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We study the regularity of weak solutions to the incompressible micropolar fluid equations. We obtain an improved regularity
criterion in terms of vorticity of velocity in Besov space. It is proved that if the vorticity field satisfies ∫𝑇

0
(‖∇ × 𝑢‖

𝐵̇
0
∞,∞

/

√1 + log(1 + ‖∇ × 𝑢‖
𝐵̇
0
∞,∞

))𝑑𝑡 < ∞ then the strong solution can be smoothly extended after time 𝑇.

1. Introduction

This paper focuses on the incompressible micropolar fluid
equations in R3

𝜕
𝑡
𝑢 + (𝑢 ⋅ ∇) 𝑢 − Δ𝑢 + ∇𝑝 − ∇ × 𝑤 = 0,

𝜕
𝑡
𝑤 − Δ𝑤 − ∇ (∇ ⋅ 𝑤) + 2𝑤 + 𝑢 ⋅ ∇𝑤 − ∇ × 𝑢 = 0,

∇ ⋅ 𝑢 = 0,

𝑢 (𝑥, 0) = 𝑢0 (𝑥) , 𝑤 (𝑥, 0) = 𝑤0 (𝑥) ,

(1)

where 𝑢(𝑥, 𝑡) is the velocity field, 𝑤(𝑥, 𝑡) is the microrota-
tional velocity field, and𝑝 = 𝑝(𝑥, 𝑡) is the scalar pressure field,
while (𝑢

0
, 𝑤
0
) are the given initial data with ∇ ⋅ 𝑢

0
= 0 in the

sense of distribution.
Micropolar fluid system was firstly developed by Eringen

[1, 2]. It is a type of fluids which exhibits microrotational
effects and microrotational inertia and can be viewed as a
non-Newtonian fluid. It can describe many phenomena that
appear in a large number of complex fluids such as the
suspensions, animal blood, and liquid crystals which cannot
be characterized appropriately by the Navier-Stokes system
and that is important to the scientists working with the
hydrodynamic-fluid problems and phenomena.

The existences of weak and strong solutions for microp-
olar fluid equations were treated by Galdi and Rionero [3]

and Yamaguchi [4], respectively. The uniqueness of strong
solutions to themicropolar flows and themagnetomicropolar
flows either local for large data or global for small data is
considered in [5, 6] and references therein.

The purpose of this paper is to study the regularity of
weak solutions to themicropolar fluid system (1). Bymeans of
the Littlewood-Paley decomposition methods and function
decomposition technique, Dong and Zhang [7, 8] recently
prove the regularity of weak solutions under the velocity
condition and the pressure condition in Besov spaces.

Yuan proved [9] some classical regularity criteria of weak
solutions to the Navier-Stokes equation which also holds for
the micropolar fluid equations. Particularly, the well-known
Beale-Kato-Majda’s criterion is also established [10].

If (𝑢, 𝑤) satisfies the condition

∫
𝑇

0

‖∇ × 𝑢‖
𝐵̇
0

∞,∞

𝑑𝑡 < ∞, (2)

then the solution (𝑢, 𝑤) can be extended smoothly beyond
𝑡 = 𝑇.

Motivated by the ideas of [11–14], this paper is to establish
logarithmically improved regularity criterion in terms of the
vorticity.
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Theorem 1. Let (𝑢, 𝑤) be a smooth solution to (1) with initial
data (𝑢

0
, 𝑤
0
) ∈ 𝐻3(R3). Suppose that the corresponding vor-

ticity field satisfies

∫
𝑇

0

‖∇ × 𝑢‖
𝐵̇
0

∞,∞

√1 + log (1 + ‖∇ × 𝑢‖
𝐵̇
0

∞,∞

)
𝑑𝑡 < ∞; (3)

then the solution can be smoothly extended after time 𝑇.

We have the following corollary immediately.

Corollary 2. If the strong solution blows up at 𝑇∗, then

∫
𝑇
∗

0

‖∇ × 𝑢‖
𝐵̇
0

∞,∞

√1 + log (1 + ‖∇ × 𝑢‖
𝐵̇
0

∞,∞

)
𝑑𝑡 = ∞. (4)

Remark 3. Theorem 1 can be regarded as an extension of [11]
to 3D Navier-Stokes equations.

