+
𝜕V
𝜕𝑥
) , (2)

𝜎
𝑥
=

𝜇

𝜅 − 1
[(1 + 𝜅) 𝜀

𝑥
+ (3 − 𝜅) 𝜀

𝑦
] ,

𝜎
𝑦
=

𝜇

𝜅 − 1
[(3 − 𝜅) 𝜀𝑥 + (1 + 𝜅) 𝜀𝑦] ,

𝜏
𝑥𝑦
= 2𝜇𝛾

𝑥𝑦
,

(3)

𝜕𝜎
𝑥

𝜕𝑥
+
𝜕𝜏
𝑥𝑦

𝜕𝑦
= 0, (4)

𝜕𝜏
𝑥𝑦

𝜕𝑥
+
𝜕𝜎
𝑦

𝜕𝑦
= 0, (5)
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where 𝜅 = 3−4] and ] is Poisson’s ratio.The present problem
is equivalent to the following mathematical problem with the
following.
(i) Equilibrium Equations. Consider

2 (1 − ])
𝜕
2
𝑢

𝜕𝑥2
+ (1 − 2])

𝜕
2
𝑢

𝜕𝑦2
+
𝜕
2V

𝜕𝑥𝜕𝑦

+ 𝛽 (1 − 2]) (
𝜕𝑢

𝜕𝑦
+
𝜕V
𝜕𝑥
) = 0,

(1 − 2])
𝜕
2V
𝜕𝑥2

+ 2 (1 − ])
𝜕
2V
𝜕𝑦2

+
𝜕
2
𝑢

𝜕𝑥𝜕𝑦

+ 𝛽 [2 (1 − ])
𝜕V
𝜕𝑦

+ 2]
𝜕𝑢

𝜕𝑥
] = 0.

(6)

(ii) The Boundary Conditions. Consider

𝜏
𝑥𝑦
(𝑥, 0) = 0, (−∞ < 𝑥 < ∞) , (7)

𝜏
𝑥𝑦
(𝑥, ℎ) = 0, (−∞ < 𝑥 < ∞) , (8)

𝜎
𝑦 (𝑥, ℎ) = ∓ [

𝑃

2
𝛿 (𝑥 − 𝑎) +

𝑃

2
𝛿 (𝑥 + 𝑎)] ,

(−∞ < 𝑥 < ∞) ,

(9)

𝜕

𝜕𝑥
[V (𝑥, 0)] = {

𝑓 (𝑥) , |𝑥| < 𝑏;

0, |𝑥| > 𝑏.
(10)

𝜎
𝑦
(𝑥, 0) = −𝑝

0
, (−𝑏 ≤ 𝑥 ≤ 𝑏) , (11)

where 𝑢 and V are the 𝑥 and 𝑦 components of the displace-
ment vector; 𝜎

𝑥
, 𝜎
𝑦
, 𝜏
𝑥𝑦

are the normal and sharing stress
components; 𝑓(𝑥) is an unknown function; and 𝛿(𝑥) is the
Dirac delta function. In (9) positive sign indicates tensile
force while negative sign corresponds to compressive force.

3. Method of Solution

First of all we observe that, due to symmetry of the crack
location with respect to the layer, nature of the graded
parameter and also of the applied load with respect to the
crack, it is sufficient to consider solution of the problem in
the regions 0 ≤ 𝑥 < ∞ and 0 ≤ 𝑦 ≤ ℎ. To solve the partial
differential equations (6), the Fourier transform is applied to
the equations with respect to the variable 𝑥.

Utilizing the symmetry condition the displacement com-
ponents 𝑢, Vmay be written as

𝑢 (𝑥, 𝑦) =
2

𝜋
∫

∞

0

Φ(𝛼, 𝑦) sin (𝛼𝑥) 𝑑𝛼,

V (𝑥, 𝑦) =
2

𝜋
∫

∞

0

Ψ (𝛼, 𝑦) cos (𝛼𝑥) 𝑑𝛼,
(12)

where Φ(𝛼, 𝑦) and Ψ(𝛼, 𝑦) are Fourier transforms of 𝑢(𝑥, 𝑦)
and V(𝑥, 𝑦), respectively, with respect to the coordinate 𝑥 and
𝛼 is the transformed parameter.

