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We introduce two new classes of implicit relations S and S where S is a proper subset of S, and these classes are more general
than the class of implicit relations defined by Altun and Simsek (2010). We prove the existence of coupled fixed points for the maps
satisfying an implicit relation inS. These coupled fixed points need not be unique. In order to establish the uniqueness of coupled
fixed points we use an implicit relationS, whereS ⊂ S. Our results extend the fixed point theorems on ordered metric spaces of
Altun and Simsek (2010) to coupled fixed point theorems and generalize the results of Gnana Bhaskar and Lakshimantham (2006).
As an application of our results, we discuss the existence and uniqueness of solution of Fredholm integral equation.

1. Introduction

Existence of fixed point theorems in partially ordered metric
spaces with a contractive condition has been considered by
several authors (see [1–6]). Guo and Lakshmikantham [7]
introduced mixed monotone operators. Gnana Bhaskar and
Lakshmikantham [8] established the existence of coupled
fixed points of mappings satisfying mixed monotone prop-
erty in partially ordered metric spaces. Later, Lakshmikan-
tham and Ciric [9] extended this property to two maps by
introducing mixed 𝑔-monotone property and established the
existence of coupled coincidence point and coupled common
fixed points for a pair of commuting maps.

Choudhury and Kundu [10] extended the existence of
coupled coincidence and coupled common fixed points for
a pair of noncommuting maps, particularly for a pair of com-
patible maps.

Definition 1 (see [7]). Let 𝑋 be a nonempty set. An element
(𝑥, 𝑦) in 𝑋 × 𝑋 is called a coupled fixed point of the mapping
𝐹 : 𝑋 × 𝑋 → 𝑋 if 𝑥 = 𝐹(𝑥, 𝑦) and 𝑦 = 𝐹(𝑦, 𝑥). A point
𝑥 ∈ 𝑋 is called a fixed point of 𝐹 if 𝐹(𝑥, 𝑥) = 𝑥.

Definition 2 (see [7]). Let (𝑋, ⪯) be a partially ordered set and
𝐹 : 𝑋 × 𝑋 → 𝑋 be a mapping. We say that 𝐹 satisfies mixed

monotone property if 𝐹(𝑥, 𝑦) is monotone nondecreasing in 𝑥
and monotone nonincreasing in 𝑦; that is, for any 𝑥, 𝑦 ∈ 𝑋:

𝑥
1
, 𝑥
2
∈ 𝑋, 𝑥

1
⪯ 𝑥
2
⇒ 𝐹 (𝑥

1
, 𝑦) ⪯ 𝐹 (𝑥

2
, 𝑦) ,

𝑦
1
, 𝑦
2
∈ 𝑋, 𝑦

1
⪯ 𝑦
2
⇒ 𝐹 (𝑥, 𝑦

1
) ⪰ 𝐹 (𝑥, 𝑦

2
) .

(1)

Theorem 3 (see [8]). Let (𝑋, ⪯) be a partially ordered set and
suppose that 𝑑 is a metric on 𝑋 such that (𝑋, 𝑑) is a complete
metric space. Let 𝐹 : 𝑋 × 𝑋 → 𝑋 be a mapping satisfying
mixed monotone property. Assume that there exists a 𝑘 ∈ [0, 1)
with

𝑑 (𝐹 (𝑥, 𝑦) , 𝐹 (𝑢, V)) ≤
𝑘

2

[𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V)]

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥 ⪰ 𝑢, 𝑦 ⪯ V.
(2)

Suppose that either 𝐹 is continuous or the following conditions
hold in𝑋:

(i) if a nondecreasing sequence {𝑥
𝑛
} ⊆ 𝑋 with 𝑥

𝑛
→ 𝑥,

then 𝑥
𝑛
⪯ 𝑥 for all 𝑛 and

(ii) if a nonincreasing sequence {𝑦
𝑛
} ⊆ 𝑋 with 𝑦

𝑛
→ 𝑦,

then 𝑦
𝑛
⪰ 𝑦 for all 𝑛.

If there exist 𝑥
0
, 𝑦
0
∈ 𝑋 such that 𝑥

0
⪯ 𝐹(𝑥

0
, 𝑦
0
) and 𝑦

0
⪰

𝐹(𝑦
0
, 𝑥
0
) then 𝐹 has a coupled fixed point.
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In 2011, Luong and Thuan [11] proved the following cou-
pled fixed point theorem.

