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This paper aims to discuss the effect of slip velocity and surface roughness on the performance of Jenkins model based magnetic
squeeze film in curved rough circular plates. The upper plate’s curvature parameter is governed by an exponential expression while
a hyperbolic form describes the curvature of lower plates. The stochastic model of Christensen and Tonder has been adopted
to study the effect of transverse surface roughness of the bearing surfaces. Beavers and Joseph’s slip model has been employed
here. The associated Reynolds type equation is solved to obtain the pressure distribution culminating in the calculation of load
carrying capacity. The computed results show that the Jenkins model modifies the performance of the bearing system as compared
to Neuringer-Rosensweig model, but this model provides little support to the negatively skewed roughness for overcoming the
adverse effect of standard deviation and slip velocity even if curvature parameters are suitably chosen. This study establishes that
for any type of improvement in the performance characteristics the slip parameter is required to be reduced even if variance (−ve)
occurs and suitable magnetic strength is in force.

1. Introduction

Nowadays, magnetohydrodynamic flow of a fluid in squeeze
film lubrication is of interest, because it prevents the unex-
pected variation of lubricant viscosity with temperature
under various operating conditions. The effects of magnetic
fluid in squeeze film lubrication have been encouraging
because magnetic fluid has important applications in the
industry with obvious relevance to technology-based world.
Owing to the development of modern technology, the
increasing use of magnetic fluids as lubricants has been
highlighted. Magnetic fluids can be controlled and located at
some preferred places in the presence of an external magnetic
field. Because of these prominent phenomena, ferrofluids are
widely used in different fields of sciences and technology, for
instance, dampers, seals, sensors, loudspeakers, steppers and
coating systems, ink-jet printing, and filtering.

Neuringer and Rosensweig [1] proposed a simple flow
model to describe the steady flow of magnetic fluids in
the presence of slowly changing external magnetic fields.

Numerous papers are available in the literature for the study
of different types of bearing using Neuringer and Rosensweig
flow model, for example, Tipei [2] in short bearing, Agrawal
[3] and Shah and Bhat [4] in slider bearing, journal bearing
by Nada and Osman [5] and Patel el al. [6], and circular
plates by Shah and Bhat [7] and Deheri and Abhangi [8].
Later on, the flow model of Neuringer and Rosensweig was
modified by Jenkins [9] with Maugin’s modification. It was
found that Neuringer-Rosensweig model modified pressure
while Jenkins flow model modified both the pressure and
the velocity of the ferrofluid. The steady-state performance
of bearings with Jenkins model based magnetic fluids was
discussed byAgrawal [3], RamandVerma [10], Shah andBhat
[11], and Ahmad and Singh [12]. It was concluded that the
load carrying capacity of the bearing system increased with
increasing magnetization of the magnetic fluid.

Squeezing flow between parallel walls accrues in many
industrial and biological systems, such as machine elements,
approaching gears, braking units, hydraulic dampers, skeletal
bearings, synovial joints, moving pistons in engines, and
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chocolate filler, and many other devices are based on the
principle of flow between contracting domains. To develop
this equipment and machines, better understanding of such
flow models which describe the squeezing flow between
parallel walls is always needed. Analysis of squeeze film
performance assumes that the lubricant behaves essentially
as a Newtonian viscous fluid although, to establish the flow
properties and to increase the lubricating quantities, the use
of ferrofluid has been emphasized. Also, the flow pattern
corresponds to the slip flow and the fluid presents a loss of
adhesion at the welted wall making the fluid slide along the
wall in several applications. Flowwith slip becomes useful for
problems in chemical engineering, for example, flow through
pipes in which chemical reactions occur at the walls, two
phase flows in bearing system.