Substituting 𝑢(𝑥, 𝑦) and V(𝑥, 𝑦) from (12) into the equa-
tions of equilibrium (6)we obtain the differential equation for
the determination of Φ(𝛼, 𝑦)

Φ
𝑖V
+ 2𝛽Φ


− (2𝛼

2
− 𝛽
2
)Φ


− 2𝛼
2
𝛽Φ

+ 𝛼
2
{𝛼
2
−
(𝜅 − 3)

𝜅 + 1
𝛽
2
}Φ = 0.

(13)

The solution of this equation is of the form

Φ(𝛼, 𝑦) =

4

∑

𝑖=1

𝐴
𝑖
(𝛼) 𝑒
𝑚𝑖𝑦, (14)

where 𝐴
𝑖
(𝛼), (𝑖 = 1, . . . , 4) are constants to be determined

from the boundary conditions and 𝑚
1
, 𝑚
2
, 𝑚
3
, 𝑚
4
are the

four complex roots of two biquadratic equation

𝑚
4
+ 2𝛽𝑚

3
− (2𝛼

2
− 𝛽
2
)𝑚
2

− 2𝛼
2
𝛽𝑚 + 𝛼

2
{𝛼
2
−
𝜅 − 3

𝜅 + 1
𝛽
2
} = 0.

(15)

The function Ψ(𝛼, 𝑦) can then be determined as

Ψ (𝛼, 𝑦) =

4

∑

𝑖=1

𝑀
𝑖
(𝛼) 𝐴
𝑖
(𝛼) 𝑒
𝑚𝑖𝑦. (16)

It follows from (15) that

𝑚
1
= 𝑚
3
= −

𝛽

2
+ √𝛼2 +

𝛽
2

4
+ 𝑖𝛼𝛽√

3 − 𝜅

𝜅 + 1
,

𝑚
2
= 𝑚
4
= −

𝛽

2
− √𝛼2 +

𝛽
2

4
+ 𝑖𝛼𝛽√

3 − 𝜅

𝜅 + 1
,

(17)

where 𝑚
3
, 𝑚
4
denote the respective complex conjugates of

𝑚
1
,𝑚
2
. In (16), the known functions𝑀

𝑖
(𝛼) (𝑖 = 1, . . . , 4)may

be expressed as follows:

𝑀
𝑖
(𝛼) =

(𝜅 − 1)𝑚
2

𝑖
+ 𝛽 (𝜅 − 1)𝑚𝑖 − 𝛼

2
(𝜅 + 1)

𝛼 {2𝑚
𝑖
+ 𝛽 (𝜅 − 1)}

,

(𝑖 = 1, . . . , 4) .

(18)
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Substituting (12) into (2) and (3) and utilizing (14) and (16)
we obtain

1

2𝜇
𝜎
𝑥
(𝑥, 𝑦)

=
2

𝜋
∫

∞

0

4

∑

𝑖=1

1

2 (1 − 𝜅)
[− (1 + 𝜅) 𝛼 − (3 − 𝜅)𝑚

𝑖
𝑀
𝑖
]

× 𝐴
𝑖
𝑒
𝑚𝑖𝑦 cos (𝛼𝑥) 𝑑𝛼,

(19)

1

2𝜇
𝜎
𝑦
(𝑥, 𝑦)

=
2

𝜋
∫

∞

0

4

∑

𝑖=1

1

2 (1 − 𝜅)
[− (1 + 𝜅)𝑚𝑖𝑀𝑖 − (3 − 𝜅) 𝛼]

× 𝐴
𝑖
𝑒
𝑚𝑖𝑦 cos (𝛼𝑥) 𝑑𝛼,

(20)

1

2𝜇
𝜏
𝑥𝑦
(𝑥, 𝑦)

=
2

𝜋
∫

∞

0

4

∑

𝑖=1

[−
𝛼

2
𝑀
𝑖
+
𝑚
𝑖

2
]𝐴
𝑖
𝑒
𝑚𝑖𝑦 sin (𝛼𝑥) 𝑑𝛼.