Now, we recall the definition of weak solutions for micro-
polar fluid equations.

Definition 4. Let (𝑢
0
, 𝑤
0
) ∈ 𝐿2(R3) and∇⋅𝑢

0
= 0 in the sense

of distribution. A pair vector field (𝑢, 𝑤) is termed as a weak
solution of (1) on (0, 𝑇), if it satisfies the following conditions:

(1) (𝑢, 𝑤) ∈ 𝐿∞(0, 𝑇; 𝐿2(R3)) ∩ 𝐿2(0, 𝑇;𝐻1(R3));

(2) (𝑢, 𝑤) verifies (1) in the sense of distribution;

(3) div 𝑢 = 0 in the sense of distribution.

By a strong solution we mean a weak solution (𝑢, 𝑤)
of micropolar fluid equations (1) with the initial velocity
(𝑢
0
, 𝑤
0
) ∈ 𝐻1(R3) which satisfies

(𝑢, 𝑤) ∈ 𝐿∞ (0, 𝑇;𝐻1 (R3)) ∩ 𝐿2 (0, 𝑇;𝐻2 (R3)) . (5)

It is well known that strong solutions are regular and unique.

Remark 5. Throughout the paper, 𝐶 stands for a constant
and changes from line to line; ‖ ⋅ ‖

𝑝
denotes the norm of the

Lebesgue space 𝐿𝑝(R3) and ‖ ⋅ ‖
𝐻
𝑝 denotes the norm of the

Lebesgue space𝐻𝑝(R3).

2. Proof of Theorem 1

Before going to the proof, we recall the following two inequal-
ities established in [15, 16].

Lemma 6. Let 1 < 𝑟 < ∞. Then we have
󵄩󵄩󵄩󵄩𝑓 ⋅ ∇𝑔

󵄩󵄩󵄩󵄩𝑟

≤ 𝐶 (󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑟
󵄩󵄩󵄩󵄩󵄩(−Δ)

1/2𝑔
󵄩󵄩󵄩󵄩󵄩BMO

+
󵄩󵄩󵄩󵄩󵄩(−Δ)

1/2𝑓
󵄩󵄩󵄩󵄩󵄩BMO

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝑟)

(6)

for all 𝑓, 𝑔 ∈ 𝑊1,𝑟(R3) with ∇𝑓, ∇𝑔 ∈ BMO with 𝐶 = 𝐶(𝑛, 𝑟).

Lemma 7. Let 𝑝, 𝑞, 𝜌, 𝜎, ] ∈ [1,∞]with ] ≤ min(𝜌, 𝜎), 1/𝑞 =
1/𝑝 − 𝑠/𝑛, 1 ≤ 𝑟 ≤ 𝑞, and 𝑠

1
/𝑛 < 1/𝑟 − 1/𝑞 < 𝑠

2
/𝑛. Then, for

𝑓 ∈ 𝐵̇𝑠1
𝑟,𝜎
∩ 𝐵̇𝑠2
𝑟,𝜎
, we have

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐵̇0
𝑞,]

≤ 𝐶(1 + 󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐵̇𝑠
𝑝,𝜌

(log+ (󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐵̇𝑠1𝑟,𝜎 +

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐵̇𝑠2𝑟,𝜎))

(1/])−(1/𝜌)
) .

(7)

By choosing 𝑝 = 𝑞 = 𝜌 = ∞, ] = 𝑟 = 𝜎 = 𝑠
2
= 2, and

𝑠
1
= 𝑠 = 0, we have

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩BMO ≤ 𝐶(1 + 󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐵̇0
∞,∞

log1/2 (1 + 󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻2)) , (8)

where we used the following relations:

𝐵̇
∞,2

(R3) ⊂ 𝐹̇
∞,2

(R3) = BMO,

𝐵̇𝑠
2,2
(R3) = 𝐻̇𝑠 (R3) .