When the gap between two mating surfaces becomes
smaller, the effects of roughness become more important.
In recent years, surface roughness has been studied with
much interest because all bearing surfaces are rough to some
extent. Also, to increase the performance of hydrodynamic
lubrication in various bearings, it is important to evaluate
the influence of surface roughness. Tzeng and Saibel [13] and
Christensen and Tonder [14–16] proposed the model of sur-
face roughness within the framework of the stochastic theory.
Christensen and Tonder’s [14–16] stochastic model assumes
that the probability density function for the random variable
characterizing the roughness is symmetric with the mean of
the random variable equal to zero. According to this model,
there are two types of roughness patterns which are of special
interest in the roughness theory: one is transverse roughness
and the other one is longitudinal roughness. In the literature,
many authors (Ting [17], Prakash and Tiwari [18], Guha [19],
Gupta and Deheri [20], and Chiang et al. [21]) have adopted
this model to study the effect of surface roughness. Deheri et
al. [22] studied the behaviour of ferrofluid based squeeze film
between porous circular plates with porousmatrix of variable
thickness. Here the magnetization had a significant positive
effect by considering a suitable thickness ratio. Bujurke et al.
[23] analyzed the effect of surface roughness and couple stress
effect on squeeze film behaviour in porous circular disks.
Although the transverse roughness had an adverse effect, the
couple stress effect improved the performance of the squeeze
film. Shimpi and Deheri [24] considered the combined
effect of surface roughness and elastic deformation on the
behaviour of a ferrofluid based squeeze film between rotating
porous circular plates with a concentric circular pocket. In
spite of the fact that the combined effect of surface roughness
and deformation was adverse the situation remained better
due to the magnetization with a suitable choice of pocket
radius. Patel et al. [25] extended the discussion of Deheri et
al. [22] by incorporating the effect of surface roughness. Here
the load carrying capacitywas relatively higherwhen variance
(−ve) was involved. Abhangi and Deheri [26] embarked on
numerical modelling of squeeze film performance between
rotating transversely rough curved circular plates under the
presence of amagnetic fluid lubricant. Here it was established
that the negatively skewed roughness turned in an augmented
performance with suitable choice of rotational inertia and
proper choice of curvature parameters. Kudenatti et al. [27]
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Figure 1: Configuration of the bearing system.

derived a numerical solution of MHD Reynolds equation for
squeeze film lubrication between porous and rough rectangu-
lar plates. The load was enhanced because of MHD effect. All
the above authors investigated that roughness played a crucial
role in improving the performance of bearing system. Patel
and Deheri [28] analyzed the effect of a ferrofluid lubricated
rough porous inclined slider bearing considering slip velocity.
It was found that the performance of the bearing system could
be made to improve by suitably choosing the magnetization
parameter and slip coefficient in the case of negatively skewed
roughness. The performance of velocity slip and viscosity
variation in squeeze film lubrication of two circular plates was
investigated byRao et al. [29]. Patel andDeheri [30] discussed
the effect of various porous structures on the performance
of Shliomis model based ferrofluid lubrication of a squeeze
film in rotating rough porous curved circular plates. It was
manifest that the adverse effect of transverse roughness could
be overcome by the positive effect of ferrofluid lubrication in
the case of negatively skewed roughness by suitably choos-
ing curvature parameters and rotational inertia. Recently,
Patel and Deheri [31] theoretically investigated the effect of
Shliomis model based ferrofluid lubrication on the squeeze
film between curved rough annular plates with comparison
between two different porous structures. It was found that the
effect of morphology parameter and volume concentration
parameter increased the load carrying capacity.

The aim of this paper is to analyze the effect of roughness
and slip velocity on the performance of a Jenkinsmodel based
magnetic squeeze film in curved rough circular plates.

2. Analysis

The configuration of the bearing system is displayed in
Figure 1 (Bhat [32]). The bearing system consists of two
circular plates, each of radius 𝑎.

In 1972, the flow model of a ferrofluid was discussed
by Jenkins. According to this paper the magnetizable liquid
was regarded as an anisotropic fluid. Further, to complete
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the description of the material the vector magnetization
density was added to the motion and the temperature.
The use of local magnetization as an independent variable
allowed Jenkins to treat static and dynamic situation in a
uniform fashion and to make a natural distinction between
paramagnetic and ferromagnetic fluids. A uniqueness theo-
rem was established for incompressible paramagnetic fluids
and determined that in these materials the magnetization
vanished with the applied magnetic field.