(21)

From the boundary conditions (7)–(10), the unknown con-
stants𝐴

𝑖
(𝑖 = 1, 2, . . . , 4) can be found out from the following

linear algebraic system of equations:

[
[
[
[
[
[

[

𝑆
1
𝑒
𝑚1ℎ 𝑆

2
𝑒
𝑚2ℎ 𝑆

3
𝑒
𝑚3ℎ 𝑆

4
𝑒
𝑚4ℎ

𝑇
1
𝑒
𝑚1ℎ 𝑇

2
𝑒
𝑚2ℎ 𝑇

3
𝑒
𝑚3ℎ 𝑇

4
𝑒
𝑚4ℎ

𝑚
1
− 𝑇
1
𝑚
2
− 𝑇
2
𝑚
3
− 𝑇
3
𝑚
4
− 𝑇
4

𝑇
1

𝑇
2

𝑇
3

𝑇
4

]
]
]
]
]
]

]

[
[
[
[
[

[

𝐴
1

𝐴
2

𝐴
3

𝐴
4

]
]
]
]
]

]

=
[
[
[

[

−𝑅
1 (𝛼)

0

−𝑅
2
(𝛼)

0

]
]
]

]

,

(22)

where

𝑅
1
(𝛼) = ±

(𝜅 − 1)

2𝜇
𝑃 cos (𝑎𝛼) ,

𝑅
2
(𝛼) = ∫

∞

0

𝑓 (𝑥) sin (𝛼𝑥) 𝑑𝑥,

𝑆
𝑖
= (1 + 𝜅)𝑚

𝑖
𝑀
𝑖
+ (3 − 𝜅) 𝛼,

𝑇
𝑖
= −𝛼𝑀

𝑖
+ 𝑚
𝑖
, (𝑖 = 1, . . . , 4) .

(23)

Equation (22) yields

𝐴
𝑖 (𝛼) = (−1)

𝑖
[
𝐷
1𝑖

𝐷
𝑅
1 (𝛼) +

𝐷
3𝑖

𝐷
𝑅
2 (𝛼)] , (𝑖 = 1, . . . , 4) ,

(24)

where𝐷 is the determinant and𝐷
𝑗𝑖
(𝑗 = 1, 3; 𝑖 = 1, . . . , 4) is

the subdeterminant (corresponding to the elimination of the
𝑗th row and 𝑖th column) of the coefficient matrix in (22).

Substituting the values of𝐴
𝑖
(𝛼) into (20) and utilizing the

boundary condition (11) we get the following singular integral
equation:

1

𝜋
∫

𝑏

−𝑏

𝑓 (𝑡) [
1

𝑡 − 𝑥
+ 𝑘
1 (𝑥, 𝑡)] 𝑑𝑡

=
(𝜅 − 1)

𝜇𝜒
[−𝑝
0
±
𝑃

2𝜋
𝑘
2 (𝑥)] , (−𝑏 < 𝑥 < 𝑏) ,

(25)

where

𝑘
1 (𝑥, 𝑡) =

1

𝜒
∫

∞

0

{

4

∑

𝑖=1

(−1)
𝑖 𝐷3𝑖

𝐷
𝑆
𝑖
− 𝜒} ,

𝜒 = lim
𝛼→∞

4

∑

𝑖=1

(−1)
𝑖 𝐷3𝑖

𝐷
𝑆
𝑖
,

𝑘
2 (𝑥) = ∫

∞

0

4

∑

𝑖=1

(−1)
𝑖 𝐷1𝑖

𝐷
𝑆
𝑖

× {cos𝛼 (𝑥 − 𝑎) + cos𝛼 (𝑎 + 𝑥)} 𝑑𝛼.