(9)

Proof of Theorem 1. Multiplying the first equation of (1) by
|𝑢|2𝑢, after integration by parts, we have

1
4
𝑑
𝑑𝑡
‖𝑢‖4
4
+
1
2
󵄩󵄩󵄩󵄩󵄩∇|𝑢|
2󵄩󵄩󵄩󵄩󵄩
2

2
+ ∫

R3
|𝑢|2|∇𝑢|2𝑑𝑥

= ∫
R3
(∇ × 𝑤) |𝑢|2𝑢 𝑑𝑥 − ∫

R3
∇𝑝 ⋅ 𝑢|𝑢|2𝑑𝑥.

(10)

Similarly, multiplying the second equation of (1) by |𝑤|2𝑤, we
obtain

1
4
𝑑
𝑑𝑡
‖𝑤‖4
4
+
1
2
󵄩󵄩󵄩󵄩󵄩∇|𝑤|

2󵄩󵄩󵄩󵄩󵄩
2

2

+ ∫
R3
|𝑤|2|∇𝑤|2𝑑𝑥 + ‖|𝑤| div𝑤‖2

2
+ 2‖𝑤‖4

4

≤ ∫
R3
∇ × 𝑢 ⋅ (|𝑤|2𝑤)𝑑𝑥 + ∫

R3
div𝑤 ⋅ 𝑤∇|𝑤|2𝑑𝑥.

(11)

Adding (10) to (11), one has that

1
4
(
𝑑
𝑑𝑡
‖𝑤‖4
4
+
𝑑
𝑑𝑡
‖𝑢‖4
4
) +

1
2
(
󵄩󵄩󵄩󵄩󵄩∇|𝑤|

2󵄩󵄩󵄩󵄩󵄩
2

2
+
󵄩󵄩󵄩󵄩󵄩∇|𝑢|
2󵄩󵄩󵄩󵄩󵄩
2

2
)

+ (‖|𝑤| |∇𝑤|‖2
2
+ ‖|𝑢| |∇𝑢|‖2

2
)

+ ‖|𝑤| div𝑤‖2
2
+ 2‖𝑤‖4

4

≤ ∫
R3
(∇ × 𝑤) |𝑢|2𝑢 𝑑𝑥 − ∫

R3
∇𝑝 ⋅ 𝑢|𝑢|2𝑑𝑥

+ ∫
R3
∇ × 𝑢 ⋅ (|𝑤|2𝑤)𝑑𝑥 + 2∫

R3
div𝑤 |𝑤|𝑤∇ |𝑤| 𝑑𝑥

= 𝐼
1
+ 𝐼
2
+ 𝐼
3
+ 𝐼
4
.

(12)

We estimate above terms one by one, using the following
relation:

∇ ⋅ (𝐴 × 𝐵) = 𝐵 ⋅ ∇ × 𝐴 − 𝐴 ⋅ ∇ × 𝐵. (13)
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We have

𝐼
1
= ∫

R3
𝑤∇ × (|𝑢|2𝑢) 𝑑𝑥

≤ ∫
R3
|𝑤| |𝑢|2 (|∇𝑢| + 2 |∇ |𝑢||) 𝑑𝑥

≤ 3∫
R3
|𝑤| |𝑢|2 |∇𝑢| 𝑑𝑥,

(14)

where we have used the fact |∇|𝑢|| ≤ |∇𝑢|.
ApplyingHolder inequality andCauchy inequality, we get

𝐼
1
≤ 𝐶 (‖𝑤‖4

4
+ ‖𝑢‖4
4
) +

3
4
‖|𝑢| |∇𝑢|‖2

2
. (15)

Similarly, for 𝐼
3
, we have

𝐼
3
≤ 𝐶 (‖𝑤‖4

4
+ ‖𝑢‖4
4
) +

3
4
‖|𝑤| |∇𝑤|‖2

2
. (16)

In the same way, for 𝐼
4
one can deduce

𝐼
4
≤ ∫

R3
|div𝑤 |𝑤|| 󵄨󵄨󵄨󵄨󵄨∇|𝑤|

2󵄨󵄨󵄨󵄨󵄨 𝑑𝑥

≤ ‖div𝑤 |𝑤|‖2
2
+
1
4
󵄩󵄩󵄩󵄩󵄩∇|𝑤|

2󵄩󵄩󵄩󵄩󵄩
2

2
.