Theorem 4 (see [11]). Let (𝑋, ⪯) be a partially ordered set and
suppose that 𝑑 is a metric on 𝑋 such that (𝑋, 𝑑) is a complete
metric space. Let 𝐹 : 𝑋 × 𝑋 → 𝑋 be a mapping satisfying
mixedmonotone property on𝑋 and there exist 𝑥

0
, 𝑦
0
∈ 𝑋 such

that 𝑥
0
⪯ 𝐹(𝑥

0
, 𝑦
0
) and 𝑦

0
⪰ 𝐹(𝑦

0
, 𝑥
0
). Suppose that there

exists a 𝜓 : [0,∞) → [0,∞) with lim
𝑡→ 𝑟
+𝜓(𝑡) > 0 for all

𝑟 > 0 and lim
𝑡→0
+𝜓(𝑡) = 0 such that

𝑑 (𝐹 (𝑥, 𝑦) , 𝐹 (𝑢, V)) ≤
𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V)

2

− 𝜓(

𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V)
2

) ,

(3)

for each 𝑥, 𝑦, 𝑢, V ∈ 𝑋, 𝑥 ⪰ 𝑢 and 𝑦 ⪯ V. Suppose that either
(a) 𝐹 is continuous or
(b) 𝑋 has the following property:

(i) if a nondecreasing sequence {𝑥
𝑛
} ⊆ 𝑋 with 𝑥

𝑛
→

𝑥, then 𝑥
𝑛
⪯ 𝑥 for all 𝑛 and

(ii) if a nonincreasing sequence {𝑦
𝑛
} ⊆ 𝑋 with 𝑦

𝑛
→

𝑦, then 𝑦
𝑛
⪰ 𝑦 for all 𝑛.

Then 𝐹 has a coupled fixed point.

In Section 2 of this paper, we introduce two new classes of
implicit relations S and S where S is a proper subset of S,
and these classes are more general than the class of implicit
relations defined by Altun and Simsek [12]. In Section 3, we
prove the existence of coupled fixed points for the maps
satisfying an implicit relation inS.These coupled fixed points
need not be unique (Example 17). In order to establish the
uniqueness of coupled fixed points we use an implicit relation
S, where S ⊂ S. Our results extend the fixed point theo-
rems on ordered metric spaces of Altun and Simsek [12] to
coupled fixed point theorems and generalize the results of
Gnana Bhaskar and Lakshimantham [8]. In Section 4, as an
application to results of Section 3, we discuss the existence
and uniqueness of solution of Fredholm integral equation.

2. Implicit Relations

In 1999, Popa [13] introduced the idea of the classF of implicit
functions to prove the existence of fixed points as follows.

Let 𝑅
+
denote the set of all nonnegative real numbers. Let

F be the family of real lower semicontinuous functions 𝐹 :
(𝑅
+
)
6
→ 𝑅 satisfying the following conditions:

(𝐹
1
) : 𝐹 is nonincreasing in fifth and sixth variables;

(𝐹
2
) : there exists ℎ ∈ (0, 1) such that for every 𝑢, V ≥ 0
with

𝐹
2𝑎

:𝐹(𝑢, V, V, 𝑢, 𝑢 + V, 0) ≤ 0 or
𝐹
2𝑏

: 𝐹(𝑢, V, 𝑢, V, 0, 𝑢 + V) ≤ 0
we have 𝑢 ≤ ℎV;

(𝐹
3
) : 𝐹(𝑢, 𝑢, 0, 0, 𝑢, 𝑢) > 0, ∀𝑢 > 0.

Many authors, namely, Altun and Simsek [12], Altun and
Turkoglu [14, 15], Imdad et al. [16], Popa [17], Popa and
Mocanu [18], Sharma and Deshpande [19], and Turkoglu and
Altun [20], continued the study of the existence of fixed
points in this direction. The purpose of using an implicit
relation is that the condition involving implicit relation gener-
alizesmany contraction conditions, which in turn generalizes
many existing results. In 2010, Altun and Simsek [12] defined
a new class of implicit relations as follows and established a
fixed point theorem in ordered metric spaces.

LetT be the set of all continuous functions 𝑇 : (𝑅
+
)
6
→

𝑅 satisfying the following conditions:

(T1): 𝑇(𝑡
1
, . . . , 𝑡

6
) is nonincreasing in variables 𝑡

2
, 𝑡
3
, . . . , 𝑡

6
;

(T2): there exists a right continuous function𝑓 : 𝑅
+
→ 𝑅
+
,

𝑓(0) = 0, 𝑓(𝑡) < 𝑡 for 𝑡 > 0, such that for 𝑢, V ≥ 0

𝑇 (𝑢, V, 𝑢, V, 0, 𝑢 + V) ≤ 0 or 𝑇 (𝑢, V, 0, 0, V, V) ≤ 0 (4)

implies 𝑢 ≤ 𝑓(V);

(T3): 𝑇(𝑢, 0, 𝑢, 0, 0, 𝑢) > 0 for 𝑢 > 0.