(26)

The kernels 𝑘
1
(𝑥, 𝑡) and 𝑘

2
(𝑥) are bounded and continuous

in the closed interval −𝑏 ≤ 𝑥 ≤ 𝑏. The integral equation
(25) must be solved under the following single-valuedness
condition:

∫

𝑏

−𝑏

𝑓 (𝑡) 𝑑𝑡 = 0. (27)

Before further proceeding it will be convenient to introduce
nondimensional variables 𝑟 and 𝑠 by rescaling all lengths in
the problems by length scale 𝑏:

𝑥 = 𝑏𝑟, 𝑡 = 𝑏𝑠, (28)

𝑓 (𝑡) = 𝑓 (𝑏𝑠) =
𝑝
0
(1 − 𝜅)

𝜇 (3 − 𝜅)
𝜙 (𝑠) , 𝜔 = 𝛼𝑏. (29)

In terms of nondimensional variables the integral equation
(25) and single valuedness condition (27) become

1

𝜋
∫

1

−1

[
1

𝑠 − 𝑟
+ 𝑘
∗

1
(𝑟, 𝑠)] 𝜙 (𝑠) 𝑑𝑠

= −1 ±
𝑄

𝜋
𝑘
∗

2
(𝑟) , (−1 < 𝑟 < 1) ,

(30)

∫

1

−1

𝜙 (𝑠) 𝑑𝑠 = 0, (31)

where

𝑘
∗

1
(𝑟, 𝑠) =

1

𝜒
∫

∞

0

{

4

∑

𝑖=1

(−1)
𝑖 𝐷3𝑖

𝐷
𝑆
𝑖
− 𝜒} sin𝜔 (𝑠 − 𝑟) 𝑑𝜔,

𝑘
∗

2
(𝑟) = ∫

∞

0

4

∑

𝑖=1

(−1)
𝑖 𝐷1𝑖

𝐷
𝑆
𝑖

× {cos𝜔 (𝑟 − 𝑎∗) + cos𝜔 (𝑟 + 𝑎∗)} 𝑑𝜔,
(32)
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𝑎
∗
= 𝑎/𝑏, and 𝑄 is the load ratio defined as

𝑄 =
𝑃

2𝑏𝑝
0

. (33)

4. Solution of Integral Equations

The singular integral equation (30) is a Cauchy-type singular
integral equation for an unknown function 𝜙(𝑠). For the eval-
uation of displacement and stress components it is necessary
to solve the integral equation (30) for the unknown function
𝜙(𝑠). Expressing now the solution of (30) in the form

𝜙 (𝑠) =
𝜓 (𝑠)

√1 − 𝑠2
, (−1 < 𝑠 < 1) , (34)

where 𝜓(𝑠) is a regular and bounded unknown function and
using the Gauss-Chebyshev formula (Erdogan and Gupta
[19]) to evaluate the integral equation (30), we obtain

1

𝑁
[

𝑁

∑

𝑘=1

{
1

𝑠
𝑘
− 𝑟
𝑖

+ 𝑘
∗

1
(𝑟
𝑖
, 𝑠
𝑘
)}𝜓 (𝑠

𝑘
)] = −1 ±

𝑄

𝜋
𝑘
∗

2
(𝑟
𝑖
) ,

𝑖 = 1, 2, . . . , 𝑁 − 1,

𝜋

𝑁

𝑁

∑

𝑘=1

𝜓 (𝑠
𝑘
) = 0,

(35)

where 𝑠
𝑘
and 𝑟
𝑖
are given by

𝑠
𝑘
= cos(2𝑘 − 1

2𝑁
𝜋) , (𝑘 = 1, 2, 3, . . . , 𝑁) ,

𝑟
𝑖
= cos(𝜋𝑖

𝑁
) , (𝑖 = 1, 2, 3, . . . , 𝑁 − 1) .

(36)

We observe that, corresponding to (𝑁− 1) collocation points
𝑥
𝑗
= cos(𝑗𝜋/2(𝑁 + 1)), 𝑗 = 1, 2, . . . , (𝑁 − 1), (35) represent

a set of 𝑁 linear equations in 𝑁 unknowns 𝜓(𝑠
1
), 𝜓(𝑠
2
), . . . ,

𝜓(𝑠
𝑁
). This linear algebraic system of equations is solved

numerically by utilizing Gaussian elimination method.

