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Regenerative medicine is an alternative solution for organ transplantation. Stem cells and nanoscaffolds are two essential
components in regenerative medicine. Mesenchymal stem cells (MSCs) are considered as primary adult stem cells with high
proliferation capacity, wide differentiation potential, and immunosuppression properties which make them unique for regenerative
medicine and cell therapy. Scaffolds are engineered nanofibers that provide suitable microenvironment for cell signalling which has
a great influence on cell proliferation, differentiation, and biology. Recently, application of scaffolds and MSCs is being utilized in
obtaining more homogenous population of MSCs with higher cell proliferation rate and greater differentiation potential, which are
crucial factors in regenerative medicine. In this review, the definition, biology, source, characterization, and isolation of MSCs and

current report of application of nanofibers in regenerative medicine in different lesions are discussed.

1. Introduction

Organ rupture has become a pivotal concern for population
health. In the US in the year of 2010, 28,664 organs were
transplanted while 110,000 more patients were still on the
waiting list.

A minimum of 20 patients on the waiting list die every day
before transplantation because of suitable donor shortage [1].
Organ transplantation is one of the ways to cure the patients.
Because of possibility of posttransplant rejection and crucial
donor shortage, scientists are now trying to find alternative
ways [2].

Regenerative medicine is an alternative way which is
defined as “emerging interdisciplinary field of research and
clinical applications focused on the repair, replacement, or
regeneration of cells, tissues, or organs to restore impaired
function resulting from any cause, including congenital
defects, disease, trauma, and aging” [3]. Stem cells and

scaffold are the two essential components in regenerative
medicine [2]. Clinical application of stem cell is the base
of this field [4] that involves stem cell injection (cell ther-
apy), activation of biological administrated molecules or
cell infusion (regenerative induction), and in vitro cultured
tissues or organs transplantation (tissue engineering) [5, 6].

Stem cells are unspecialized cell with self-renewability
and potential to generate multiple mature specialized cells
[13]. There are two major types of stem cells: embryonic
and adult stem cells. Embryonic stem cells are isolated from
the early morula stage embryos or the inner cell mass of
blastocyst while adult stem cells are derived from different
adult organ tissues like liver, heart, skin, teeth, bone, and so
forth.

In regenerative medicine and tissue engineering, mes-
enchymal stem cells (MSCs) are one of the best primary
adult stem cell with continual proliferation and multipotent



differentiation potential [14, 15]. Scaffolds are manufactured
nanofibers to provide microenvironment which would ease
extracellular and intracellular cell contact and signalling
which influence cell proliferation, differentiation and biology
[16, 17]. Recently, the combination of MSCs and nanofibers is
applied in regenerative medicine [13, 18].

2. Biology of MSCs

Mesenchymal stem cells (MSCs) were obtained for the first
time by Friedenstein and Petrakova from rat bone marrow
(BM). BM contains two types of stem cells: hematopoietic
stem cells (HSCs) and MSCs [19]. MSCs are multipotent
stem cells that are highly proliferative with the ability of self-
renewal and the potential to differentiate into various cell
lines such as adipocytes, chondrocytes, osteoblasts, endothe-
lial cells, cardiac myocytes, nerve cells, hepatocytes, and pan-
creatic cells [20-28]. Differentiation potential of these cells
has been observed in in vivo, in vitro, and ex vivo cultures.
These characteristics display various mechanisms which can
contribute to the therapeutic and beneficial properties of
MSCs. These cells are also referred to as BM stromal cells,
BM stromal stem cells, colony-forming fibroblastic cells, and
mesenchymal progenitor cells [29, 30]. Mesenchymal tissue
is an embryonic connective tissue derived from mesoderm
that has the potential to differentiate into other types of
connective tissue such as blood cell line; however, MSCs lack
the ability to differentiate into HSCs. Stromal cells are among
the connective tissue cells that form a special supportive
structure in which functional cells exist. However, there is
not any report to describe the potential of these cells in
rehabilitation of tissue damages in regenerative medicine
(31, 32].