Theorem 5 (see [12]). Let (𝑋, ⪯) be a partially ordered set and
suppose that 𝑑 is a metric on 𝑋 such that (𝑋, 𝑑) is a complete
metric space. Let 𝐹 : 𝑋 → 𝑋 be a nondecreasing mapping
such that, for all 𝑥, 𝑦 ∈ 𝑋 with 𝑦 ⪯ 𝑥,

𝑇 (𝑑 (𝐹𝑥, 𝐹𝑦) , 𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝐹𝑥) ,

𝑑 (𝑦, 𝐹𝑦) , 𝑑 (𝑥, 𝐹𝑦) , 𝑑 (𝑦, 𝐹𝑥)) ≤ 0,

(5)

where 𝑇 ∈ T. Also, suppose that either 𝐹 is continuous or the
following condition holds: “if a nondecreasing sequence {𝑥

𝑛
} →

𝑥, then 𝑥
𝑛
⪯ 𝑥 for all 𝑛”.

If there exists an 𝑥
0
∈ 𝑋 with 𝑥

0
⪯ 𝐹(𝑥

0
), then 𝐹 has a

fixed point.

We now define a more general class of implicit relations
than that of [12] as follows.

Let S be the set of all continuous functions 𝑇 : (𝑅
+
)
6
→

𝑅 satisfying the following conditions:

(𝑇
1
): 𝑇(𝑡
1
, . . . , 𝑡

6
) is nonincreasing in variables 𝑡

5
, 𝑡
6
;

(𝑇
2
): there exists a mapping 𝑓 : 𝑅

+
→ 𝑅
+
, 𝑓(𝑡) < 𝑡 for

𝑡 > 0, such that for 𝑢, V ≥ 0

𝑇 (𝑢, V, 𝑢, V, 0, 𝑢 + V) ≤ 0 or 𝑇 (𝑢, V, 0, 0, V, V) ≤ 0, (6)

implies 𝑢 ≤ 𝑓(V);

(𝑇
3
): 𝑇(𝑢, 0, 𝑢, 0, 0, 𝑢) > 0 for 𝑢 > 0.

Here we observe thatT ⊆ S.

Example 6. 𝑇(𝑡
1
, . . . , 𝑡

6
) = 𝑡
1
− [𝑎𝑡
2
+ 𝑏𝑡
3
+ 𝑐𝑡
4
+ 𝑑𝑡
5
+ 𝑒𝑡
6
],

where 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 ≥ 0 and 𝑎 + 𝑏 + 𝑐 + 𝑑 + 2𝑒 < 1.
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Clearly (𝑇
1
) holds. Let 𝑇(𝑢, V, 𝑢, V, 0, 𝑢 + V) = 𝑢 − (𝑎V +

𝑏𝑢 + 𝑐V + 𝑒(𝑢 + V)) = (1 − 𝑏 − 𝑒)𝑢 − (𝑎 + 𝑐 + 𝑒)V ≤ 0.
Thus 𝑢 ≤ ((𝑎 + 𝑐 + 𝑒) / (1 − 𝑏 − 𝑒))V. Let 𝑇(𝑢, V, 0, 0, V, V) =
𝑢 − (𝑎V + 𝑑V + 𝑒V) = 𝑢 − (𝑎 + 𝑑 + 𝑒)V ≤ 0. Thus 𝑢 ≤
(𝑎 + 𝑑 + 𝑒)V. Now define 𝑓 : 𝑅

+
→ 𝑅
+
by 𝑓(𝑡) = 𝑘𝑡, where

𝑘 = max{((𝑎 + 𝑐 + 𝑒) / (1 − 𝑏 − 𝑒)), 𝑎 + 𝑑 + 𝑒} < 1, 𝑓(𝑡) < 𝑡 for
𝑡 > 0. Hence 𝑢 ≤ 𝑓(V). Also,𝑇(𝑢, 0, 𝑢, 0, 0, 𝑢) = 𝑢−(𝑏𝑢+𝑒𝑢) =
(1 − 𝑏 − 𝑒)𝑢 > 0 for 𝑢 > 0. Therefore 𝑇 ∈ S.

