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We assess the probability of resonances between sufficiently distant states of an 𝑁-particle disordered quantum system in a
combinatorial graph Z. In the 𝑁-particle configuration space, there are arbitrarily distant pairs of configurations giving rise to
pairs of local (random) Hamiltonians which are strongly coupled, so that the eigenvalue concentration (EVC) bounds are difficult
to obtain. We extend to any number of particles the efficient EVC bounds, obtained earlier for the 2-particle systems.

1. Introduction

We study quantum systems in a disordered environment,
usually referred to as Anderson-type models, due to the
seminal paper by Anderson [1]. For nearly fifty years follow-
ing its publication, the localization phenomena have been
studied in the single-particle approximation, that is, under
the assumption that the interaction between particles subject
to the common random external potential is sufficiently weak
to be neglected in the analysis of the decay properties of
eigenstates of themultiparticle system in question. A detailed
discussion of recent developments in the physics of disor-
dered media is most certainly beyond the scope of this paper;
we simply refer to the papers by Basko et al. [2] and byGornyi
et al. [3] where it was shown, in the framework of physical
models andmethods, that the localization phenomena, firmly
established for the noninteracting systems, persist in presence
of nontrivial interactions.

The mathematical Anderson localization theory has
motivated a large number of studies of random differential
and finite-difference operators during the last forty years,
but only recently a significant progress has been made in
the rigorous theory of multiparticle quantum systems in
a disordered environment with a nontrivial interparticle
interaction (cf. [4–6] and more recent works [7–10]), and
there still remain many challenging open problems in this
area ofmathematical physics. Such problems are often related

to the EVC bounds, which in the single-particle setting
go back to the celebrated Wegner bound [11]. Building
on our results from [12], we discuss in the present paper
some important implications for the Hamiltonians of the
multiparticle disordered quantum systems.

Specifically, we consider a system of 𝑁 ≥ 2 quantum
particles in a finite or countable, locally finite connected
graphZ, endowed with the canonical graph distance 𝑑(⋅, ⋅) =
𝑑Z(⋅, ⋅), with the Hamiltonian of the following form:

H =

𝑁

∑

𝑗=1

(Δ
(𝑗)

+ 𝑉 (𝑥
𝑗
, 𝜔)) + U, (1)

where 𝑉 : Z × Ω → R is a random field on the graph
Z, relative to a probability space (Ω,F,P), Δ(𝑗) is the graph
Laplacian onZ, namely:

Δ
(𝑗)
Ψ (𝑥

1
, . . . , 𝑥

𝑁
)

= ∑

𝑦∈Z𝑑:𝑑(𝑦,𝑥𝑗)=1

Ψ(𝑥
1
, . . . , 𝑥

𝑗−1
, 𝑦, . . . , 𝑥

𝑁
) ,

(2)

and the interaction operator U is the multiplication by
a function U(x) which we assume to be bounded (this
assumption can be relaxed). The symmetry of the function
U is not required, and we do not assume U to be a “short-
range” or rapidly decaying interaction. In fact, we focus
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here on the restrictions of H to bounded subsets of the 𝑁-
particle configuration space.The decay rate of the interaction
is important for the localization analysis.

Our main assumptions on the random field 𝑉 are pre-
sented in Section 1.3 (cf. (14)). See also Theorem 4 (cf. [12],
Theorem 4) which describes explicitly a class of IID random
fields satisfying the property (14).

1.1. Eigenvalue Concentration Bounds. We focus on the prob-
abilistic eigenvalue concentration bounds, known as the
Wegner-type bounds, due to the celebrated paper by Wegner
[11]. It would not be an exaggeration to say that this bound
is the heart of the multiscale analysis (MSA, cf. [13]). In a
slightly disguised form, it also appears in the framework of
the fractional-moment method (FMM) both in its single-
particle and in its multiparticle versions, as the reader can
observe in [6, 14]. In essence, a Wegner-type bound is a
probabilistic bound of the following form:

P {dist (𝐸, 𝜎 (H
Λ (𝜔))) ≤ 𝜖} ≤ 𝑓 (|Λ| , 𝜖) , (3)

where H
Λ
(𝜔) is the restriction of H(𝜔) on a bounded subset

Λ with some self-adjoint boundary conditions and 𝜎(H
Λ
(𝜔))

is its spectrum (a finite number of random points, in the case
of lattice models).

The role and importance of such bounds can be easily
understood: theMSAprocedure starts with the analysis of the
resolvents (H

Λ
− 𝐸)

−1, so it is vital to know how unlikely it is
to have the spectrum ofH

Λ
close to 𝐸 ∈ R.

We introduce the graph structure in the configuration
space Z𝑁 of 𝑁 distinguishable particles in Section 2.1.
Simply put, we consider the product metric space (Z)

𝑁

with the max-distance 𝜌(⋅, ⋅) (cf. (22)). Given any finite ball
B

𝐿
(u) := {x ∈ Z𝑁

| 𝜌Z(x, u) ≤ 𝐿}, we will consider a finite-
volume approximation of the following operator:

HB𝐿(u) = 1B𝐿(u)H1B𝐿(u)↾ℓ
2
(B𝐿(u)), (4)

acting in the finite-dimensional Hilbert space ℓ2
(B

𝐿
(u)).

In [15], where the 1-particle configuration space Z was
assumed to beZ𝑑, the following “two-volume” version of the
Wegner bound was established for the pairs of two-particle
operators HB𝐿(u) and HB

𝐿
 (u) with 𝐿 ≥ 𝐿

 and such that
dist(B

𝐿
(u),B

𝐿
(u

)) > 8𝐿: if 𝜈 is the continuity modulus of
the marginal distribution of the IID random field 𝑉, then

P {dist (𝜎 (HB𝐿(u)) , 𝜎 (HB
𝐿
 (u))) ≤ 𝜖}

≤ (2𝐿 + 1)
2𝑑
(2𝐿


+ 1)

𝑑

𝜈 (2𝜖) .

(5)

The proof given in [15] is based on a geometrical notion of
“separable” pairs of balls, combined with Stollmann’s lemma
on diagonally monotone functions. In [16] a similar bound
was proven in the case of IID random field 𝑉 with analytic
marginal distribution.

Starting from 𝑁 = 3, additional difficulties appear in
the analysis of pairs of spectra 𝜎(HB𝐿(u)) and 𝜎(HB𝐿(u)).
To put it simply, no priori lower bound on the distance

dist(B
𝐿
(u),B

𝐿
(u

)) > 𝐶𝐿 between two balls of radius 𝑂(𝐿)

can guarantee the approach of [15] to work, no matter how
large the constant 𝐶 is. This gives rise to a significantly more
sophisticated scaling procedure for𝑁 ≥ 3. A similar difficulty
arises in [6].

1.2. The Main Goal. In [4, 5], a multiparticle adaptation
of the MSA was used to prove spectral localization (i.e.,
exponential decay of eigenfunctions) in the strong disorder
regime. Aizenman and Warzel [6] used the FMM to prove
directly dynamical localization (hence, spectral localization)
in various parameter regions including strong disorder and
weak interactions.

Despite many differences between the MSA and the
FMM, similar technical difficulties have been encountered in
both cycles of papers. Namely, it turned out to be difficult
to prove the decay bounds of eigenfunctionsΨ(𝑁)

𝑗
(𝑥

1
, . . . , 𝑥

𝑛
)

of 𝑁-particle Hamiltonians in terms of some norm ‖ ⋅ ‖ in
R𝑁𝑑

⊃ Z𝑁𝑑 (recall that the configuration space in [5, 6] was
the lattice (Z𝑑

)
𝑁):


Ψ

(𝑁)

𝑗
(𝑥

1
, . . . , 𝑥

𝑛
; 𝜔)


≤ 𝐶

𝑗 (𝜔) 𝑒
−𝑚‖x‖

. (6)

If the interaction U is symmetric (and so is, then, U + V),
then it is natural to expect (or to fear. . .) “resonances”, and
“tunneling” processes, between a point x = (𝑥

1
, . . . , 𝑥

𝑁
) and

the points 𝜏(x) = (𝑥
𝜏(1)

, . . . , 𝑥
𝜏(𝑁)

) obtained by permutations
𝜏 ∈ S

𝑁
. In this context, it is much more natural to use the

following symmetrized distance:

𝑑
𝑆
(x, y) := min

𝜏∈S𝑁

𝜏 (x) − y . (7)

(Recall that, for the moment, we are discussing the papers [5, 6]
where Z = Z𝑑, so the distance in Z can be defined with
the help of a norm.) Note also that if the quantum particles
are bosons or fermions, then all the points 𝜏(x), 𝜏 ∈ S

𝑁
,

should even be considered as identical, or, more precisely,
the spectral problem should be solved in the subspace of
symmetric or antisymmetric functions of variables 𝑥

𝑗
.

However, due to a highly correlated nature of the potential
of a multiparticle system, even the above concession did not
suffice, and it was easier to use the “Hausdorff distance”
(which is a pseudometric) between the points x, y ∈ Z𝑁.
This resulted in substantally weaker decay estimates than
expected.

Aizenman and Warzel [6] analyzed the aforementioned
technical problem and pointed out that, physically speaking,
it was difficult to rule out the possibility of “tunneling”
between the points x and y related by a “partial charge
transfer” process, for example, between the points (𝑎, 𝑎, 𝑏)

and (𝑎, 𝑏, 𝑏), 𝑎 ̸= 𝑏, corresponding to the following states:

state x : 2 particles at the point 𝑎 and 1 particle at 𝑏,

state y : 1 particle at the point 𝑎 and 2 particles at 𝑏.
(8)

Observe that the norm-distance between such states can
be arbitrarily large. What is even more important for the
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applications to physics is that the uncontrollable pairs of loci
in the configuration space, which may (or might) give rise to
quantum tunneling over large distances, occur in any finite
domain of the physical space, no matter how large it is.

As a result, one could not prove complete localization,
say, in a finite cube [−𝐿, 𝐿]

𝑑, 𝐿 ≫ 1. Surprisingly, here the
localization analysis of an actually infinite system turned out
to be substantially simpler than for its finite-size counterpart.

In the present paper we address this problem and show
that abnormally strong resonances between distant states in
the configuration space, related by partial charge transfer pro-
cesses, are unlikely and prove efficient probabilistic estimates
for such unlikely situations.

1.3. The Main Result. In this paper, we work with connected,
locally finite graphs (Z,E)with the vertex setZ and the edge
setE; by slight abuse of notations, we often identify the graph
withZ.

We assume that the growth rate of the balls in Z is
uniformly bounded, namely:

sup
𝑥∈Z

𝐵𝐿 (𝑥)
 ≤ 𝑓Z (𝐿) < +∞. (9)

While a significant part of the techniques and interme-
diate results in our paper does not rely, formally, upon
any particular upper bound on the cardinality of the balls,
the main application (to the multiscale analysis) requires a
subexponential bound on 𝑓Z.

We consider in particular the class Z(𝑑, 𝐶
𝑑
) of polyno-

mially growing graphs: Z ∈ Z(𝑑, 𝐶
𝑑
) if, for some 𝑑, 𝐶

𝑑
∈

(0, +∞), the following bound holds:

𝑓Z (𝐿) = sup
𝑥∈Z

𝐵𝐿 (𝑥)
 ≤ 𝐶

𝑑
𝐿

𝑑
, 𝐿 ≥ 1. (10)

The class of graphs with 𝑓Z(𝐿) ≤ Const 𝑒𝐿
𝛿

, 0 < 𝛿 < 1, is
also suitable for the multiscale analysis, but actually the most
interesting case after the lattices Z𝑑 are the trees and other
graphs with exponential growth rate of balls, and the latter, as
is well-known, remains so far beyond the reach of the MSA
techniques.

We assume that an IID random field 𝑉 : Z × Ω → R,
relative to a probability space (Ω,F,P), is defined onZ.

Introduce the following notations. Given a finite subset
𝑄 ⊂ Z (of cardinality |𝑄| ≡ card𝑄), we denote by 𝜉

𝑄
(𝜔) the

sample mean of the random field 𝑉 over 𝑄 as follows:

𝜉
𝑄 (𝜔) =

1

|𝑄|
∑

𝑥∈𝑄

𝑉 (𝑥, 𝜔) , (11)

and we define the fluctuations of 𝑉 relative to 𝜉
𝑄
(𝜔) as

follows:

𝜂
𝑥 (𝜔) = 𝑉 (𝑥, 𝜔) − 𝜉

𝑄 (𝜔) , 𝑥 ∈ 𝑄. (12)

Let F
𝑄

be the sigma-algebra generated by {𝜂
𝑥
, 𝑥 ∈ 𝑄}

and 𝐹
𝜉
(⋅ | F

𝑄
) be the conditional probability distribution

function of 𝜉
𝑄
givenF

𝑄
:

𝐹
𝜉
(𝑠 | F

𝑄
) := P {𝜉

𝑄
≤ 𝑠 | F

𝑄
} . (13)

For a given 𝑠 ∈ R, 𝐹
𝜉
(𝑠 | F

𝑄
) is a random variable,

determined by the values of {𝜂
𝑥
, 𝑥 ∈ 𝑄}, but we will often

use inequalities involving it,meaning that these relations hold
true for P-a.e. condition.

We will assume that the random field 𝑉 satisfies the
following condition (RCM is regularity of the conditional
mean).

(RCM): There exist constants 𝐶
, 𝐶


, 𝐴


, 𝐴


, 𝑏


, 𝑏


∈ [0,

+∞) such that, for any finite subset 𝑄 ⊂ Z, the conditional
probability distribution function 𝐹

𝜉
(⋅ | F

𝑄
) satisfies for all 𝑠 ∈

(0, 1) as follows:

P{sup
𝑡∈R


𝐹
𝜉
(𝑡 + 𝑠 | F

𝑄
) − 𝐹

𝜉
(𝑡 | F

𝑄
)

≥ 𝐶


|𝑄|

𝐴


𝑠
𝑏


}

≤ 𝐶

|𝑄|

𝐴


𝑠
𝑏


.

(14)

In fact, for the applications to the MSA, it suffices to
require the bound (14) to hold at least for 𝑠 ∈ (0, 𝑠

∗
) for some

sufficiently small 𝑠
∗
> 0.

Example 1. In the particular case of aGaussian IID field𝑉, for
example, with zero mean and unit variance, 𝜉

𝑄
is a Gaussian

random variable with variance |𝑄|
−1, independent of the

fluctuations 𝜂
𝑥
, so that its probability density is bounded as

follows:

𝑝
𝜉𝑄

(𝑠) = |𝑄|
1/2

(2𝜋)
−1/2

𝑒
−|𝑄|𝑠
2
/2

≤ |𝑄|
1/2

(2𝜋)
−1/2

, (15)

although the 𝐿
∞-norm of its probability density grows as

|𝑄| → ∞, and so does the continuity modulus of the distri-
bution function 𝐹

𝜉𝑄
. In this case, (14) holds deterministically,

with 𝐶

= 0, 𝐴

= 1/2, and 𝑏

= 1 as follows:

P{sup
𝑡∈R


𝐹
𝜉
(𝑡 + 𝑠 | F

𝑄
) − 𝐹

𝜉
(𝑡 | F

𝑄
)

>

|𝑄|
1/2

√2𝜋
𝑠} = 0.

(16)

In general, the conditional probability distribution func-
tion 𝐹

𝜉
(⋅ | F

𝑄
) is not necessarily uniformly continuous, let

alone Hölder-continuous. Moreover, the following elemen-
tary example shows that for some conditions the distribution
of the sample mean can be extremely singular.

Example 2. Let V
1
(𝜔), V

2
(𝜔) be two independent random

variables uniformly distributed in [0, 1]. Set 𝜉 = (V
1
+ V

2
)/2

and 𝜂 = (V
1
−V

2
)/2. Conditioning on 𝜂 ≥ 0 induces a uniform

probability distribution on the segment 𝐼(𝜂) = {(𝑡 + 2𝜂, 𝑡), 𝑡 ∈

(0, 1−2𝜂)} of length |𝐼(𝜂)| = 1−2𝜂, with constant probability
density (1 − 2𝜂)

−1, if 𝜂 < 1/2. Obviously, these distributions
are not uniformly continuous. Moreover, for 𝜂 = 1/2, 𝜉 takes
a single value: 𝜉 = 1/2, so that its conditional distribution is
no longer continuous. Observe, however, that the “singular”
conditions have probability zero and conditions which give
rise to large conditional density of 𝜉 have small probability.

Formally speaking, the condition (RCM) does not refer to
the growth rate of balls in the graphZ, but the analytic form
of the estimate (14) is in fact adapted to the class Z(𝑑, 𝐶

𝑑
).
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(It can be easily extended to the graphs with sub-exponential
growth.) The same remark can be made concerning the
formulation of our main result (where we make use of the
symmetrized distance 𝜌

𝑆
defined in (23)-(22)).

Theorem 3. Let 𝑉 : Z ×Ω → R be a random field satisfying
(RCM). Then for any pair of𝑁-particle operatorsHB

𝐿
 (u) and

HB
𝐿
 (u), 0 ≤ 𝐿


, 𝐿


≤ 𝐿, satisfying 𝜌

𝑆
(u

, u
) > (4𝑁 − 2)𝐿,

and any 𝑠 > 0 the following bound holds:

P {dist (𝜎 (HB
𝐿
 (u)) , 𝜎 (HB

𝐿
 (u))) ≤ 𝑠} = ℎ

𝐿 (2𝑠) , (17)

with

ℎ
𝐿 (𝑠) :=

B𝐿
 (x) ⋅

B𝐿
 (y) 𝐶


𝐿

𝐴


𝑠
𝑏


+ 𝐶

𝐿

𝐴


𝑠
𝑏


. (18)

The following statement establishes the validity of the
condition (RCM) for a class of IID random potentials,
including the popular in physics uniform distribution in a
bounded interval.

Theorem 4 (cf. [12], Theorem 4). Consider an IID random
field𝑉 : Z×Ω → R admitting a smoothmarginal probability
density 𝑝

𝑉
with supp𝑝

𝑉
⊂ [0, ℓ], satisfying the following

conditions:

∀𝑡 ∈ [0, ℓ] 0 < 𝑝
∗

𝑉
≤ 𝑝

𝑉 (𝑡) ≤ 𝑝
𝑉
< +∞;


𝑝



𝑉
1
(0,ℓ)

∞
≤ 𝐶



𝑉
< +∞.

(19)

Then 𝑉 satisfies the condition (RCM) with the following:

𝐶

= 1, 𝑏


= 0, 𝐴


=

2

3
,

𝐶

=

4𝑝
2

𝑉

ℓ2
, 𝑏


= 2, 𝐴


=

2

3
.

(20)

2. Distinguishable Particle Configurations and
Weak Separability

2.1. Basic Definitions. Given a connected graph (Z,E) and
an integer 𝑁 ≥ 2, introduce the product graph (Z𝑁

,E(𝑁)
)

with the vertex set Z𝑁
≡ (Z)

𝑁 and the edge set defined as
follows: with x = (𝑥

1
, . . . , 𝑥

𝑁
), y = (𝑦

1
, . . . , 𝑦

𝑁
) ∈ Z𝑁, one

has the following condition:

(x, y) ∈ E
(𝑁)

⇐⇒

𝑁

∑

𝑗=1

𝑑Z (𝑥
𝑗
, 𝑦

𝑗
) = 1. (21)

Observe that this definition gives the conventional graph
structure on the latticeZ𝑁𝑑 considered as the product (Z𝑑

)
𝑁,

𝑑 ≥ 1,𝑁 ≥ 2.
Intervals of integer values will often appear in our

formulae, and it is convenient to use the standard notation
[[𝑎, 𝑏]] := [𝑎, 𝑏] ∩ Z.

We identify 𝑁-tuplets x ∈ Z𝑁 with configurations of 𝑁
distinguishable particles inZ: x ≡ (𝑥

1
, . . . , 𝑥

𝑁
) ∈ Z×⋅ ⋅ ⋅×Z.

Pictorially, y is a nearest graph neighbor of x in Z𝑁 if it
is obtained from x by moving exactly one particle 𝑥

𝑗
to an

adjacent vertex 𝑦
𝑗
∈ Z and vice versa.

The graph structure defines in Z𝑁 the canonical graph
distance dZ𝑁 : for x ̸= y, 𝑑Z𝑁(x, y) is the length of the shortest
path x  y over the edges ofZ𝑁. WithZ fixed, we will often
drop the subscript and simply write d(x, y).

One can also define the max-distance onZ𝑁:

𝜌 (x, y) := max
𝑗∈[[1,𝑁]]

𝑑 (𝑥
𝑗
, 𝑦

𝑗
) . (22)

It turns out that the graph distance d and the max-
distance 𝜌 are not well-adapted to the analysis of quantum
resonances in themulti particle systems, so we also introduce
the symmetrized max-distance by

𝜌
𝑆
(x, y) := min

𝜏∈S𝑁

𝜌 (𝜏 (x) , y) . (23)

The importance of the symmetrized distance can be explained
as follows. First, assume that the interactionU is permutation
symmetric; consider the following noninteracting Hamilto-
nian:

H𝑛𝑖
=

𝑁

∑

𝑗=1

(𝐻
0;𝑗

+ 𝑔𝑉 (𝑥
𝑗
; 𝜔)) , (24)

being always permutation symmetric; the full Hamiltonian
H = H𝑛𝑖

+ U then also is permutation invariant. Therefore,
if x = 𝜏(y), for some 𝜏 ̸= 𝐼𝑑, the local Hamiltonians
HB𝐿(x) and HB𝐿(y) have identical spectra, no matter how
far apart the centers x and y are. This renders impossible
any kind of EVC bounds for such pairs of operators in the
course of the localization analysis. In fact, this difficulty is
still present even if U is not permutation symmetric, for the
probabilistic analysis of eigenvalue concentration relies upon
the external random potential V(x; 𝜔) = ∑

𝑗
𝑉(𝑥

𝑗
; 𝜔), which

still is permutation symmetric.
On the other hand, this technical problem is merely

an artefact of the language of distinguishable particles; in
a system with quantum symmetry (i.e., with Bose-Einstein
or Fermi-Dirac quantum statistics), the configuration ver-
tices y and x = 𝜏(y) are simply identical. In a properly
defined configuration space of 𝑁 indistinguishable (bosonic
or fermionic) particles (cf. Section 4), 𝜌

𝑆
is a natural distance.

Definition 5. Let x ∈ Z𝑁 and consider an index subset
J ⊂ [[1,𝑁]] with 1 ≤ |J| = 𝑛 < 𝑁. A subconfiguration
of x associated with J is the pair (x

,J) where the vector
x

∈ Z𝑁 has the components 𝑥

𝑖
= 𝑥

𝑗𝑖
, 𝑖 ∈ [[1, 𝑛]]. Such a

subconfiguration will be denoted by xJ. The complement of
a subconfiguration xJ is the subconfiguration xJ𝑐 associated
with the complementary index subsetJ𝑐

:= [[1,𝑁]] \J.

By a slight abuse of notation, we will identify a subcon-
figuration xJ = (x

,J) with the vector x. With J clearly
identified (this will always be the case in our arguments),
it should not lead to any ambiguity, while making notation
simpler.
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Definition 6. (a) Let 𝑁 ≥ 2 and consider the set of all
𝑁-particle configurations Z𝑁. For each 𝑗 ∈ [[1,𝑁]] the
coordinate projection Π

𝑗
: Z𝑁

→ Z onto the coordinate
space of the 𝑗th particle is the following mapping:

Π
𝑗
: (𝑥

1
, . . . , 𝑥

𝑁
) → 𝑥

𝑗
. (25)

(b) The support Πx of a configuration x ∈ Z𝑁,𝑁 ≥ 1, is
the following set:

Πx :=

𝑁

⋃

𝑗=1

Π
𝑗
x = {𝑥

1
, . . . , 𝑥

𝑁
} . (26)

Similarly, the support of a subconfiguration xJ is defined by
ΠxJ := ⋃

𝑗∈J{Π𝑗
x} = ⋃

𝑗∈J{𝑥𝑗
}.

(c) Given an index subset J ⊂ [[1,𝑁]], the projection
ΠJ : Z𝑁

→ Z is defined as follows:

ΠJx={
ΠxJ, if J ̸= ⌀

⌀, otherwise.
(27)

For a subset B ⊂ Z𝑁 its support ΠB is defined by

ΠB :=

𝑁

⋃

𝑗=1

Π
𝑗
B ⊂ Z. (28)

2.2. Weakly Separated Ball

Definition 7. A ball B
𝐿
(x) is weakly separated from B

𝐿
(y)

if there exists a bounded subset 𝑄 ⊂ Z in the 1-particle
configuration space, of diameter 𝑅 ≤ 2𝑁𝐿, and the index
subsets J

1
,J

2
⊂ [[1,𝑁]] such that |J

1
| > |J

2
| (possibly,

withJ
2
= ⌀) and

(ΠJ1
B

𝐿 (x) ∪ ΠJ2
B

𝐿
(y)) ⊆ 𝑄,

(ΠJ𝑐
1

B
𝐿 (x) ∪ ΠJ𝑐

2

B
𝐿
(y)) ∩ 𝑄 = ⌀.

(29)

A pair of balls (B
𝐿
(x),B

𝐿
(y)) is weakly separated if at least one

of the balls is weakly separated from the other.

The physical meaning of the weak separation is that in
a certain region of the one-particle configuration space the
presence of particles from x is more important than that of
the particles from y. As a result, some local fluctuations of the
random potential 𝑉(⋅; 𝜔) have a stronger influence on HB𝐿(x)
than onHB𝐿(y).

In fact, (29) shows, as does the application to the proof
of Lemma 9 below, that one can take the minimal set 𝑄

satisfying (29), that is,𝑄 = Π
𝐽1
B

𝐿
(x)∪Π

𝐽2
B

𝐿
(y). However, we

keep a more general form, since some variations may prove
useful in particular models and applications.

Lemma 8. Any pair of 𝑁-particle balls B
𝐿
(x), B

𝐿
(y) with

𝜌
𝑆
(x, y) > (4𝑁 − 2)𝐿 is weakly separated.

Proof. Given x = (𝑥
1
, . . . , 𝑥

𝑁
), consider the collection of 1-

particle balls 𝐵
2𝐿
(𝑥

𝑗
), 𝑗 = 1, . . . , 𝑁, of double radius 2𝐿, and

call a cluster any connected union of these balls𝐵
2𝐿
(𝑥

𝑗
)which

is minimal, that is, nondecomposable into smaller disjoint
connected unions (of the abovementioned balls 𝐵

2𝐿
(𝑥

𝑗
)).

Let Γ(x) = {Γ
1
, . . . , Γ

𝑀
}, 1 ≤ 𝑀 ≤ 𝑁, be the collection

of clusters of the 1-particle balls 𝐵
2𝐿
(𝑥

𝑗
), so that [[1,𝑁]] =

⊔
1≤𝑖≤𝑀

𝐽
𝑖
, 𝐽

𝑖
= {𝑗 : 𝑥

𝑗
∈ Γ

𝑖
} and Γ

𝑖
= ⋃

𝑗∈𝐽𝑖
𝐵

2𝐿
(𝑥

𝑗
).

Further, denote 𝑄
𝑖
= ⋃

𝑗∈𝐽𝑖
𝐵

𝐿
(𝑥

𝑗
) (this time, we take the

radius 𝐿, not 2𝐿). The clusters are connected sets, thus

diam𝑄
𝑖
≤ ∑

𝑗∈𝐽𝑖

diam𝐵
2𝐿

(𝑥
𝑗
) ≤ 4𝑁𝐿. (30)

Note that 𝐵
2𝐿
(𝑥

𝑗
) ∩ 𝐵

2𝐿
(𝑥

𝑘
) ̸= ⌀ ⇔ 𝑑(𝑥

𝑗
, 𝑥

𝑘
) ≤ 4𝐿; thus we

have the following bounds:

∀𝑖 = 1, . . . ,𝑀 diam {𝑥
𝑗
, 𝑗 ∈ 𝐽

𝑖
} ≤ 4𝐿 (𝑁 − 1) , (31)

and if 𝑦 ∈ Γ
𝑖
, then min

𝑗∈𝐽𝑖
𝑑(𝑦, 𝑥

𝑗
) ≤ 2𝐿, yielding

max
𝑗∈𝐽𝑖

𝑑 (𝑦, 𝑥
𝑗
) ≤ 2𝐿 + diam {𝑥

𝑗
, 𝑗 ∈ 𝐽

𝑖
}

≤ 2𝐿 + 4𝐿 (𝑁 − 1)

= (4𝑁 − 2) 𝐿.

(32)

Introduce the occupation numbers of the sets Γ
𝑖
for

configurations x and y:

𝑛
𝑖 (x) = card (Πx ∩ Γ

𝑖
) , 𝑖 ∈ [[1,𝑀]] ,

𝑛
𝑖
(y) = card (Πy ∩ Γ

𝑖
) , 𝑖 ∈ [[1,𝑀]] .

(33)

It follows immediately from the definition of Γ
𝑖
∈ Γ(x) that

𝑛
𝑖
(x) = |𝐽

𝑖
|, 𝑖 = 1, . . . ,𝑀; thus ∑

𝑖
𝑛
𝑖
(x) = 𝑁, while for the

configuration y we only have, in general, that 0 ≤ ∑
𝑖
𝑛
𝑖
(y) ≤

𝑁.
There can be two possible situations.

(I) For all 𝑖 ∈ [[1,𝑀]] we have 𝑛
𝑖
(x) = 𝑛

𝑖
(y). Then by

(32), there exists a permutation 𝜏 ∈ S
𝑁
such that, for

all 𝑗 ∈ [[1,𝑁]], the following holds:

𝑑 (𝑥
𝜏(𝑗)

, 𝑦
𝑗
) ≤ (4𝑁 − 2) 𝐿, (34)

yielding, by (22)-(23), the following:

𝜌
𝑆
(x, y) ≤ 𝜌 (𝜏 (x) , y) = max

1≤𝑗≤𝑁

𝑑 (𝑥
𝜏(𝑗)

, 𝑦
𝑗
)

≤ 4𝑁𝐿 − 2𝐿.

(35)

If 𝜌
𝑆
(x, y) > (4𝑁− 2)𝐿, then the occupation numbers

𝑛
𝑖
(x), 𝑛

𝑖
(y) cannot be all identical, so this situation is

impossible under the hypotheses of the lemma.
(II) For some 𝑖 ∈ [[1,𝑀]], 𝑛

𝑖
(x) ̸= 𝑛

𝑖
(y). As was already

mentioned, consider the following:

∑

𝑖=1

(𝑛
𝑖 (x) − 𝑛

𝑖
(y)) = 𝑁 − ∑

𝑖=1

𝑛
𝑖
(y) ≥ 0. (36)
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Since not all the summands (𝑛
𝑖
(x) − 𝑛

𝑖
(y)) vanish and

the LHS of (36) is nonnegative, there is some 𝑗
∘

∈

[[1,𝑀]] such that 𝑛
𝑗∘
(x) − 𝑛

𝑗∘
(y) > 0.

Setting 𝑄 = 𝑄
𝑗∘
, J

1
= 𝐽

𝑗∘
, and J

2
= {𝑗 : 𝑦

𝑗
∈ 𝑄

𝑗∘
},

we conclude that the conditions (29) are fulfilled and
|J

1
| − |J

2
| ≥ 𝑛

𝑗∘
(x) − 𝑛

𝑗∘
(y) > 0.

3. Eigenvalue Concentration Bound for
the Pairs of Distant Balls

3.1. EVC Bound for Weakly Separated Balls

Lemma 9. Let 𝑉 : Z × Ω → R be a random field satisfying
the condition (RCM). Let x, y ∈ Z𝑁 be two configurations such
that the balls B

𝐿
(x), B

𝐿
(y) are weakly separated. Consider the

operatorsHB
𝐿
 (y)(𝜔),HB

𝐿
 (y)(𝜔), with 𝐿


, 𝐿


≤ 𝐿.Then for any

𝑠 > 0 the following bound holds for the spectraΣx = 𝜎(HB
𝐿
 (x)),

Σy = 𝜎(HB
𝐿
 (y)) of these operators:

P {dist (Σx, Σy) ≤ 𝑠}

≤
B𝐿 (x)



B𝐿
(y) 𝐶


𝐿

𝐴


(2𝑠)
𝑏


+ 𝐶

𝐿

𝐴


(2𝑠)
𝑏


.