In terms of morphology, MSCs look like unrestricted
somatic stem cells (USSC): small spindle shaped cells, with
large round nuclei and explicit nucleolus, some intracellular
organelles, and long and short cellular projections. A sub-
stantial number of these cells in BM are surrounded by a
matrix containing reticular filaments [33, 34]. BM is one of
the most important sources to isolate MSCs. However, due to
lack of an appropriate method to inhibit growth of other cells
in primary culture and passages, isolation and purification
of MSCs from BM and obtaining a homogenous population
of these cells are difficult [35, 36]. Thus, finding alternative
sources for MSCs isolation is necessary.

Recently, amniotic fluid was mentioned in literature as
a significant alternative source for MSCs. In some studies,
isolation of MSCs was conducted from human amniotic fluid
in the second trimester of pregnancy and from C57BL/6
mice amniotic fluid [37, 38]. Other attempts to isolate MSCs
from umbilical cord blood (UCB) and peripheral blood (PB)
have been carried out with paradoxical results. Some studies
reported lack of MSCs in UCB [39, 40], while others have
reported their existence in UCB and in umbilical cord vessels’
endothelial wall (Table 1) [41, 42]. In one study, mice amniotic
fluid MSCs were isolated and compared to MSCs of BM in
terms of their differentiation potential. Results showed that
both have high potential to differentiate into osteoblasts and
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chondrocytes; however, MSCs of amniotic fluid lacked the
adipogenic potential. This finding showed that adipocytes
are present in adult BM while they do not exist during
embryonic period and also there is a direct relativity between
increasing adipogenesis and aging [38, 43]. Nevertheless,
another study demonstrated positive adipogenic potential
from c-kit™* cells isolated from human and mouse amniotic
fluid by immunoselection against a stem cell receptor protein,
c-kit [38]. These cells were then described as amniotic fluid
stem cells rather than amniotic fluid mesenchymal stem cells.
It is observed that amniotic fluid MSCs are less differentiated
than bone marrow MSCs and have shorter doubling time.
These features have drawn more attention in lab research [23].

3. MSCs Immunophenotyping

Identification of MSC specific surface markers is necessary
for characterization of these cells, but certain markers have
yet to be identified. Some studies introduce markers like
Vcam-1, Thyl-2, and Sca-1 as common surface markers of
hematopoietic, nonhematopoietic, and epithelial cells and
mature T lymphocytes [30, 44]. Another study reports lack
of CD45, CDI11b, and c-kit expression as isolation markers
for mouse bone marrow MSCs [45, 46]. In separate studies,
STRO-1""¢ cells were introduced as a homogenous popu-
lation of cells with high junction and proliferation potential
(47, 48].

However, differences between STRO-1"" cells and MSCs
are not yet clear. Also, surface markers such as CD29, CD44,
CD73, CD90, CD105, CD166, and MHC class I are reported
as well-known mesenchymal markers. Desirable as it is,
application of one specific antibody profile against surface
markers for isolation and purification of MSCs from other
cell populations is not yet possible [49]. In two recent studies,
neural gangliosides GD-2 and SSEA-4 are reported as surface
markers of MSCs [50, 51].

4. Isolation and Purification of MSCs

Isolation of MSCs from BM can be carried out by differ-
ent protocols such as using cytotoxic materials in culture
medium, cell sorting, culture in DMEM medium with high
or low density, and positive or negative selection [27, 45, 90].
The basis of these methods relies on the physical tendency of
MSCs to attach to plastic surface of cell culture plate. How-
ever, these methods produce different lines of hematopoietic
cells attached on the stromal layer and together they prolif-
erated with MSCs. As a result, a heterogeneous population
of cells formed on the plate. Consequently, in some of these
protocols, non-MSC cells are removed from the bottom of
the plate, however, leading to reduction in proliferation and
differentiation potential of MSCs [91, 92]. In another study a
population of unattached MSCs in BM is reported in which
a simple and effective method was used to isolate MSCs,
after some modifications in culture medium and reducing
trypsin treatment time, a purified population of these cells
was produced after the first passage [31]. In another study,
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an unattached population of MSC is reported in BM which
cannot be isolated by methods based on cell attachment [93].