UsingMaugin’s modifications, equations of the model for
steady flow are (Jenkins [9] and Ram and Verma [10])

𝜌 (𝑞 ⋅ ∇) 𝑞 = −∇𝑝 + 𝜂∇

2
𝑞 + 𝜇0 (𝑀 ⋅ ∇)𝐻 +

𝜌𝐴

2

2

∇

× [

𝑀

𝑀

× {(∇ × 𝑞) ×𝑀}]

(1)

together with

∇ ⋅ 𝑞 = 0,

∇ × 𝐻 = 0,

𝑀 = 𝜇𝐻,

∇ ⋅ (𝐻 +𝑀) = 0

(2)

(Bhat [32]), where 𝜌 denotes the fluid density, 𝑞 represents
the fluid velocity in the film region, 𝐻 is external magnetic
field, 𝜇 denotes magnetic susceptibility of the magnetic field,
𝑝 represents the film pressure, 𝜂 is the fluid viscosity, 𝜇0
denotes the permeability of the free space, and𝐴 is a material
constant.The details of these parameters have been discussed
by Bhat [32] and Prajapati [33]. From the above equation it is
noticed that Jenkins model is a generalization of Neuringer-
Rosensweig model with an additional term:

𝜌𝐴

2
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(3)

which modifies the velocity of the fluid. Neuringer-
Rosensweig model modifies the pressure while Jenkins
model modifies both the pressure and the velocity of the
magnetic fluid.

Let (𝑢, V, 𝑤) be the velocity of the fluid at any point (𝑟, 𝜃, 𝑧)
between two solid surfaces, with 𝑧-axis. Making use of the
assumptions of hydrodynamic lubrication and remembering
that the flow is steady and axially symmetric, the equations of
motion take the form
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(5)

In view of the boundary conditions,

𝑢 = 0 at 𝑧 = 0, ℎ, (6)

the solution of (4) can be obtained as

𝑢 =
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By substituting the value of 𝑢 in (5) and integrating it with
respect to 𝑧 over the interval (0, ℎ) one can get Reynolds type
equation for film pressure:
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(8)

Here the bearing surfaces are considered transversely
rough. According to the stochastic model of Christensen
and Tonder [14–16], the thickness ℎ of the lubricant film is
assumed as

ℎ = ℎ + ℎ𝑠.
(9)

In this equation ℎ denotes the mean film thickness and
ℎ𝑠 represents the deviation from the mean film thickness
characterizing the random roughness of the bearing surfaces.
ℎ𝑠 is governed by the probability density function:

𝑓 (ℎ𝑠) =

{

{

{

35

32𝑐

7
(𝑐

2
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2
)

3

, −𝑐 ≤ ℎ𝑠 ≤ 𝑐

0, elsewhere
, (10)

wherein 𝑐 is the maximum deviation from the mean film
thickness. The mean 𝛼, the standard deviation 𝜎, and the
parameter 𝜀, which is themeasure of symmetry of the random
variable ℎ𝑠, are defined by the relationships

𝛼 = 𝐸 (ℎ𝑠) ,

𝜎

2
= 𝐸 [(ℎ𝑠 − 𝛼)

2
] ,

𝜀 = 𝐸 [(ℎ𝑠 − 𝛼)

3
] ,

(11)

where 𝐸 denotes the expected value defined by

𝐸 (𝑅) = ∫

𝑐

−𝑐

𝑅𝑓 (ℎ𝑠) 𝑑𝑠. (12)

Making use of the discussions of Bhat [32], Abhangi and
Deheri [26], and Patel and Deheri [34], it is considered that
the upper plate lying along the surface determined by the
relation

𝑧𝑢 = ℎ0 exp (−𝛽𝑟
2
) ; 0 ≤ 𝑟 ≤ 𝑎 (13)

approaches with normal velocity ̇

ℎ0 the lower plate lying
along the surface given by

𝑧𝑙 = ℎ0 [
1

1 + 𝛾𝑟

− 1] ; 0 ≤ 𝑟 ≤ 𝑎, (14)
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where 𝛽 and 𝛾 are the curvature parameters of the corre-
sponding plates and ℎ0 is the central film thickness. The film
thickness ℎ(𝑟), then, is defined by (Bhat [32] andAbhangi and
Deheri [26])

ℎ (𝑟) = ℎ0 [exp (−𝛽𝑟
2
) −

1

1 + 𝛾𝑟

+ 1] ; 0 ≤ 𝑟 ≤ 𝑎. (15)

Christensen and Tonder [14–16] proposed a method for the
stochastic averaging of the above differential equation. Here
an attempt has been made to deploy this technique, which
on certain simplifications yields, under the usual assumptions
of hydromagnetic lubrication (Bhat [32], Prajapati [33], and
Deheri et al. [35]), the modified Reynolds equation,

1

𝑟

𝑑

𝑑𝑟

(

𝑔 (ℎ)