(17)

In order to estimate 𝐼
2
, we first establish an estimate between

the pressure and the velocity. Taking the operator div on both
sides of the first equation of (1),

𝑝 = (−Δ)−1
3

∑
𝑖,𝑗=1

𝜕
𝑖
𝜕
𝑗
(𝑢
𝑖
𝑢
𝑗
) . (18)

Applying 𝐿𝑝 (1 < 𝑝 < ∞) boundedness of the singular oper-
ators yields

󵄩󵄩󵄩󵄩∇𝑝
󵄩󵄩󵄩󵄩𝑝 ≤ 𝐶‖(𝑢 ⋅ ∇)𝑢‖𝑝. (19)

Inequality (19), together with Lemma 6, shows that

𝐼
2
≤ 󵄩󵄩󵄩󵄩∇𝑝

󵄩󵄩󵄩󵄩4‖𝑢‖
3

4
≤ 𝐶‖𝑢 ⋅ ∇𝑢‖4‖𝑢‖

3

4

≤ 𝐶‖𝑢‖4
4
‖∇𝑢‖BMO.

(20)

Combining (12), (15), (16), (17), and (20) yields

𝑑
𝑑𝑡

(‖𝑤‖4
4
+ ‖𝑢‖4
4
) ≤ 𝐶‖∇𝑢‖BMO (‖𝑤‖

4

4
+ ‖𝑢‖4
4
) . (21)

For the right hand side of (21), we have

‖∇𝑢‖BMO

≤ 𝐶(1 + ‖∇𝑢‖
𝐵̇
0

∞,∞

√log (1 + ‖∇𝑢‖𝐻2))

≤ 𝐶(1 +
‖∇𝑢‖
𝐵̇
0

∞,∞

√1 + log (1 + ‖∇ × 𝑢‖
𝐵̇
0

∞,∞

)

× (1 + log (1 + 󵄩󵄩󵄩󵄩󵄩∇
3𝑢
󵄩󵄩󵄩󵄩󵄩2)))

≤ 𝐶(1 +
‖∇ × 𝑢‖

𝐵̇
0

∞,∞

√1 + log (1 + ‖∇ × 𝑢‖
𝐵̇
0

∞,∞

)

× (1 + log (1 + 󵄩󵄩󵄩󵄩󵄩∇
3𝑢
󵄩󵄩󵄩󵄩󵄩2))) ,

(22)

where we used the inequality ‖∇𝑢‖
𝐵̇
0

∞,∞

≤ 𝐶‖∇ × 𝑢‖
𝐵̇
0

∞,∞

.

Due to (3), one can show that, for any small constant 𝜖 >
0, there exists 𝑇

∗
< 𝑇 such that

∫
𝑇

𝑇∗

‖∇ × 𝑢‖
𝐵̇
0

∞,∞

√1 + log (1 + ‖∇ × 𝑢‖
𝐵̇
0

∞,∞

)
𝑑𝑡 < 𝜖. (23)

For any 𝑇
∗
< 𝑡 ≤ 𝑇, we set

𝑦 (𝑡) = sup
𝑇∗≤𝑠≤𝑡

(
󵄩󵄩󵄩󵄩󵄩∇
3𝑢
󵄩󵄩󵄩󵄩󵄩2 +

󵄩󵄩󵄩󵄩󵄩∇
3𝑤
󵄩󵄩󵄩󵄩󵄩2) . (24)

Applying Gronwall’s inequality to (21) in the interval [𝑇
∗
, 𝑡],

one has

(‖𝑤‖4
4
+ ‖𝑢‖4
4
) ≤ 𝐶

∗
(1 + 𝑦 (𝑡))𝐶𝜖, (25)

where 𝐶
∗

is a positive constant depending on 𝑇
∗

and
‖𝑤(⋅, 𝑇

∗
)‖4
4
+ ‖𝑢(⋅, 𝑇

∗
)‖4
4
.
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Applying ∇ to (1) and taking the 𝐿2 inner product of the
resulting equation with (∇𝑢, ∇𝑤) with help of integrating by
parts, we have