5. Nanofibers and Cell Scaffolds

Most novel protocols of BM-MSC culture are based on
isolation of mononuclear cells (MNCs), transferring of cells
into cell culture medium, and their attachment to plastic
surface of cell culture flask bottom [94-97]. Scaffolds are fab-
ricated nanofibers that provide suitable microenvironment
for cell signalling which would influence cell proliferation,
differentiation and biology. Recently, designing biocompat-
ible cellular scaffolds is a trend in regenerative medicine and
tissue engineering. The aim of designing different scaffolds
is to simulate the best structural and environmental pattern
for extracellular matrix [22]. Different types of scaffolds
like hybrid porous and biodegradable scaffolds based on
chitosan-gelatin-triphosphate calcium, porous ceramic, and
biphasic scaffold of hydroxyl apatite/tricalcium phosphate
(HA/TCP) have been used for attachment, proliferation, and
differentiation of MSCs into different tissues for application
in tissue engineering and regenerative medicine [97, 98].

The MSCs can be also isolated from the adipose tissue or
bone of a patient, grow in vitro, and be transferred, utilizing
an applicable scaffold, onto the defected ocular surface [99].
In the other study, the critical role of mechanotransduction
in the regulation of MSC fibrochondrogenesis has been
investigated utilizing biomimetic nanofibrous scaffolds [100].
Scientists also investigated the feasibility of osteogenic dif-
ferentiation of hUC-MSCs via application of nHA/CS/PLGA
scaffolds [101].

The application of electrospinning method, which is an
easy and cost effective method for designing 3D nanofiber
cell scaffolds, has drawn a lot attention in tissue engineering.
In this process, degradable biopolymers are used to produce
nanofibers. Designed scaffold provides a matrix with pores
of less than 10 microns in diameter. This matrix prevents
cells from easy transit through empty spaces and provides
proper conditions for attachment, proliferation, and growth
of MSCs [102, 103]. Biodegradable nanofiber scaffold based
on e-caprolactone (PCL) and poly-L-lactic acid (PLLA) has
been used in different studies. In general, cell scaffolds are
used in two ways in tissue engineering: (1) MSCs are first
placed on the scaffold then the complex of MSCs and scaffold
is cultured; (2) MSCs are first cultured and then placed on
the scaffold (Table 2) [104, 105]. A number of scaffolds and
nanofibers have been applied in culturing MSCs for their
usage in regenerative medicine.

6. Application of Tissue Engineered-MSCs in
Regenerative Medicine

Application of stem cells in regenerative medicine requires
two key elements: (1) the use of stem cells which have high
ability in repairing the damaged tissue with the least side
effects and (2) designing of biocompatible scaffolds whose
clinical use has the least side effects and has no immunologic
response. The high ability of proliferation and differentiation

to several cell lineages and especially the significant role in
immune regulation effects present MSCs as an important
source for cell and gene therapy applications in congeni-
tal disorders and degenerative diseases [106-108]. Clinical
studies reveal that MSCs have high ability in improving
allogeneic transplant conditions and reducing side effects
caused by chronic reaction of transplant against the host,
known as chronic graft versus host disease (cGVHD). In
fact, these cells reveal their anti-inflammatory effects by
activating inhibitory T lymphocytes and discharging some
immunoregulatory agents. On the other hand, these cells
also have the ability to recognise damaged region with their
paracrine activity, implant themselves in the region and speed
up the repair process [109, 110]. There are acceptable reports
on application of MSCs in remediation of some human
diseases such as osteogenesis imperfecta, spinal cord lesions,
Parkinson’s disease, and brain stroke [l111-114]. Recently,
scientists developed PLA/PCEC hybrid fibrous scaffolds to
effectively differentiate placenta-derived MSCs into bone-
associated cells and verified the capacity of this scaffold in
bone tissue engineering [115].

In another study Lii and colleagues in 2013 demonstrated
that 3D PHBV/HA scaffolds can induce the differentiation
of rat bone marrow derived-MSCs into osteoblast cells.
These fibrous scaffolds also displayed remarkable effects on
the repair of significant defects of bones, presenting their
promising usages in bone tissue engineering [116]. In another
attempt, scientist applied hydrogel scaffolds to successfully
proceed with the differentiation of hMSCs to chondrocytes
[117].

This review will discuss further application of tissue
engineering technique in generating MSC-based tissue for
treatment of vascular diseases, bone lesions, cartilage dis-
eases, and bladder and lung cancers.

7. Vascular Disease

In vascular tissue engineering, cells derived from BM are
utilized. This technique requires plating a mixture of cells
recognized as bone marrow stromal cells (BMSCs) in culture
dishes to achieve attached cell population. Prior to scaffold
seeding, the BMSCs are differentiated to vascular cells. Nev-
ertheless, long phases of cell expansion, high price of different
growth factors, reiterated enzymatic digestion, and potential
restrictions in cell behaviour which result in supraphysiologic
inflexibility of cell culture dishes are the obstacles that should
be overcome [118].

Alternatively, bone marrow mononuclear cells (BMNCs),
a heterogeneous population containing differently mature B-
cells, T-cells, and monocytes, as well as hematopoietic stem
cells (HScs), MSCs, endothelial progenitor cells (EPCs), and
very small embryonic-like cells (VSELSs), could be isolated
in order to avoid the long adhesion stage in cell culture
dishes. Unlike BMSCs, BMNCs can be directly seeded into
the anticipated scaffolds, which could be beneficial in preser-
vation of cell phenotype, viability, and even simplifying the
in vitro processes. Previous studies showed that culturing
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TABLE 1: Sources for isolation of mesenchymal stem cells.
Tissue Isolation protocol Properties of isolated Marker of interest in Resource
cells isolated cells
Histochemical study in
Sections of Warton’s jelly Isolated MSCs probably terms of alkaline
in medium, taking out lack pluripotency phosphatase activity,
Warton’s jelly of the sections from the according to lack of RT-PCR to study the 7]
UCB medium after 5 days, and NANOG gene existence of NANOG
culture of isolated cells expression after 9th mRNA, examining
for 5 more days. culture. growth graph of isolated
cells.
I§olat1on f.rom Synovium Immunohistochemistry
tissue sectioned during
Collagenase treatment of knee surgery, high and flow cytometry for
. AN CD105 and CD73, gene
human knee synovium proliferation power .
. . .. study with RT-PCR, and
Knee synovium tissue, cell culture, and compared to similar / . (8]
. specific dying for cells
attachment of MSCs to types, high .
. > . induced towards
flask. differentiation potential
. . osteocyte and
into adipose and adipocytes
cartilage tissue. pocytes.
MSCs remained
undifferentiated after Flow cytometry for
EDTA and trypsin 18-20 steps of passages, CD34, CD45, CD73,
Amnion treatment, cell culture in these cells beside high CD90, and CDI105 and [9]
DMEM medium with differentiation potential then differentiation into
10% FBS. into mesodermal cell osteoblasts, adipocytes,
line, can differentiate and nerve cell line.
into nerve-like cells.
These cells, other than .
osteoblasts Expression of markers
After biopsy, stromal ’ like CD29, CD44,
. chondroblasts and
. . section of eye . . CD166, CD13, and SH2
Eye conjunctiva . L adipogenic cells, have [10]
conjunctiva tissue was . and SH3 and genes such
. the potential to
cultured in flask. differentiate info nerve as Oct-4, Rex-1, and
v NANOG.
cells.
Collagenase III and
ribonuclease I treatment Flow cytometry and
of endom.etrlum to MSCs produced have 1mmunoh1§tochemlstry
produce single cell hich potential of for expression of ITGB1
suspension, removal of seigf—rIeJnewal and (CD29), CD44, NT5E
leukocytes by differentiation into (CD73), THY1 (CDY0),
Endometrium anti-PTPRC osteoblasts ENG (CD105), PDGFRB [11]
(anti-CD45), and culture chondroc )es (CD140B), and MCAM
of MSCs and epithelial & vt ,d th (CD146) and lack of
cells in DMEM/F-12 ;lgé)l?sltes and smoo expression of PECAM1
with 10% FBS, isolating . ’ (CD31), CD34, PTPRC
epithelial cells using (CD45), and EpCAM.
anti-EpCAM.
Collagenase III. MSCs have ability of fast Flow cytometry for
treatment of adipose roliferation and expression of CD73,
. . tissue to produce single p. L. . CD90, CD105, CD44,
Adipose tissue . differentiation potential [12]
cell suspension, culture . and CD166 and lack of
. . into osteoblasts and .
in ultraculture medium expression of CD45,

with 2% UltroserG.

adipocytes.

CD34, and CD14.

vascular smooth muscle cells (VSMCs) on PGS scaffolds
demonstrated the expression of elastin and amenability with
higher similarity to native vessels than the cells cultured
on firmer but more chemically analogous PLGA scaffolds

[119]. Another study revealed that the PGS scaffolds could
be precoated with natural matrix which improves the func-
tional proteins expression and extracellular matrix (ECM) in
endothelial progenitor cells (EPC) [120]. The obtained data
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TABLE 2: Sources of MSCs and scaffolds used in regenerative medicine.

MSC source Tllness Scaffold and nanofiber Resource
Human BM Liver lesions PCL/collagen/PES nanofiber scaffold [52]
Mouse BM Vascular lesions 1-PLGA, PGS, P-PGS, PI-P-PGS (53]
Murine BM Skin lesions Integra (R), an artificial dermal matrix [54]
Human adipose Bone lesions Chitosan-based scaffolds [55]
tissue
BM Vascular lesion Polyelectrolyte multilayer film [56]
Thin film of PEGylated multiwalled
BM Bone lesions carbon nanotubes spray dried onto [57]
preheated coverslip
Indu'ced Bqn e and cartilage Calcified Structures in Scaffold [58]
pluripotent cells lesions
BM Skin lesions Pullu.lan—collagen composite hydrogel [59]
matrices
Sheep BM Cardiac valves PGA : PLLA scaffolds [60]
lesions
Human BM Vascular lesions PLLA/PCL [61]
Fresh fibrin (FG) and platelet-rich
Human BM Cartilage lesions fibrin (PR-FG) glues produced by the [62]
CryoSeal (R) FS System
Human BM Bone lesions & Coral scaffold [63]
Human BM Bop e and cartilage LIFT three-dimensional scaffold [64]
lesions
Human BM Vascular lesions Heparin-releasing PLLA [65]
Biomaterial scaffolds consisting of
. . Muscular and o . .
Adipose tissue . native tissue matrices derived from [66]
skeletal lesions .
cartilage
BM Bone lesions 3D silk scaffolds [67]
Adipose tissue Bone lesions Trabecular titanium scaffolds (68]
BM Bone lesions Scaffold-free cell sheet [69]
BM Bladder lesions Nanofibrous poly-L-lactic acid [70]
scaffolds
. Fibrinogen-\fibronectin-vitronectin
Sheep lung Lung lesions hydrogel (FEVH) scaffolds [71]
Rat, pig, and rabbit . .
adipose tissue Bone lesions Hydroxyapatite scaffolds [72]
. 3D nanofibrous scaffold, highly porous
BM Bladder lesions PLLA scaffold [73]
cell-scaffold construct composed of
BM Bone lesions gelatin-based hydrogel and ceramic [74]
(CaCO3/beta-TCP) particles
BM Bone lesions Pura matrix (PM) [75]
BM Cartilage lesions 3D chitosan scaffold [76]
BM Bone lesions Biodegradable chitosan/polyester (7]
scaffold
BM Poly (L-lactic acid) microfiber (78]
. Nonporous, smart, and stimulus
Rat BM Bone lesions responsive chitosan-based scaffolds (79]
BM Vascular lesions 3D calcium phosphate (CP) scaffolds [80]
BM Bone lesions Porous hydroxyapatite ceramics [81]
BM Bone lesions Hydroxyapatite scaffolds [82]
BM Teeth lesions Collagen scaffold carrier [83]
BM Bone lesions Porous collagen I/IIT scaffold (84]
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TABLE 2: Continued.