Example 7. 𝑇(𝑡
1
, . . . , 𝑡

6
) = 𝑡
1
−𝜑(max{𝑡

2
, 𝑡
3
, 𝑡
4
, (1/2) (𝑡

5
+𝑡
6
)}),

where 𝜑 : 𝑅
+
→ 𝑅

+
is a continuous map with 𝜑(0) = 0,

𝜑(𝑡) < 𝑡 for 𝑡 > 0.
Clearly (𝑇

1
) holds. Let 𝑢 > 0 and𝑇(𝑢, V, 𝑢, V, 0, 𝑢+V) = 𝑢−

𝜑(max{V, 𝑢, V, (1/2) (𝑢 + V)}) = 𝑢 − 𝜑(max{𝑢, V}) ≤ 0. If 𝑢 ≥ V
then 𝑢 − 𝜑(𝑢) ≤ 0, which is a contradiction. Hence 𝑢 < V and
hence 𝑢 ≤ 𝜑(V). Let 𝑢 > 0 and𝑇(𝑢, V, 0, 0, V, V) = 𝑢−𝜑(V) ≤ 0;
that is, 𝑢 ≤ 𝜑(V). If 𝑢 = 0 then clearly 𝑢 ≤ 𝜑(V). Thus (𝑇

2
) is

satisfied with 𝑓 = 𝜑. Also, 𝑇(𝑢, 0, 𝑢, 0, 0, 𝑢) = 𝑢−𝜑(𝑢) > 0 for
𝑢 > 0. Therefore 𝑇 ∈ S.

Example 8. 𝑇(𝑡
1
, . . . , 𝑡

6
) = 𝑡
1
− (𝑡
2
− 𝜑(𝑡
2
)), where 𝜑 : 𝑅

+
→

𝑅
+
is a continuous map with 𝜑(𝑡) = 0 if and only if 𝑡 = 0,

𝜑(𝑡) < 𝑡 for 𝑡 > 0.
Clearly (𝑇

1
) holds. Let 𝑇(𝑢, V, 𝑢, V, 0, 𝑢 + V) = 𝑢 − (V −

𝜑(V)) ≤ 0. Let 𝑇(𝑢, V, 0, 0, V, V) = 𝑢 − (V − 𝜑(V)) ≤ 0; that is,
𝑢 ≤ V − 𝜑(V). Thus 𝑢 ≤ 𝑓(V) with 𝑓 : 𝑅

+
→ 𝑅
+
by 𝑓(𝑡) =

𝑡 − 𝜑(𝑡). Hence (𝑇
2
) is satisfied. Also, 𝑇(𝑢, 0, 𝑢, 0, 0, 𝑢) = 𝑢 −

(𝑢 − 𝜑(𝑢)) = 𝜑(𝑢) > 0 for 𝑢 > 0. Hence 𝑇 ∈ S.

Example 9. 𝑇(𝑡
1
, . . . , 𝑡

6
) = 𝑡
1
− 𝑘𝑡
2
, where 0 ≤ 𝑘 < 1.

Clearly (𝑇
1
) holds. Let 𝑇(𝑢, V, 𝑢, V, 0, 𝑢 + V) = 𝑢 − 𝑘V ≤ 0;

that is, 𝑢 ≤ 𝑘V. Let 𝑇(𝑢, V, 0, 0, V, V) = 𝑢 − 𝑘V ≤ 0; that is,
𝑢 ≤ 𝑘V. Thus, 𝑢 ≤ 𝑓(V) with 𝑓(𝑡) = 𝑘𝑡. Hence, 𝑇

2
is satisfied.

Also, 𝑇(𝑢, 0, 𝑢, 0, 0, 𝑢) = 𝑢 > 0 for 𝑢 > 0. Thus 𝑇 ∈ S.

Example 10. 𝑇(𝑡
1
, . . . , 𝑡

6
) = 𝑡
1
− 𝜑(𝑡
2
), where 𝜑 : 𝑅

+
→ 𝑅
+
is

a continuous map with 𝜑(0) = 0, 𝜑(𝑡) < 𝑡 for 𝑡 > 0.
Clearly (𝑇

1
) holds. Let𝑇(𝑢, V, 𝑢, V, 0, 𝑢+V) = 𝑢−𝜑(V) ≤ 0;

that is, 𝑢 ≤ 𝜑(V). Let 𝑇(𝑢, V, 0, 0, V, V) = 𝑢 − 𝜑(V) ≤ 0; that is,
𝑢 ≤ 𝜑(V). Thus 𝑢 ≤ 𝑓(V) with 𝑓 = 𝜑. Hence (𝑇

2
) is satisfied.

Also, 𝑇(𝑢, 0, 𝑢, 0, 0, 𝑢) = 𝑢 − 𝜑(0) = 𝑢 > 0 for 𝑢 > 0. