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We have presented a class of charged superdense star models, starting with a static spherically symmetric metric in isotropic
coordinates for anisotropic fluid by consideringHajj-Boutros-(1986) typemetric potential and a specific choice of electrical intensity
E and anisotropy factor Δ which involve charge parameter K and anisotropy parameter 𝛼. The solution is well behaved for all the
values of Schwarzschild compactness parameter u lying in the range 0 < 𝑢 ≤ 0.2086, for all values of charge parameter K lying in
the range 0.04 ≤ 𝐾 ≤ 0.111, and for all values of anisotropy parameter 𝛼 lying in the range 0.016 ≥ 𝛼 ≥ 0. With the increase in
𝛼, the values of K and u decrease. Further, we have constructed a superdense star model with all degree of suitability. The solution
so obtained is utilized to construct the models for superdense star like neutron stars 𝜌𝑏 = 2.7 × 10

14 g/cm3 and strange quark stars
𝜌𝑏 = 4.6888 × 10

14 g/cm3 . For 𝐾 = 0.06 and 𝛼 = 0.01, the maximum mass of neutron star is observed as 𝑀 = 1.53M⊙ and radius
𝑅 = 11.48 km. Further for strange quark stars 𝑀 = 1.16M⊙ and 𝑅 = 8.71 km are obtained.

1. Introduction

Since the formulation of Einstein-Maxwell field equations,
the relativists have been proposing different models of
immensely gravitating astrophysical objects by considering
the distinct nature ofmatter or radiation (energy-momentum
tensor) present in them. Einstein-Maxwell field equations
with anisotropic matter in isotropic coordinates have more
importance over Einstein field equations for perfect fluid in
curvature coordinates due to following rationale justifica-
tions.

(i) The presence of some charge may avert the catas-
trophic gravitational collapse by counterbalancing the
gravitational attraction by the electric repulsion in
addition to the pressure gradient.

(ii) The inclusion of charge inhibits the growth of space
time curvature which has a great role in avoiding
singularities (Ivanov [1]; de Felice et al. [2]).

(iii) Bonnor [3] pointed out that a dust distribution of
arbitrarily large mass and small radius can remain in
equilibrium against the pull of gravity by a repulsive
force produced by a small amount of charge.

(iv) The solutions of Einstein-Maxwell equations are use-
ful to study the cosmic matter.

(v) The charge dust models and electromagnetic mass
models are providing some clue about the structure of
electron (Bijalwan [4]) and Lepton model (Kiess [5]).

(vi) Several solutions which do not satisfy some or all the
conditions for well-behaved nature can be renewed
into well-behaved nature by charging them.

(vii) Maharaj-Takisa [6] pointed out that the astrophys-
ical objects have essential characteristics of rota-
tional motion, which is caused by the presence of
anisotropic parameter.Therefore, thematter in reality
cannot be perfect fluid; Ruderman [7] and Sharma
and Maharaj [8] also justified that the anisotropic
always prevails in a certain density range ≈1015 g/cm3.

(viii) Ivanov [9] pointed out that solutions in isotropic
coordinates are more significant than the solutions in
curvature coordinates, due to the following reasons:
(a) the solutions in isotropic coordinates are simple
in terms of algebraic expressions; (b) isotropic coor-
dinates solutions can be used as seed solutions in
Quasar modeling or nonstatic solutions.
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Thus for realistic model it is desirable to study the insinuation
of Einstein-Maxwell field equations with reference to the
general relativistic prediction of gravitational collapse with
anisotropicmatter. For this purpose charged fluid ballmodels
are required. The external field of such ball is to be matched
with Reissner-Nordstrom solution. The solutions of Einstein-
Maxwell field equations successfully explain the characteris-
tics of massive objects like neutron star, quark star, or other
superdense objects. Further, these stars are specified in terms
of their masses and densities.

(a) A neutron star has surface density 𝜌𝑏 = 2.7 ×

10
14 g/cm3 (Astashenok [10]) and mass 1.4M⊙ −

2.9M⊙. However, Astashenok [10] established that
𝑓(𝑅)modelswith realistic equation of state of neutron
star have upper limit mass 2M⊙ and minimal radius
close to 9 km.

(b) A strange quark star has surface density 𝜌𝑏 = 4.6888×

10
14 g/cm3 (Fatema andMurad [11]; Zdunik [12]) and

possible maximum mass 2M⊙. However, Dong et al.
[13] established that due to presence of half skyrmions
in the dense baryonic matter the stable strange quark
star can have upper mass limit up to 2.4M⊙.

In recent past, a considerable number of exact solutions with
well-behaved nature of general relativistic field equation with
anisotropic matter have been obtained; Dev and Gleiser [14],
Komathiraj and Maharaj [15, 16], Thirukkanesh and Regel
[17], Takisa and Maharaj [18, 19], Mak and Harko [20], Mak
et al. [21], Ivanov [1], Maurya and Gupta [22, 23], Chaisi
and Maharaj [24], and Feroze and Siddiqui [25] deal with
curvature coordinates and some of them are charged models.
By motivation of Maharaj-Takisa [6] and Ivanov [9], in this
paper, we present a new class of well-behaved exact solutions
of Einstein-Maxwell field equations in isotropic coordinates
for anisotropic fluid assuming a particular form of one of the
metric potentials and suitable choice of electric intensity and
anisotropy.

2. Field Equations in Isotropic Coordinates

We consider the static and spherically symmetric metric in
isotropic coordinates

𝑑𝑠
2
= −𝑒
𝜔
[𝑑𝑟
2
+ 𝑟
2
(𝑑𝜃
2
+ sin2𝜃𝑑𝜙2)] + 𝑒

]
𝑐
2
𝑑𝑡
2
, (1)

where 𝜔 and ] are functions of 𝑟.
The Einstein-Maxwell field equations for a nonempty

space-time are

𝑅
𝑖

𝑗
−

1

2
𝛿
𝑖

𝑗
𝑅 = −

8𝜋𝐺

𝑐4
𝑇
𝑖

𝑗

= −
8𝜋𝐺

𝑐4
[ (𝑝⊥ + 𝜌𝑐

2
) V𝑖V𝑗 − 𝑝⊥𝛿

𝑖

𝑗

+ (𝑝𝑟 − 𝑝⊥) 𝜒𝑗𝜒
𝑖

+
1

4𝜋
(−𝐹
𝑖𝑚

𝐹𝑗𝑚 +
1

4
𝛿
𝑖

𝑗
𝐹𝑚𝑛𝐹
𝑛𝑚

)] ,

(2)

where 𝑅
𝑖

𝑗
is Ricci tensor, 𝑇𝑖

𝑗
is energy-momentum tensor, 𝑅 is

the scalar curvature, 𝐹𝑗𝑚 is the electromagnetic field tensor,
𝑝𝑟 denotes the radial pressure, 𝑝⊥ is the transversal pressure,
𝜌 is the density distribution, 𝜒𝑖 is the unit space-like vector
in the radial direction, and V𝑖 is the velocity vector, satisfying
the relation
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Thus we find that for the metric (1) under these conditions
and for matter distributions with anisotropic pressure the
field equation (2) reduces to the following:
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where prime () denotes differentiation with respect to 𝑟.
From (5) and (6) we obtain the following differential equation
in 𝜔 and 𝜐:
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Our task is to explore the solutions of (8) and to obtain the
fluid parameters 𝑝𝑟, 𝑝⊥, and 𝜌 from (5), (6), and (7).

To solve the above equationwe consider a seed solution as
a particular case of Hajj-Boutros [26], Murad-Pant [27] and
the electric intensity 𝐸 of the following form:
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where 𝐾 is a positive constant defined as charge parameter.
The electric intensity is so assumed that the model is physi-
cally significant and well behaved; that is, 𝐸 remains regular
and positive throughout the sphere. In addition, 𝐸 vanishes
at the center of the star and increases towards the boundary.

We also take
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where “Δ” is the anisotropy factor whose value is zero at
the center and increases towards the boundary and “𝛼” is a
positive constant defined as anisotropy parameter.
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3. Conditions for Well-Behaved Solution

For well-behaved nature of the solution in isotropic coordi-
nates, the following conditions should be satisfied (Mak and
Harko [20] and Maurya and Gupta [22]).

(i) The solution should be free from physical and geo-
metrical singularities, that is, finite and positive values
of central pressure, central density, and nonzero
positive values of 𝑒𝜔 and 𝑒

𝜐.
(ii) The radial pressure 𝑝𝑟must be vanishing, but the tan-

gential pressure 𝑝⊥ may not vanish at the boundary
𝑟 = 𝑟𝑏 of the sphere. However, the radial pressure is
equal to the tangential pressure at the centre of the
fluid sphere.

(iii) The density 𝜌 and pressures 𝑝𝑟, 𝑝⊥ should be positive
inside the star.
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Conditions (iv)–(vi) imply that pressure and density
should be maximum at the centre and monotonically
decreasing towards the surface.

(vii) Inside the static configuration the casualty condi-
tion should be obeyed; that is, the speed of sound
should be less than the speed of light; that is, 0 ≤
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this context it is worth mentioning that the equation
of state at ultrahigh distribution has the property that
the sound speed is decreasing outwards (Canuto and
Lodenquai [28]).
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(x) Electric intensity 𝐸, such that 𝐸𝑟=0 = 0 and is taken to
be monotonically increasing.

(xi) The anisotropy factor Δ should be zero at the center
and increasing towards the surface.

4. A New Class of Solutions

Equation (8) is solved by assuming the seed solution as a
particular case of Hajj-Boutros [26], Murad-Pant [27] and

the electric intensity 𝐸 and the anisotropy factor Δ in such
a manner that the solution can be obtained and physically
viable. Thus we have
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On substituting the above in (8), we get the following Riccati-
differential equation in 𝑦:
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where 𝐴, 𝐵, 𝐶, and 𝐾 are arbitrary constants and

𝑆 = √72 (𝐾 + 𝛼) − 4, (14)

where 𝑆 is real for 𝐾 + 𝛼 ≥ 1/18.
The expressions for density, radial pressure, and transver-

sal pressure are given by
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5. Properties of the New Solution

The central values of pressure and density are given by
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Subjecting to the condition that the ratio of pressure to
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Thus it is found that maxima of 𝑝𝑟 occur at the centre; that is,
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Thus the expression of the right-hand side of (26) is negative
for all values of 𝐴 satisfying condition (21), showing thereby
that the pressure (𝑝𝑟) is maximum at the centre and mono-
tonically decreasing.
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Thus the expression of the right-hand side of (28) is negative
for all values of 𝐴 satisfying condition (21), showing thereby
that the transversal pressure is maximum at the centre and
monotonically decreasing.
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Now differentiating equation (15) with respect to 𝑟 we get
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Thus, the expression of the right-hand side of (30) is negative
showing thereby that the density 𝜌 is maximum at the centre
and monotonically decreasing.

The square of adiabatic sound speed at the centre,
(1/𝑐
2
)(𝑑𝑝/𝑑𝜌)

𝑟=0
, is given by

1

𝑐2
(
𝑑𝑝𝑟

𝑑𝜌
)

𝑟=0

=
(36𝐾 − 28) (1 + 𝐴)

2
+ 12𝑆 + 4𝐴𝑆

2
− 12𝑆𝐴

2

(−100 − 36𝐾) (1 + 𝐴)
2

< 1 and positive

(31)

1

𝑐2
(
𝑑𝑝⊥

𝑑𝜌
)

𝑟=0

=
(36𝐾 + 72𝛼 − 28) (1 + 𝐴)

2
+ 12𝑆 + 4𝐴𝑆

2
− 12𝑆𝐴

2

(−100 − 36𝐾) (1 + 𝐴)
2

< 1 and positive.
(32)

The causality condition is obeyed at the centre for all values
of constants satisfying condition (21). Due to cumbersome
expressions the trend of pressure-density ratios and adiabatic
sound speeds are studied analytically after applying the
boundary conditions.

6. Boundary Conditions in
Isotropic Coordinates

For exploring the boundary conditions, we use the principle
that the metric coefficients 𝑔𝑖𝑗 and their first derivatives 𝑔𝑖𝑗,𝑘

in interior solution (𝐼) as well as in exterior solution (𝐸) are
continuous up to and on the boundary 𝐵. The continuity
of metric coefficients 𝑔𝑖𝑗 of 𝐼 and 𝐵 on the boundary is the
known first fundamental form. The continuity of derivatives
of metric coefficients 𝑔𝑖𝑗 of 𝐼 and 𝐵 on the boundary is the
known second fundamental form.

The exterior field of a spherically symmetric static
charged fluid distribution is described by Reissner-Nord-
strom metric given by

𝑑𝑠
2
= (1 −

2𝐺𝑀

𝑐2𝑅
+

𝑞
2

𝑅2
) 𝑐
2
𝑑𝑡
2
− (1 −

2𝐺𝑀

𝑐2𝑅
+

𝑞
2

𝑅2
)

−1

𝑑𝑅
2

− 𝑅
2
(𝑑𝜃
2
+ sin2𝜃𝑑𝜙2) ,

(33)

where𝑀 is the mass of the ball as determined by the external
observer and 𝑅 is the radial coordinate of the exterior region.

Since Reissner-Nordstrom metric (33) is considered as
the exterior solution, we will arrive at the following conclu-
sions by matching first and second fundamental forms:

𝑒
𝜐
𝑏 = [1 − 2

𝐺𝑀

𝑐2𝑅𝑏

+
𝑞
2

𝑏

𝑅
2

𝑏

] (34)

𝑅𝑏 = 𝑟𝑏 ⋅ 𝑒
𝜔
𝑏
/2
, 𝑞(𝑟=𝑟

𝑏
) = 𝑞𝑏 (35)

1

2
(𝜔

+

2

𝑟
)
𝑏

𝑟𝑏 = (1 − 2
𝐺𝑀

𝑐2𝑅𝑏

+
𝑞
2

𝑏

𝑅
2

𝑏

)

1/2

(36)

1

2
(])
𝑏
𝑟𝑏 = (

𝐺𝑀

𝑐2𝑅𝑏

−
𝑞
2

𝑏

𝑅
2

𝑏

)(1 − 2
𝐺𝑀

𝑐2𝑅𝑏

+
𝑞
2

𝑏

𝑅
2

𝑏

)

−1/2

. (37)

Equations (34) to (37) are four conditions, known as bound-
ary conditions in isotropic coordinates. Moreover (35) and
(37) are equivalent to zero pressure of the interior solution
on the boundary.

Applying the boundary conditions from (34) to (37), we
get the values of the arbitrary constants in terms of Reissner-
Nordstrom parameter “𝑑,” Schwarzschild parameters 𝑢 =

𝐺𝑀/𝑐
2
𝑅𝑏, and radius of the star 𝑅𝑏;

𝐶 =
6 (1 − 𝑑)

(6𝑑 − 4) 𝑟𝑏
2

> 0 for 𝑢 ≤
10

36
+

𝑞
2

𝑏

2𝑅
2

𝑏

(38)

𝐴 = (6(𝑢 −
𝑞
2

𝑏

𝑅
2

𝑏

) ⋅ (1 + 𝐶𝑟
2

𝑏
)
(4−𝑆)/12

− (4 − 𝑆) ⋅ 𝐶𝑟
2

𝑏
⋅ 𝑑

⋅(1 + 𝐶𝑟
2

𝑏
)
(−8−𝑆)/12

)

× ( (4 + 𝑆) ⋅ 𝑑 ⋅ 𝐶𝑟
2

𝑏
⋅ (1 + 𝐶𝑟

2

𝑏
)
(−8+𝑆)/12

−6(𝑢 −
𝑞
2

𝑏

𝑅
2

𝑏

)(1 + 𝐶𝑟
2

𝑏
)
(4+𝑆)/12

)

−1

(39)

𝐵 =
√

(1 + 𝐶𝑟
2

𝑏
)
(4−𝑆)/12

+ 𝐴(1 + 𝐶𝑟
2

𝑏
)
(4+𝑆)/12

𝑑
,

(40)
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Figure 1: The variation of 𝑝, 𝜌, 𝑝/𝜌𝑐
2, 𝑍, 𝛾, and 𝐸 from centre to surface for 𝐾 = 0.06 and 𝛼 = 0.01.

where we define a new parameter called Reissner-Nordstrom
parameter “𝑑” given by

𝑑 = [1 − 2𝑢 +
𝑞
2

𝑏

𝑅
2

𝑏

]

1/2

(41)

whose value lies within 2/3 < 𝑑 < 1 for 𝐶𝑟𝑏
2
> 0.

Surface density is given by

8𝜋𝐺𝜌

𝑐2
𝑅
2

𝑏
=

𝐶𝑟
2

𝑏

36(1 + 𝐶𝑟
2

𝑏
)
2
[72 + 20𝐶𝑟𝑏

2
− 36𝐾𝐶𝑟𝑏

2
] .

(42)

Central red shift is given by

𝑍0 = [
𝐵
2

1 + 𝐴
− 1] . (43)

The surface red shift is given by

𝑍𝑏 = [𝑒
−]
𝑏
/2

− 1] . (44)

7. Discussions and Conclusions

From Figures 1 and 2 it has been observed that the physical
quantities 𝑝𝑟, 𝑝⊥, 𝑝𝑟/𝜌𝑐

2, 𝑝⊥/𝜌𝑐
2, 𝑑𝑝𝑟/𝑐

2
𝑑𝜌, 𝑑𝑝

⊥
/𝑐
2
𝑑𝜌, and 𝑧

are positive at the centre and within the limit of realistic state
equation and monotonically decreasing while the quantities
𝛾, Δ, 𝐸 are increasing for all values of 𝐾, 𝛼, and 𝑢 lying in
the ranges 0.04 ≤ 𝐾 ≤ 0.111, 0 < 𝛼 ≤ 0.016, and
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Figure 3: The variation of mass with radius of the superdense stars.

0 ≤ 𝑢 ≤ 0.2086, respectively. For𝐾+𝛼 > 0.111 the pressure is
negative.With the increase in the value of𝐾 from 0.04 to 0.111
the Schwarzschild parameter “𝑢” increases; hence the mass
increases, but the value of 𝛼 has to be decreased to 0. With
𝛼 = 0 we recover the isotropic model.

By increasing 𝐾 above 0.111 the causality condition is
obeyed throughout within the ball, but the trend of adiabatic
sound speed (transversal) is erratic. Thus, the solution is well
behaved for all values of 𝑢 satisfying the inequality 0 ≤ 𝑢 ≤

0.2086 for 𝐾 up to 0.111 and for 𝛼 up to 0.016. From Figure 3
it is clearly shown that the mass of the superdense star has a
linear dependence on its radius.

In Tables 1 and 2 we present a model of superdense
neutron star and quark star based on the particular solution
discussed above. By assuming surface density, 𝜌𝑏 = 4.6888 ×

10
14 g/cm3 corresponding to 𝛼 = 0.01, 𝐾 = 0.06 for

which 𝑢 = 0.198, the resulting well-behaved solution has
a maximum mass 𝑀 = 1.16M⊙ and radius 𝑅 = 8.71 km
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Table 1: Variation of maximum mass of neutron star and corre-
sponding radius 𝑅𝑏 with 𝑢 for 𝐾 = 0.06 and 𝛼 = 0.01 by assuming
the surface density 𝜌𝑏 = 2.7 × 10

14 g/cm3.

𝑢 (8𝜋𝐺/𝐶
2
)𝜌𝑟
2

𝑏
𝑅𝑏 (km) 𝑀/𝑀⊙

0.010 0.08605 3.41575 0.02299
0.020 0.16661 4.77451 0.06413
0.040 0.31173 6.59067 0.17622
0.060 0.44198 7.92405 0.32153
0.080 0.54874 8.91444 0.48155
0.100 0.63497 9.68137 0.65060
0.120 0.70596 10.31179 0.83478
0.140 0.75730 10.78723 1.01872
0.160 0.79117 11.13602 1.20163
0.180 0.80834 11.36756 1.38018
0.198 0.81007 11.47792 1.53364

Table 2: Showing the variation of maximum mass of Quark star
(𝜌𝑏 = 4.6888 × 10

14 g/cm3), its radius, surface red shift, surface
electric intensity, and surface anisotropy with 𝑢 for 𝐾 = 0.06 and
𝛼 = 0.01.

𝑢 𝑅𝐵 (km) 𝑀/𝑀⊙ 𝑍𝑏 𝐸𝑏𝑟𝑏 Δ 𝑏𝑟
2

𝑏

0.010 2.59201 0.01745 0.010101 0.008901 0.000026
0.020 3.62309 0.04866 0.020408 0.017722 0.000105
0.040 5.00127 0.13373 0.041667 0.035122 0.000411
0.060 6.01310 0.24399 0.064963 0.053045 0.000938
0.080 6.76465 0.36542 0.088850 0.070282 0.001646
0.100 7.34663 0.49370 0.113586 0.087017 0.002524
0.120 7.82502 0.63347 0.140901 0.104300 0.003626
0.140 8.18579 0.77305 0.169317 0.121076 0.004886
0.160 8.45047 0.91185 0.199472 0.137677 0.006318
0.180 8.62618 1.04734 0.231679 0.154199 0.007926
0.198 8.70992 1.16379 0.262626 0.169054 0.009526

(for quark star) and by assuming the surface density 𝜌𝑏 =

2.7×10
14 g/cm3 the obtainedmaximummass is𝑀 = 1.53M⊙

and radius 𝑅 = 11.48 (for neutron star).
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