(37)

Proof. Let 𝑄 be a set satisfying the conditions (29) for some
J

1
,J

2
⊂ [[1,𝑁]] with |J

1
| =: 𝑛

1
> 𝑛

2
:= |J

2
|. Consider

the sample mean 𝜉 = 𝜉
𝑄
of 𝑉 over 𝑄 and the fluctuations

{𝜂
𝑥
, 𝑥 ∈ 𝑄} defined in (12).
The operators HB

𝐿
 (x)(𝜔), HB

𝐿
 (y)(𝜔) can be represented

as follows:
HB
𝐿
 (x) (𝜔) = 𝑛

1
𝜉 (𝜔) 1 + A (𝜔) ,

HB
𝐿
 (y) (𝜔) = 𝑛

2
𝜉 (𝜔) 1 + B (𝜔) ,

(38)

where the operators A(𝜔) and B(𝜔) are F
𝑄
-measurable.

Specifically, letJ𝑐

1
= [[1,𝑁]] \J

1
,J𝑐

2
= [[1,𝑁]] \J

2
, and

A (𝜔) = Δ + UB
𝐿
 (x) + ∑

𝑗∈J𝑐
1

𝑉(𝑥
𝑗
; 𝜔) + ∑

𝑗∈J1

𝜂
𝑥𝑗

(𝜔) ,

B (𝜔) = Δ + UB
𝐿
 (y) + ∑

𝑗∈J𝑐
2

𝑉(𝑦
𝑗
; 𝜔) + ∑

𝑗∈J2

𝜂
𝑦𝑗
(𝜔) .

(39)

Now (38) follows from the identities (cf. (12)) as follows:

𝑉(𝑥
𝑗
; 𝜔) = 𝜉 (𝜔) + 𝜂

𝑥𝑗
(𝜔) , 𝑗 ∈ J

1
,

𝑉 (𝑦
𝑗
; 𝜔) = 𝜉 (𝜔) + 𝜂

𝑦𝑗
(𝜔) , 𝑗 ∈ J

2
,

(40)

since ΠJ1
B

𝐿
(x), ΠJ2

B
𝐿
(y) ⊂ 𝑄, |J

1
| = 𝑛

1
, |J

2
| = 𝑛

2
.

Let {𝜆
1
, . . . , 𝜆

𝑀
} and {𝜇

1
, . . . , 𝜇

𝑀
}, with 𝑀


= |B

𝐿
(x)|,

𝑀


= |B
𝐿
(y)|, be the sets of eigenvalues of HB

𝐿
 (x) and

ofHB
𝐿
 (y), counting multiplicities. By (38), these eigenvalues

can be represented as follows:

𝜆
𝑗 (𝜔) = 𝑛

1
𝜉 (𝜔) + 𝜆

(0)

𝑗
(𝜔) ,

𝜇
𝑗 (𝜔) = 𝑛

2
𝜉 (𝜔) + 𝜇

(0)

𝑗
(𝜔) ,

(41)

where the random variables 𝜆
(0)

𝑗
(𝜔) and 𝜇

(0)

𝑗
(𝜔) are F

𝑄
-

measurable. Therefore, consider

𝜆
𝑖 (𝜔) − 𝜇

𝑗 (𝜔) = (𝑛
1
− 𝑛

2
) 𝜉 (𝜔) + (𝜆

(0)

𝑗
(𝜔) − 𝜇

(0)

𝑗
(𝜔)) ,

(42)

with 𝑛
1
− 𝑛

2
≥ 1, by our assumption. Further, we can write

P {dist (Σx, Σy) ≤ 𝑠} = P {∃𝑖, 𝑗 :

𝜆

𝑖
− 𝜇

𝑗


≤ 𝑠}

≤

𝑀


∑

𝑖=1

𝑀


∑

𝑗=1

E [P {

𝜆

𝑖
− 𝜇

𝑗


≤ 𝑠 | F

𝑄
}] .

(43)

Note that for all 𝑖 and 𝑗 we have

P {

𝜆

𝑖
− 𝜇

𝑗


≤ 𝑠 | F

𝑄
}

= P {

(𝑛

1
− 𝑛

2
) 𝜉 + 𝜆

(0)

𝑖
− 𝜇

(0)

𝑗


≤ 𝑠 | F

𝑄
}

≤ sup
𝑡∈R

P {
𝜉 − 𝑡

 ≤ (𝑛
1
− 𝑛

2
)
−1
𝑠 | F

𝑄
}

≤ sup
𝑡∈R

(𝐹
𝜉
(𝑡 + 𝑠 | F

𝑄
) − 𝐹

𝜉
(𝑡 − 𝑠 | F

𝑄
))

(44)

(we used (𝑛
1
− 𝑛

2
)
−1

≤ 1). Consider the event

E
𝐿

= {sup
𝑡∈R


𝐹
𝜉
(𝑡 + 2𝑠 | F

𝑄
) − 𝐹

𝜉
(𝑡 | F

𝑄
)

≥ 𝐶


𝐿

𝐴


(2𝑠)
𝑏


} .

(45)

By (RCM) (cf. (14)), P{E
𝐿
} ≤ 𝐶


𝐿

𝐴


(2𝑠)
𝑏


. Therefore,

P {dist (Σx, Σy) ≤ 𝑠}

= E [P {dist (Σx, Σy) ≤ 𝑠 | F
𝑄
}]

≤ E [1E𝑐
𝐿

P {dist (Σx, Σy) ≤ 𝑠 | F
𝑄
}] + P {E

𝐿
}

≤
B𝐿
 (x) ⋅

B𝐿
 (y) 𝐶


𝐿

𝐴


(2𝑠)
𝑏


+ 𝐶

𝐿

𝐴


(2𝑠)
𝑏


.

(46)

3.2. Proof of Theorem 3. By hypothesis, we have 𝜌
𝑆
(x, y) >

(4𝑁 − 2)𝐿, thus, by Lemma 8, the balls B
𝐿
(x) and B

𝐿
(y) are

weakly separated, and the claim follows from Lemma 9.

4. EVC Bounds for the Particle Systems with
Quantum Symmetry

Themain EVC bound, established for the HamiltonianH(𝜔)

in the entire Hilbert space ℓ
2
(Z𝑁

), implies a lower bound
on the spectral spacings for the restrictions of H(𝜔) to the
subspaces of symmetric and of antisymmetric functions, that
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is, for the bosonic and fermionic 𝑁-particle Hamiltonians.
For the convenience of further references, we introduce below
required notations and objects.

A technically convenient alternative to restricting H to
a subspace of (±)-symmetric functions Ψ : (Z)

𝑁
→ C

consists in representing these subspaces as the spaces of
square-summable functions on a reduced, quotient graph.
Such reduction is themost straight-forward in the case where
Z = Z1. In this case, consider the following.

(i) The subspace of all antisymmetric square-summable
functionsΨ : (Z)

𝑁
→ C in theHilbert spaceH(𝑁)

=

ℓ
2
(Z𝑁

) is canonically isomorphic to the space ℓ2
(Z𝑁

>
)

with

Z
𝑁

>
:= {x ∈ Z

𝑁
: 𝑥

𝑁
> 𝑥

𝑁−1
> ⋅ ⋅ ⋅ > 𝑥

1
} . (47)

Up to a constant factor of (𝑁!)
1/2, the canonical

isomorphism is given by the restriction Ψ →

(1Z𝑁
≥

Ψ)↾Z𝑁
≥

.
(ii) Similarly, the subspace of symmetric functions Ψ :

(Z)
𝑁

→ C in H(𝑁)
= ℓ

2
(Z𝑁

) is canonically
isomorphic to the weighted space ℓ2

(Z𝑁

≥
, k) with

Z
𝑁

≥
:= {x ∈ Z

𝑁
: 𝑥

𝑁
≥ 𝑥

𝑁−1
≥ ⋅ ⋅ ⋅ ≥ 𝑥

1
} , (48)

and the combinatorial weight k taking into account
the multiplicity of a point 𝑢 ∈ Z in a particle config-
uration (𝑥

1
, . . . , 𝑥

𝑁
); we omit the precise formula, for

it is more natural to start with a self-consistent rep-
resentation of a system of indistinguishable particles,
without referring to an artificial numeration of their
positions.

In amore general case, there are alternative constructions
of the reduced graph.

4.1. Fermionic Graph. The standard construction of a sym-
metric power of an arbitrary locally finite graph Z is most
suitable for the fermionic systems. Recall that, by definition,
for 𝑁 ≥ 2, the 𝑁th symmetric power of the graph (Z,E)

is the graph with the vertex set formed by the 𝑁-tuplets x =

(𝑥
1
, . . . , 𝑥

𝑁
)with𝑥

𝑗
∈ Z, 𝑗 ∈ [[1,𝑁]] and card{𝑥

1
, . . . , 𝑥

𝑁
} =

𝑁, that is, without duplicate positions in the graphZ. Clearly,
this is a subset of the edge set of the product graph Z𝑁

considered before. The edges are those inherited from E(𝑁):
(x, y) is an edge if and only if ∑

𝑗
𝑑Z(𝑥

𝑗
, 𝑦

𝑗
) = 1, or,

equivalently, if for some pairwise distinct 𝑧
2
, . . . , 𝑧

𝑁
are as

follows:

x = {𝑥, 𝑧
2
, . . . , 𝑧

𝑁
} , y = {𝑦, 𝑧

2
, . . . , 𝑧

𝑁
} ,

card {𝑥, 𝑦, 𝑧
2
, . . . , 𝑧

𝑁
} = 𝑁 + 2.

(49)

As before, these relations can be interpreted in the following
way: the configuration of 𝑁 indistinguishable particles y is
obtained by moving exactly one particle from the configu-
ration x (without duplicate positions) to one of its nearest
unoccupied neighbors inZ.

4.2. Representation by the Occupation Numbers. An alterna-
tive construction,whichwe present first in the fermionic case,
is easily adapted to the bosonic systems.

A configuration of 𝑁 indistinguishable particles, 𝑁 ≥ 1,
is uniquely determined by an “N-decorated” subset of Z
formed by all particle positions along with their respective
multiplicities. (In other words, we consider formal finite
linear combinations of vertices from Z with nonnegative
integer coefficients). Specifically, introduce the functions nx :

Z → N, associated with the indistinguishable particle
configurations x, with the value nx(𝑢) interpreted as the
number of particles at 𝑢 ∈ Z from the configuration x. We
require the following:

∑

𝑢∈Z

nx (𝑢) = 𝑁. (50)

In the fermionic case, we require in addition the following:

nx : Z → {0, 1} , (51)

which is a tantamount to assuming the particle positions to
be pairwise distinct. To define the required graph structure in
the set of the occupationnumber functions, call a pair (n

,n
)

an edge if and only if

∑

𝑢∈Z


n

(𝑢) − n
(𝑢)


= 2, diam supp (n

− n
) = 1.

(52)

In other words, supp(n
− n

) = {𝑥, 𝑦}, with 𝑑(𝑥, 𝑦) = 1, so
(𝑥, 𝑦) ∈ E is an edge inZ.

For example, with Z = Z, the 2-particle configurations
x = (0, 1) and y = (0, 2), with occupation numbers nx =

1
{0}

+ 1
{1}
, ny = 1

{0}
+ 1

{2}
, form an edge, since

nx − ny = 1
{1}

− 1
{2}

; (53)

thus

diam supp (nx − ny) = diam {1, 2} = 1,

∑

𝑢∈Z


nx (𝑢) − ny (𝑢)


= ∑

𝑢∈{1,2}


nx (𝑢) − ny (𝑢)


= 2.

(54)

The vertex set of the 𝑁-fermionic graph over Z will be
denoted byZ𝑁

−
.

4.3. Bosonic Graph. Consider the integer-valued functions
nx : Z → [[0,𝑁]] obeying

∑

𝑢∈Z

nx (𝑢) = 𝑁. (55)

This allows for duplicate positions; for example, one can have
nx = 𝑁1

𝑥
, interpreted as the configuration x = (𝑥, 𝑥, . . . , 𝑥),

with 𝑁-particles occupying the same position 𝑥 ∈ Z. The
edges (n

,n
) are still defined by the following constraints:

∑

𝑢∈Z


n

(𝑢) − n
(𝑢)


= 2, diam supp (n

− n
) = 1,

(56)
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meaning, as before, that exactly one particle from x is moved
to one of its neighboring positions. Indeed, exactly two terms
in the above sum are nonzero integers, with sum = 2, so
both are equal to 1; by the conservation law (55), one of the
differences under the absolute value sign is +1 and the other
one −1.

For example, x = (𝑎, 𝑎, 𝑏) and y = (𝑎, 𝑏, 𝑏)with𝑑(𝑎, 𝑏) = 1

form an edge:

nx = 21
{𝑎}

+ 1
{𝑏}

, ny = 1
{𝑎}

+ 21
{𝑏}

, (57)

so nx − ny = 1
{𝑎}

− 1
{𝑏}
, and we have

supp (nx − ny) = {𝑎, 𝑏} , diam supp (nx − ny) = 1,

∑

𝑢∈Z


nx (𝑢) − ny (𝑢)


= ∑

𝑢∈{𝑎,𝑏}


nx (𝑢) − ny (𝑢)


= 2.

(58)

The vertex set of the 𝑁-bosonic graph over Z will be
denoted byZ𝑁

+
.