5. Determination of Stress-Intensity Factor

Presence of a crack in a solid significantly affects the stress
distribution compared to that when there is no crack. While
the stress distribution in a solid with a crack in the region
far away from the crack is not much disturbed, the stresses
in the neighbourhood of the crack tip assume a very high
magnitude. In order to predict whether the crack has a
tendency to expand further, the stress-intensity factor (SIF),
a quantity of physical interest, has been defined in fracture
mechanics. The load at which failure occurs is referred to as
the fracture strength. The stress-intensity factor is defined as

𝑘 (𝑏) = lim
𝑟→1

√2𝑏 (𝑟 − 1)𝜎
∗

𝑦
(𝑟, 0) , (37)

where 𝜎∗
𝑦
(𝑟, 0) is normal stress in terms of nondimensional

variables.

Using (29) and (25) and after some manipulation, the
expression for 𝑘(𝑏) is obtained as

𝑘 (𝑏)

𝑝
0
√𝑏

= −𝜓 (1) , (38)

where 𝜓(1) can be found out from 𝜓(𝑠
𝑘
) (𝑘 = 1, 2, 3, . . . , 𝑁)

using the interpolation formulas given by Krenk [20].
Following the method as in Gupta and Erdogan [17] we

obtain the crack surface displacement in the form

V (𝑥, 0) = ∫
𝑥

−𝑏

𝑓 (𝑡) 𝑑𝑡, (−𝑏 < 𝑥 < 𝑏) . (39)

Using (28) and (29) into (39), we can express the dimension-
less normal displacement as

V (𝑟, 0) =
V (𝑥, 0) 𝜇 (3 − 𝜅)
𝑝
0
𝑏 (1 − 𝜅)

= ∫

𝑟

−1

𝜙 (𝑠) 𝑑𝑠, (−1 < 𝑟 < 1) ,

(40)

which can be obtained numerically, using Simpson’s 1/3 inte-
gration formula and the appropriate interpolation formula.

6. Numerical Results and Discussions

The present study is related to the study of an internal
crack problem in an infinite functionally graded elastic layer.
The main objective of the present discussion is to study
the effects of graded parameters as well as of different
applied loads on stress-intensity factor and crack opening
displacement. The elastic moduli 𝜆 and 𝜇 have been assumed
to be position dependent ((1) in Section 2). The presence
of the graded parameters 𝛽 in FGMs makes the governing
differential equations more complex to get a complete ana-
lytical solution. Solution of the problem can be obtained
using numerical methods. Following the standard numerical
method described in Section 4, the normal displacement
component and the stress-intensity factor are computed and
shown graphically.

The variation of normalized stress-intensity factor (NSIF)
𝑘

(𝑏) with crack length 𝑏/ℎ is shown in Figure 2 for both the

cases of two symmetric transverse pairs of compressive and
tensile concentrated forces. It is observed from Figure 2(a)
that for compressive concentrated forces the NSIF decreases
with the increase of the load ratio 𝑄, and the increase of
𝑘

(𝑏) is quite significant for smaller values of 𝑄. It is also

observed from Figure 2(a) that the load ratio 𝑄 is not of
much effect on 𝑘(𝑏) when the crack length is sufficiently
small. Contrary to this, in Figure 2(b), where the force is of
tensile nature, 𝑘(𝑏) increases with 𝑄. For small crack length,
the behaviour of 𝑘(𝑏) is similar to the case of compressive
concentrated load. In Figure 3 NSIF experiences the effect
of graded parameter 𝛽 for fixed load ratio 𝑄. It is observed
that in both compressive and tensile load conditions 𝑘(𝑏)
increases with graded parameter 𝛽 near the centre of the
crack, while the effect is opposite far away from the centre of
the crack. Figure 4 displays the variation of 𝑘(𝑏) for different
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Figure 2: (a) Variation of normalized stress-intensity factor 𝑘(𝑏)with 𝑏/ℎ for different loads𝑄 in the case of compressive concentrated forces
(𝑎/𝑏 = 0.0,𝐾 = 1.8, and 𝛽 = 0.1). (b) Variation of normalized stress-intensity factor 𝑘(𝑏) with 𝑏/ℎ for different loads 𝑄 in the case of tensile
forces (𝑎/𝑏 = 0.5, 𝐾 = 1.8, and 𝛽 = 0.1).
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Figure 3: (a) Effect of graded parameter 𝛽 on normalized stress-intensity factor 𝑘(𝑏) in the case of compressive forces (𝑎/𝑏 = 0.0, 𝑄 = 0.1,
and 𝐾 = 1.8). (b) Effect of graded parameter 𝛽 on normalized stress-intensity factor 𝑘(𝑏) in the case of tensile forces (𝑎/𝑏 = 0.5, 𝑄 = 1.0,
and 𝐾 = 1.8).

position of loading. It is noted that, in the case of compressive
concentrated forces, 𝑘(𝑏) increases with increasing 𝑎/𝑏, but
it decreases in the case of tensile concentrated forces.

Figure 5 depicts the variation of normalized crack surface
displacement V(𝑟, 0) with 𝑟/ℎ for different values of load
ratio 𝑄. It is clear from Figure 5(a) that for compressive
nature of forces V(𝑟, 0) decreases as load ratio 𝑄 increases
but decreases as load ratio 𝑄 also decreases (Figure 5(b)).
For both the cases of compressive and tensile concentrated
forces the graphs show that the normalized crack surface

displacement is symmetrical with respect to origin.The effect
of graded parameter 𝛽 on V(𝑟, 0) is observed in Figure 6
for both the cases of compressive and tensile concentrated
forces. Figure 7 illustrates the role of the point of application
of loading on the normalized crack surface displacement
for a particular load ratio 𝑄 = 0.1 and 𝑏/ℎ = 1.0. It is
observed in Figure 7(a) that for compressive concentrated
loading the normalized crack surface displacement increases
with the increased values of 𝑎/𝑏 but behaviour is just opposite
(Figure 7(b)) for tensile concentrated loading.
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Figure 5: (a)Variation of normalized crack surface displacement V(𝑟, 0) for different load ratios𝑄 in the case of compressive forces (𝑎/𝑏 = 0.0,
𝑏/ℎ = 1.0, 𝐾 = 1.8, and 𝛽 = 0.1). (b) Variation of normalized crack surface displacement V(𝑟, 0) for different load ratios 𝑄 in the case of
tensile forces (𝑎/𝑏 = 0.5, 𝑏/ℎ = 1.0, 𝐾 = 1.8, and 𝛽 = 0.1).

An important observation may be available from
Figure 2(a), under the compressive load condition. We
observe that, in this case, the layer with a crack in it is
under two types of loadings. The compressive load of total
magnitude 𝑃 at the surfaces and a force of magnitude 𝑝

0

uniformly distributed on the crack surfaces and oppositely
directed to the load 𝑃. Clearly, the load ratio 𝑄 = 𝑃/2𝑏𝑝

0

having its value >1 indicates that compressive load is greater
than the crack opening load.This physically means that there
is very little chance of crack expansion for sufficiently large
value of 𝑄. In other words, the SIF at the crack tip will be

zero for some value of 𝑄 and also for some crack length. The
corresponding crack length for that value of𝑄 represents the
critical crack length. From Figure 2(a), if 𝑄 = 2.0, the critical
crack length is approximately 1.1.

7. General Conclusion

The present discussion relating to the study of the behavior
of a layer of functionally graded material with a crack in it
and under the action of compressive or tensile forces on its
surfaces provides the following observations.
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Figure 7: (a) Variation of normalized crack surface displacement V(𝑟, 0) for various values of 𝑎/𝑏 in the case of compressive forces (𝑄 = 0.1,
𝐾 = 1.8, 𝛽 = 0.1, and 𝑏/ℎ = 1.0). (b) Variation of normalized crack surface displacement V(𝑟, 0) for various values of 𝑎/𝑏 in the case of tensile
forces (𝑄 = 0.1, 𝐾 = 1.8, 𝛽 = 0.1, and 𝑏/ℎ = 1).

The behavioral patterns in homogeneous and nonhomo-
geneous materials of the type depicted in (1) have almost
been of the same nature, the only difference being in their
magnitudes and variations in slopes. The SIF becomes zero
for a particular type of compressive loading yielding a critical
crack length.This observation is expected fromphysical point
of view.
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