1
2
𝑑
𝑑𝑡

(‖∇𝑢‖2
2
+ ‖∇𝑤‖2

2
) + (

󵄩󵄩󵄩󵄩󵄩∇
2𝑢
󵄩󵄩󵄩󵄩󵄩
2

2
+
󵄩󵄩󵄩󵄩󵄩∇
2𝑤
󵄩󵄩󵄩󵄩󵄩
2

2
)

+ ‖∇∇ ⋅ 𝑤‖2
2
+ 2‖∇𝑤‖2

2
𝑑𝑥

= −∫
𝑅
3

∇ [(𝑢 ⋅ ∇) 𝑢] ∇𝑢 𝑑𝑥 − ∫
𝑅
3

∇ [(𝑢 ⋅ ∇)𝑤] ∇𝑤𝑑𝑥

+ ∫
𝑅
3

∇ (∇ × 𝑤)∇𝑢 𝑑𝑥 + ∫
𝑅
3

∇ (∇ × 𝑢) ∇𝑤𝑑𝑥

=
4

∑
𝑖=1

𝐾
𝑖
.

(26)

To estimate 𝐾
1
, we integrate by parts and apply Holder’s

inequality to obtain

𝐾
1
= −∫

R3
∇ [(𝑢 ⋅ ∇) 𝑢] ∇𝑢 𝑑𝑥

= −
3

∑
𝑖,𝑗,𝑘=1

∫
R3
𝜕
𝑘
(𝑢
𝑖
𝜕
𝑖
𝑢
𝑗
) 𝜕
𝑘
𝑢
𝑗
𝑑𝑥

=
3

∑
𝑖,𝑗,𝑘=1

∫
𝑅
3

𝑢
𝑖
𝜕
𝑖
𝑢
𝑗
𝜕
𝑘𝑘
𝑢
𝑗
𝑑𝑥

≤ 𝐶‖𝑢‖4‖∇𝑢‖4
󵄩󵄩󵄩󵄩󵄩∇
2𝑢
󵄩󵄩󵄩󵄩󵄩2

≤ 𝐶‖𝑢‖8
4
‖∇𝑢‖2
2
+
1
4
󵄩󵄩󵄩󵄩󵄩∇
2𝑢
󵄩󵄩󵄩󵄩󵄩2.

𝐾
2
= −∫
𝑅
3

∇ [(𝑢 ⋅ ∇)𝑤] ∇𝑤𝑑𝑥

= −
3

∑
𝑖,𝑗,𝑘=1

∫
R3
𝜕
𝑘
(𝑢
𝑖
𝜕
𝑖
𝑤
𝑗
) 𝜕
𝑘
𝑤
𝑗
𝑑𝑥

= −
3

∑
𝑖,𝑗,𝑘=1

∫
R3
𝜕
𝑘
𝑢
𝑖
𝜕
𝑖
𝑤
𝑗
𝜕
𝑘
𝑤
𝑗
𝑑𝑥

−
3

∑
𝑖,𝑗,𝑘=1

∫
R3
𝑢
𝑖
𝜕
𝑖
𝜕
𝑘
𝑤
𝑗
𝜕
𝑘
𝑤
𝑗
𝑑𝑥

=
3

∑
𝑖,𝑗,𝑘=1

∫
R3
𝑢
𝑖
𝜕
𝑘
(𝜕
𝑖
𝑤
𝑗
𝜕
𝑘
𝑤
𝑗
) 𝑑𝑥

−
3

∑
𝑖,𝑗,𝑘=1

∫
R3
𝑢
𝑖
𝜕
𝑖
𝜕
𝑘
𝑤
𝑗
𝜕
𝑘
𝑤
𝑗
𝑑𝑥 = 𝐾

21
+ 𝐾
22
.

(27)

By Holder’s inequality and Young’s inequality, we have

󵄨󵄨󵄨󵄨𝐾21
󵄨󵄨󵄨󵄨 ≤ 𝐶‖𝑢‖

8

4
‖∇𝑤‖2
2
+
1
4
󵄩󵄩󵄩󵄩󵄩∇
2𝑤
󵄩󵄩󵄩󵄩󵄩
2

2
. (28)

Due to the incompressible condition ∇ ⋅ 𝑢 = 0, we obtain
󵄨󵄨󵄨󵄨𝐾22

󵄨󵄨󵄨󵄨 = 0. (29)

By integrating by parts and applying Holder’s inequality and
Young’s inequality, we have

󵄨󵄨󵄨󵄨𝐾3 + 𝐾4
󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
R3
∇ (∇ × 𝑤)∇𝑢 + ∇ (∇ × 𝑢) ∇𝑤𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫
R3

󵄨󵄨󵄨󵄨󵄨∇
2𝑢
󵄨󵄨󵄨󵄨󵄨 |∇𝑤| 𝑑𝑥 ≤

1
4
󵄩󵄩󵄩󵄩󵄩∇
2𝑢
󵄩󵄩󵄩󵄩󵄩
2

2
+ ‖∇𝑤‖2

2
.

(30)

From the above computation, we have

𝑑
𝑑𝑡

(‖∇𝑢‖2
2
+ ‖∇𝑤‖2

2
) + (

󵄩󵄩󵄩󵄩󵄩∇
2𝑢
󵄩󵄩󵄩󵄩󵄩
2

2
+
󵄩󵄩󵄩󵄩󵄩∇
2𝑤
󵄩󵄩󵄩󵄩󵄩
2

2
)

+ ‖∇∇ ⋅ 𝑤‖2
2
+ 2‖∇𝑤‖2

2
𝑑𝑥

≤ 𝐶‖𝑢‖8
4
(‖∇𝑢‖2

2
+ ‖∇𝑤‖2

2
)

≤ 𝐶‖𝑢‖16
4
+ 𝐶(‖∇𝑢‖2

2
+ ‖∇𝑤‖2

2
)
2

.

(31)

Applying Gronwall’s inequality and (25), we have

sup
𝑇∗≤𝑠≤𝑡

(‖∇𝑢‖2
2
+ ‖∇𝑤‖2

2
) ≤ 𝐶 + 𝐶

∗
(1 + 𝑦 (𝑡))𝐶𝜖. (32)

We should point out that the constant 𝐶
∗
also changes from

line to line.
Applying ∇3 to (1) and taking the 𝐿2 inner product of the

resulting equation with (∇3𝑢, ∇3𝑤) with help of integrating
by parts, we have

1
2
𝑑
𝑑𝑡

(
󵄩󵄩󵄩󵄩󵄩∇
3𝑢
󵄩󵄩󵄩󵄩󵄩
2

2
+
󵄩󵄩󵄩󵄩󵄩∇
3𝑤
󵄩󵄩󵄩󵄩󵄩
2

2
) + (

󵄩󵄩󵄩󵄩󵄩∇
4𝑢
󵄩󵄩󵄩󵄩󵄩
2

2
+
󵄩󵄩󵄩󵄩󵄩∇
4𝑤
󵄩󵄩󵄩󵄩󵄩
2

2
)

+
󵄩󵄩󵄩󵄩󵄩∇
3∇ ⋅ 𝑤

󵄩󵄩󵄩󵄩󵄩
2

2
+ 2

󵄩󵄩󵄩󵄩󵄩∇
3𝑤
󵄩󵄩󵄩󵄩󵄩
2

2

= −∫
𝑅
3

∇3 [(𝑢 ⋅ ∇) 𝑢] ∇3𝑢 𝑑𝑥

− ∫
𝑅
3

∇3 [(𝑢 ⋅ ∇)𝑤] ∇3𝑤𝑑𝑥

+ ∫
𝑅
3

∇3 (∇ × 𝑤)∇3𝑢 𝑑𝑥 + ∫
𝑅
3

∇3 (∇ × 𝑢) ∇3𝑤𝑑𝑥

=
4

∑
𝑖=1

𝐻
𝑖
.

(33)

Now, we introduce the following commutator estimate
according to Kato and Ponce [17]:

󵄩󵄩󵄩󵄩∇
𝛼(𝑓𝑔) − 𝑓∇𝛼𝑔󵄩󵄩󵄩󵄩𝑝

≤ 𝐶(
󵄩󵄩󵄩󵄩󵄩∇
𝛼−1𝑔

󵄩󵄩󵄩󵄩󵄩𝑞1
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝1 +

󵄩󵄩󵄩󵄩∇
𝛼𝑓󵄩󵄩󵄩󵄩𝑞2

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝑝2)

(34)
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for 𝛼 > 1 and 1/𝑝 = 1/𝑝
1
+ 1/𝑞
1
= 1/𝑝

2
+ 1/𝑞
2
. One finds

󵄨󵄨󵄨󵄨𝐻1
󵄨󵄨󵄨󵄨 ≤ 𝐶

󵄩󵄩󵄩󵄩󵄩∇
3𝑢
󵄩󵄩󵄩󵄩󵄩
2

3
‖∇𝑢‖3 ≤ 𝐶‖∇𝑢‖

13/12

2

󵄩󵄩󵄩󵄩󵄩∇
3𝑢
󵄩󵄩󵄩󵄩󵄩
1/4

2

󵄩󵄩󵄩󵄩󵄩∇
4𝑢
󵄩󵄩󵄩󵄩󵄩
5/3

2

≤ 𝐶‖∇𝑢‖13/2
2

󵄩󵄩󵄩󵄩󵄩∇
3𝑢
󵄩󵄩󵄩󵄩󵄩
3/2

2
+
1
8
󵄩󵄩󵄩󵄩󵄩∇
4𝑢
󵄩󵄩󵄩󵄩󵄩
2

2

≤ 𝐶
∗
(1 + 𝑦 (𝑡))(3/2)+(13/2)𝐶𝜖 +

1
8
󵄩󵄩󵄩󵄩󵄩∇
4𝑢
󵄩󵄩󵄩󵄩󵄩
2

2
,

(35)

where we used the following inequalities

‖∇𝑢‖3 ≤ 𝐶‖∇𝑢‖
3/4

2

󵄩󵄩󵄩󵄩󵄩∇
3𝑢
󵄩󵄩󵄩󵄩󵄩
1/4

2
,

󵄩󵄩󵄩󵄩󵄩∇
3𝑢
󵄩󵄩󵄩󵄩󵄩3 ≤ 𝐶‖∇𝑢‖

1/6

2

󵄩󵄩󵄩󵄩󵄩∇
4𝑢
󵄩󵄩󵄩󵄩󵄩
5/6

2
.

(36)

Similarly, we can do estimate for𝐻
2
as follows

󵄨󵄨󵄨󵄨𝐻2
󵄨󵄨󵄨󵄨 ≤ (‖∇𝑢‖3

󵄩󵄩󵄩󵄩󵄩∇
3𝑤
󵄩󵄩󵄩󵄩󵄩3 +

󵄩󵄩󵄩󵄩󵄩∇
3𝑢
󵄩󵄩󵄩󵄩󵄩3‖∇𝑤‖3)

󵄩󵄩󵄩󵄩󵄩∇
3𝑤
󵄩󵄩󵄩󵄩󵄩3

= ‖∇𝑢‖3
󵄩󵄩󵄩󵄩󵄩∇
3𝑤
󵄩󵄩󵄩󵄩󵄩
2

3
+
󵄩󵄩󵄩󵄩󵄩∇
3𝑢
󵄩󵄩󵄩󵄩󵄩3‖∇𝑤‖3

󵄩󵄩󵄩󵄩󵄩∇
3𝑤
󵄩󵄩󵄩󵄩󵄩3

= 𝐻
21
+ 𝐻
22

𝐻
21
= ‖∇𝑢‖3

󵄩󵄩󵄩󵄩󵄩∇
3𝑤
󵄩󵄩󵄩󵄩󵄩
2

3

≤ 𝐶‖∇𝑢‖3/4
2

󵄩󵄩󵄩󵄩󵄩∇
3𝑢
󵄩󵄩󵄩󵄩󵄩
1/4

2
‖∇𝑤‖1/3
2

󵄩󵄩󵄩󵄩󵄩∇
4𝑤
󵄩󵄩󵄩󵄩󵄩
5/3

2

≤ 𝐶‖∇𝑢‖9/2
2

󵄩󵄩󵄩󵄩󵄩∇
3𝑢
󵄩󵄩󵄩󵄩󵄩
3/2

2
‖∇𝑤‖2
2
+
3
8
󵄩󵄩󵄩󵄩󵄩∇
3𝑤
󵄩󵄩󵄩󵄩󵄩
2

2

≤ 𝐶
∗
(1 + 𝑦 (𝑡))(3/2)+(13/2)𝐶𝜖 +

3
8
󵄩󵄩󵄩󵄩󵄩∇
4𝑤
󵄩󵄩󵄩󵄩󵄩
2

2

𝐻
22
=
󵄩󵄩󵄩󵄩󵄩∇
3𝑢
󵄩󵄩󵄩󵄩󵄩3‖∇𝑤‖3

󵄩󵄩󵄩󵄩󵄩∇
3𝑤
󵄩󵄩󵄩󵄩󵄩3

≤ 𝐶‖∇𝑤‖3‖∇𝑤‖
1/3

2

󵄩󵄩󵄩󵄩󵄩∇
4𝑤
󵄩󵄩󵄩󵄩󵄩
5/3

2

+ ‖∇𝑤‖3‖∇𝑢‖
1/3

2

󵄩󵄩󵄩󵄩󵄩∇
4𝑢
󵄩󵄩󵄩󵄩󵄩
5/3

2

≤ 𝐶
󵄩󵄩󵄩󵄩󵄩∇
3𝑤
󵄩󵄩󵄩󵄩󵄩
3/2

2
(‖∇𝑤‖13/2

2
+ ‖∇𝑤‖9/2

2
‖∇𝑢‖2
2
)

+
1
8
(
󵄩󵄩󵄩󵄩󵄩∇
4𝑤
󵄩󵄩󵄩󵄩󵄩
2

2
+
󵄩󵄩󵄩󵄩󵄩∇
4𝑢
󵄩󵄩󵄩󵄩󵄩
2

2
)

≤ 𝐶
∗
(1 + 𝑦 (𝑡))(3/2)+(13/2)𝐶𝜖 +

1
8
(
󵄩󵄩󵄩󵄩󵄩∇
4𝑤
󵄩󵄩󵄩󵄩󵄩
2

2
+
󵄩󵄩󵄩󵄩󵄩∇
4𝑢
󵄩󵄩󵄩󵄩󵄩
2

2
) .

(37)

By integrating by parts and applying Holder’s inequality and
Young’s inequality, we have

󵄨󵄨󵄨󵄨𝐻3 + 𝐻4
󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑅
3

∇3 (∇ × 𝑤)∇3𝑢 + ∇3 (∇ × 𝑢) ∇3𝑤𝑑𝑥
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫
𝑅
3

󵄨󵄨󵄨󵄨󵄨∇
4𝑢
󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨∇
3𝑤
󵄨󵄨󵄨󵄨󵄨 𝑑𝑥 ≤

1
4
󵄩󵄩󵄩󵄩󵄩∇
2𝑢
󵄩󵄩󵄩󵄩󵄩
2

2
+
󵄩󵄩󵄩󵄩󵄩∇
3𝑤
󵄩󵄩󵄩󵄩󵄩
2

2
.

(38)

Combining (33)–(38), it follows that

𝑑
𝑑𝑡

(
󵄩󵄩󵄩󵄩󵄩∇
3𝑢
󵄩󵄩󵄩󵄩󵄩
2

2
+
󵄩󵄩󵄩󵄩󵄩∇
3𝑤
󵄩󵄩󵄩󵄩󵄩
2

2
) ≤ 𝐶

∗
(1 + 𝑦 (𝑡))(3/2)+(13/2)𝐶𝜖. (39)

It should be clear that applying Gronwall’s inequality to (39),
we can obtain 𝑦(𝑡) ≤ 𝐶 provided that 𝜖 is small enough. This
completes the proof of the theorem.
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