4.4. Self-Consistent Representation of Bosonic and Fermonic
Hamiltonians. The following formula gives an equivalent
form of the restriction of the 𝑁-particle Hamiltonian to the
subspace of symmetric (+) or antisymmetric (−) functions in
ℓ
2
(Z)

𝑁, without using any specific order/numeration of the
particle positions:

H(𝑁)

±
(𝜔) = ΔZ𝑁

±
+ 𝑔V (𝜔) + U, (59)

where V(𝜔) is the operator of multiplication by a random
function,

V (𝜔) : x → ∑

𝑥∈x
𝑉 (𝑥; 𝜔) , x = (𝑥

1
, . . . , 𝑥

𝑁
) , (60)

and U is the operator of multiplication by the following
nonrandom interaction potential:

U : x → ∑

𝑥,𝑦∈x,
𝑥 ̸=𝑦

𝑈 (
𝑥 − 𝑦

) . (61)

4.5. Balls in the Fermionic Graph. We focus now on the
fermionic case, which corresponds to the physical model
of 𝑁 electrons (which are fermions) in the tight binding
approximation.

The choice of the metric, defining the notion of a ball
in the 𝑁-particle configuration space, depends upon the
analytic techniques used on the localization analysis, and it
is of course not unique. We consider the case where the max-
distance is used; then the balls, like in the case whereZ = Z𝑑,
can be described as polydisks, or suitable subsets thereof,
taking into account the quantum symmetry. Specifically,
consider

B
𝐿 (x) = {y ∈ Z

𝑁

−
: 𝜌 (x, y) ≤ 𝐿} . (62)

There is no need here tomake use of the subscript “𝑆” in𝜌(⋅, ⋅),
as we did in the first part of the paper, since the symmetry is

now encoded in the very construction of the fermionic graph
Z𝑁

−
.
The following example clearly explains the difference

between the fermionic ball B
𝐿
(x) and the Cartesian product

of its single-particle projections 𝐵
𝐿
(𝑥) ⊂ Z, 𝑥 ∈ x.

Example 10. Let 𝑁 = 2, Z = Z1, 𝐿 = 1, x = {0, 1}, and
y = {0, 3}. Then

B
1 (x) = {{1, 2} , {0, 1} , {0, 2} , {−1, 0} , {−1, 1} , {−1, 2}}

⊊ [0, 2] × [−1, 1] ≡ 𝐵
1 (0) × 𝐵

1 (1) ,

(63)

while

B
1
(y) = [−1, 1] × [2, 4] ≡ 𝐵

1 (0) × 𝐵
1 (3) . (64)

4.6. The EVC Bound

Theorem 11. Let 𝑉 : Z × Ω → R be a random field
satisfying (RCM). Then for any pair of 𝑁-particle fermionic
Hamiltonians H(𝑁,−)

B
𝐿
 (u), H

(𝑁,−)

B
𝐿
 (u), 0 ≤ 𝐿

, 𝐿
≤ 𝐿, satisfying

𝜌
𝑆
(u

, u
) > (4𝑁 − 2)𝐿, and any 𝑠 > 0 the following bound

holds:

P {dist(𝜎(H(𝑁,−)

B
𝐿
(u)

) , 𝜎 (H(𝑁,−)

B
𝐿
(u)

)) ≤ 𝑠} = ℎ
𝐿 (𝑠) (65)

with

ℎ
𝐿 (𝑠) :=

B𝐿
 (x) ⋅

B𝐿
 (y) 𝐶


𝐿

𝐴


𝑠
𝑏


+ 𝐶

𝐿

𝐴


𝑠
𝑏


. (66)

The same bound holds true for the pair of 𝑁-particle bosonic
Hamiltonians H(𝑁,+)

B
𝐿
 (u) and H(𝑁,+)

B
𝐿
 (u), except that the volumes

of the bosonic balls B
𝐿
(x), B

𝐿
(y) may be different from their

fermionic counterparts.

Proof. The claim follows from Theorem 3; it can also be
proved directly for the Hamiltonians in the fermionic (resp.,
bosonic) graphs Z𝑁

±
, repeating the proof of Theorem 3

almost verbatim, with minor notational adaptations.
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Stolz, and Ivan Veselić for fruitful discussions.

References

[1] P. W. Anderson, “Absence of diffusion in certain random
lattices,” Physical Review, vol. 109, no. 5, pp. 1492–1505, 1958.



Journal of Operators 9

[2] D. M. Basko, I. L. Aleiner, and B. L. Altshuler, “Metal-insulator
transition in a weakly interacting many-electron system with
localized single-particle states,” Annals of Physics, vol. 321, no.
5, pp. 1126–1205, 2005.

[3] I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, “Interacting
electrons in disordered wires: anderson localization and low-
T transport,” Physical Review Letters, vol. 95, Article ID 206603,
2005.

[4] V. Chulaevsky and Y. Suhov, “Eigenfunctions in a two-particle
Anderson tight bindingmodel,” Communications inMathemat-
ical Physics, vol. 289, no. 2, pp. 701–723, 2009.

[5] V. Chulaevsky and Y. Suhov, “Multi-particle Anderson local-
isation: induction on the number of particles,” Mathematical
Physics, Analysis and Geometry, vol. 12, no. 2, pp. 117–139, 2009.

[6] M. Aizenman and S. Warzel, “Localization bounds for multi-
particle systems,”Communications inMathematical Physics, vol.
290, no. 3, pp. 903–934, 2009.

[7] V. Chulaevsky, A. Boutet de Monvel, and Y. Suhov, “Dynamical
localization for a multi-particle model with an alloy-type
external randompotential,”Nonlinearity, vol. 24, no. 5, pp. 1451–
1472, 2011.

[8] A. Klein and S. T. Nguyen, “The bootstrap multiscale analysis
of the multi-particle Anderson model,” Journal of Statistical
Physics, vol. 151, no. 5, pp. 938–973, 2013.

[9] A. Klein and S. T. Nguyen, “Bootstrap multiscale analysis and
localization for multi-particle continuous Anderson Hamilto-
nians,” 2013, http://arxiv.org/abs/1311.4220.

[10] M. Fauser and S. Warzel, “Multiparticle localization for disor-
dered systems on continuous space via the fractional moment
method,” http://arxiv.org/abs/1402.5832.

[11] F. Wegner, “Bounds on the density of states in disordered
systems,”Zeitschrift für Physik B CondensedMatter andQuanta,
vol. 44, no. 1-2, pp. 9–15, 1981.

[12] V. Chulaevsky, “On the regularity of the conditional distribution
of the sample mean,” http://arxiv.org/abs/1304.6913.
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