(1 − ((𝜌𝐴

2
𝜇𝐻) / (2𝜂)))

𝑟

𝑑

𝑑𝑟

(𝑝 −

𝜇0𝜇

2

𝐻

2
))

= 12𝜂

̇

ℎ0,

(16)

where
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Introducing the nondimensional quantities,
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and making use of (18), (16) reduces to
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Solving the above expression, under the boundary conditions

𝑃 (1) = 0,
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one can find the expression for dimensionless pressure as
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In view of the classical result of Riemann, following the
method of Bhat [32, p. 84], the load carrying capacity of
the bearing system in nondimensional form can be obtained
from
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The time 𝑡 taken by the upper plate to reach a film thickness
ℎ0 starting from an initial film thickness ℎ2 can be obtained
in dimensionless form as
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3. Results and Discussions

Equation of load carrying capacity offers the suggestion that
the load carrying capacity gets increased by

𝜇

∗

40

(26)

as compared to conventional lubricant based bearing system.
Probably, this may be due to the fact that the viscosity
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gets enhanced due to magnetization. It is noticed that the
expression involved in (23) is linear with respect to the
magnetization parameter. Accordingly an increase in the
magnetization parameter eventually results in increased load
carrying capacity.

The fact that the load carrying capacity gets marginally
affected by the magnetization is displayed in Figures 2, 3,
4, 5, and 6. The increase in the load carrying capacity with
respect tomagnetization is caused because themagnetization
induces an increase in the viscosity of the lubricant leading to
increased pressure.

Figures 7, 8, 9, and 10 indicate that the load carrying
capacity decreases significantly with the increase in the
material constant parameter. Besides, the combined effect of
material constant parameter and slip parameter causes severe
reduction in load carrying capacity. The effect of material
constant parametermodifies the velocity of the ferrofluid and
consequently leads to decreased pressure resulting in reduced
load carrying capacity.

The effect of curvature parameters is presented in Figures
11, 12, 13, 14, 15, and 16. As can be seen the trends of load
carrying capacity with respect to the upper plate’s curvature
parameter are opposite to that of the lower plate’s curvature
parameter. These figures also underline the fact that the
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lower plate’s curvature parameter should be kept at minimum
for obtaining a better performance when moderate to large
values of upper plate’s curvature parameters are involved.

Figures 17, 18, and 19 convey that the standard deviation
has a considerable adverse effect on the performance of the
bearing system. This is not surprising because the motion
of the fluid gets retarded by roughness. This means the
combined effect of standard deviation and material constant
has a strong adverse effect on the performance of the bearing
system.

It is seen from Figures 20 and 21 that the load carrying
capacity decreases as positive skewness increases while the
negatively skewed roughness increases the load carrying
capacity. Variance follows the path of skewness so far as the
trends of load carrying capacity are concerned (Figure 22).
Roughness retards the motion of the lubricant and hence
causes reduced pressure leading to decreased load carrying
capacity.

The slip parameter has a strong adverse influence on the
performance of the bearing system because the fluid presents
a loss of adhesion at the welted wall leading to decreased
pressure. Some of the graphical representations make it clear
that the combined effect of negatively skewed roughness and
variance (−ve) may offer some help for getting an improved
performance. It is observed that the squeeze time turns out
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to be relatively better as compared to the case of Neuringer-
Rosensweig model based magnetic fluid lubrication.

Some of the conclusions are validated by comparing the
present results with the already known results (Abhangi and
Deheri [26] and Shimpi and Deheri [24]) in the case of
Neuringer-Rosensweig model. Close scrutiny of the com-
parison reveals that there is at least 0.75% increase in the
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load carrying capacity in comparison with the Neuringer-
Rosensweig model based fluid flow, although roughness and
slip velocity bring down the load carrying capacity.The effect
of slip velocity is, however, nominally better as compared to
Neuringer-Rosensweig model.

4. Conclusion

This paper reveals that the magnetization has a limited
option for reducing the adverse effect of roughness and slip.
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However, for a better performance the slip parameter must
be kept at minimum even if negatively skewed roughness is
involved and variance (−ve) occurs. This investigation thus
makes itmandatory to account for roughness while designing
the bearing system. The curvature parameters provide an
additional degree of freedom from design point of view.
Lastly, it is observed that even in the absence of flow the
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bearing system supports certain amount of load, unlike the
case of conventional lubricants based bearing system.
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