MSC source Tllness Scaffold and nanofiber Resource
BM Nerve lesions PLGA polymer scaffold [85]

BM Bone lesions Ceramic scaffolds [86]

BM Bone lesions PLA [87]
Amniotic Fluid Sinus . MgHA/collagen based scaffold [88]

augmentation
BM liver lesions Collagen nanofibrous scaffold [89]

BM: bone marrow.

recommended that creating an environment with features
similar to blood vessels in vitro could enhance the estab-
lishment of vascular tissues derived from progenitor cells. A
recent study demonstrated the use of BMNCs with platelets
plasma proteins and PGS for vascular tissue development. In
the study, they exhibited that biochemical mechanisms and
tissue signals from platelets and plasma can together direct
BMNC:s to change into cells similar to smooth muscle which
have the expression of phenotypic markers and individual
ECM production [52].

8. Bone Lesions

Another application of MSCs in tissue engineering is the
use of these cells to differentiate into bone cells in order to
remedy large bone lesions due to trauma or degenerative
pathologic damages. As autologous bone transplant has some
limitations, application of tissue engineering to regenerate
bone lesions using three-dimensional (3D) scaffold MSCs has
been proposed [121]. In fact, designing a scaffold that is able
to act like a proper support for attachment and proliferation
of cells and inducing differentiation into bone cell lines and
provide a porous space for appropriate connection between
cells in order to reach bone regeneration is a heatedly debated
topic. In a preclinical application, the complex of scaffold
and MSCs was placed under mouse’s skull to study the
ability of MSCs to form bone cells. Results showed significant
acceleration in regeneration of bone tissue in maxillary
sinus using MSCs. In fact histomorphological studies reveal
the formation of osteoblasts with the potential of forming
an osteoid matrix with the assistance of biphasic HA/TCP
scaffolds [122].

Chemical vapor deposition- (CVD-) developed
graphene- (G-) sheets display brilliant features in stimulating
osteogenic differentiation of MSCs [123]. Lee et al
[124] demonstrated that CVD-developed G-sheets can
significantly promote osteogenic differentiation of hMSCs
alongside with chemical growth factors. They also found
that the presence of chemical inducers highly increased
the amount of osteogenic differentiation on G-sheets.
Unfortunately, they [125] further discovered that G-sheets
were not capable of absorbing enough ascorbic acid which
required chemical inducers in the generation of mature
osteoblasts [126].

Other nanomaterials containing carbon nanotubes
(CNTs) [127] and gold nanoparticles [123] could also

promote osteogenic differentiation of MSCs by means of
stress mechanism. This method utilizes physical stressor to
promote the differentiation of stem cells into various cell
lineages [128, 129]. As an example, Dalby et al. [130] showed
that proliferation of MSCs on poly-(methylmethacrylate)
(PMMA) nanopatterns and in a standard culture medium
resulted in the formation of osteoblastic morphologies
without utilization of chemical inducers. In addition to such
synthetic nanomaterials, it was also demonstrated that usage
of some bionanomaterials such as tobacco mosaic virus can
also improve the differentiation of stem cells [131].

A recent experience reported the formation of two
novel nanostructures, graphene oxide nanoribbon (GONR)
and reduced GONR, as two-dimensional (2D) templates
to investigate the application of graphene nanostructures
in osteogenic differentiation of MSCs with or without the
utilization of various chemical inducers. They studied the
effects of physical stresses induced by surface topography of
the nanogrids on the differentiation of MSCs. The results
showed that the utilization of chemical inducers stimulates
the reduced graphene oxide nanoribbon (rGONR) grids to
display osteogenic differentiation in a short period. These
achievements can promote further research on selective
differentiation of stem cells on different graphene constructs
as biocompatible and implantable scaffolds even with 3D
configurations [18]. However, the use of tissue engineering
in regeneration of bone lesions has some limitations due to
low number of stem cells isolated from BM aspiration [49].
In the end, finding novel sources for MSCs derivation like
amniotic fluid and Warton’s jelly along with more research
about application of different scaffolds for proliferation and
differentiation of MSCs and clinical monitoring of implanted
MSCs are required [132, 133].

9. Cartilage Disease

The application of various adult-derived stem cells (ASCs)
in tissue engineering approaches is considered as a novel
method to console the trouble of cell, organ, and tissue
scarcity. Cartilage flaws that caused by joint injury, devel-
opmental disorders, and aging resulted result in the pain of
joints and loss of movement. Tissue engineering methods
suggest particular cell-based treatment to overhaul articular
cartilage flaws and provide a capable method for reestab-
lishment of joint function [134, 135]. In cartilage tissue
engineering methods, chondrocytes and MSCs are normally
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utilized for redevelopment of cartilage, but the type of cells
will determine the tissue engineering approaches of cartilage
in vitro. Although expansion of MSCs for regeneration of
cartilage is at an initial step, the noticeable MSCs plasticity
could supply tissue engineering with ample possibility of uti-
lizing MSCs for manifold cellular differentiation for obtaining
strictly multiphasic tissues [136, 137].

To stimulate chondrogenic differentiation, MSCs are
proliferated in a 3D situation to improve the need of
interaction between cells [138]. Earlier studies have shown
that MSCs displayed chondrogenic characteristics when are
propagated in a culture [139, 140], a technique which was
generally utilized in MSC chondrogenesis analysis [141,
142]. Nevertheless, the technique of cell pellet propagation
has manifold innate weaknesses. Small in magnitude and
regularly poor mechanical characteristics have made the
technique impracticable to repair cartilage flaws. Predesigned
biomaterial scaffolds have much more attractive potential in
providing the role as a support structure for MSCs, such
as preparing a 3D situation with comprehensive mechan-
ical features. Some studies developed several natural and
synthetic substances [143, 144], produced gel-, sponge-, or
fiber-centered constructions constructs to proliferate MSCs
of various species [145-147]. The electrospinning proce-
dure is an easy, economical method to generate ultrafine
fiber-derived scaffolds developed from a range of different
biodegradable polymers [36, 148]. Nanofiber scaffolds gener-
ated through electrospinning method have structures similar
to extracellular matrix and can display favourable features
for tissue engineering purposes. It has been demonstrated
that 3D NFSs are distinguished through high sponginess and
similar morphology to natural collagen fibrils, a high ratio
of surface area to volume, and wide-ranging pore diameter
[149].

These physical structures elevate promising biological
responses in cultured cells containing improved proliferation
and cell attachment in addition to preservation of the chon-
drocytic phenotype [150, 151]. In a study, the chondrogenic
functions of seeded BM-MSC maintained on polycaprolac-
tone were compared to the cells cultured using cell pellet
technique, in a defined medium supplemented with TGF-bl
[152]. The cultured MSCs showed a chondrocytic phenotype
differentiation and cartilage-associated ECM proteins syn-
thesis. These findings reported that PCL NFS is a suitable
support structure to transplant the MSCs, which suggests
practical scaffolds for cell-based cartilage repair using tissue
engineering methods [52].

10. Bladder Cancer

Bladder cancer is the ninth most frequent cancer in the
world and the incidence is four times higher in males [153]
where smoking has been known as a main reason of bladder
cancer in western countries [154]. Nowadays, stem cell
therapy has become one of the most appropriate therapeutic
approaches for bladder cancer. In fact, many studies have
shown that bladder smooth muscle cells can be produced
from transplanted stem cells [155, 156]. These studies also

showed that smooth muscle cells generated from transplanted
stem cells can be really valuable in bladder tissue engineering
[73].

MSC is known as an appropriate stem cell source to
approach this goal. MSC is able to self-renew and also
differentiate into different cell types under certain conducive
environments [157, 158]. In fact, using MSC for their ther-
apeutic potentials has been very useful to control and treat
different types of cancers including bladder cancer. For
instance, stimulation of tissue regeneration and prevention
of tissue injury after transplantation of stem cell are also very
important [159] and paracrine mechanism of MSCs can play
a very important role in this area [160].

Indeed, based on recent literatures, the most important
issues that researchers are focusing on are the improvement
of the isolation procedure and expansion of these cells.
Among various methods small intestinal submucosa (SIS)
could successfully be applied for bladder tissue engineering
[161].

Tissue engineering scaffolds are one of the appropri-
ate regeneration environments that have been used by
researchers to isolate and expand MSCs [162]. Using synthetic
scaffolds like poly-lactic-glycolic, for instance, instead of SIS,
to generate MSCs [163] has proved to be more practical.
Tian et al. exhibited bladder engineering potential when such
synthetic scaffold was applied [73]. Similarly, it is shown
that using poly-lactic-glycolic acid to expand MSC'’s lead’s to
maintenance of bladder capacity and compliance [164]. Cur-
rent studies introduced novel generation of synthetic poly-
mer scaffolds. These nanofibrous scaffolds have improved
biomechanical/physical features and have been used in tissue
engineering of various organs. This new product can provide
a natural environment which improves cell metabolism by
improving the exchange of nutrition and gas [165]. Various
attempts have been done to establish this new technology but
it still needs more examination.

11. Lung Cancer

Lung cancer is the most frequent cancer worldwide with
higher incidence in males compared to females [150]. Various
methods are available for cancer treatment including the
application of engineered tissue; such techniques involve
growing lung tissue using artificial scaffold and stem cells ex
vivo which has been frequently used in regeneration of lung
tissue. Particularly, MSCs isolated from different sources are
seeded on various biosynthetic scaffolds to generate tracheal
cartilage for repairing congenital tracheal defects [166, 167].
Several researchers are focusing on this issue. In one
study, fetal rat lung cells were cultured in a biosynthetic
gelatin matrix and then injected into normal rat lung which
have resulted in induction of lung structure [168]. Another
study showed the creation of alveolar-like constructs after
culturing fetal rat lung suspensions in a 3D glycosamino-
glycan scaffold. Concurrently, seeding the mouse cells in
synthetic polymer scaffolds showed the same result [169].
Researchers also showed the ability of 3D scaffold culture
systems to assess lung improvement and repair [170]. In fact,



other studies also showed that stem cells isolated from various
sources can form airway or alveolar-like structures when
cultivated in scaffolding material and after culturing in such
an environment, can be used for functional lung regeneration
(171, 172]. Scaffolds are used to engineer lung airways by sev-
eral researchers [173, 174]. Gray et al. showed the importance
of MSC-engineered scaffolds for engineered perinatal airway
repair. They also demonstrated improvement in remodelling
and epithelialization in vivo by using engineered human
amniotic fluid MSC [175]. Previous studies on engineered
airway also showed the same results by using different cells
and scaffolds [176, 177]. Revision is still necessary although
researchers have found quite a number of appropriate details
about synthetic scaffold.

12. Conclusion

In this review, the applications of nanoscaffolds and MSCs
in regenerative medicine were discussed. Selection of a
proper source for isolation of MSCs like amniotic fluids and
umbilical cord and designing biocompatible and biodegrad-
able scaffolds proper for proliferation and differentiation
into multiple lineages have great significance in regenerative
medicine. Further researches in this field can provide a way
for advancement of application of tissue engineered-MSCs in
regenerative medicine.
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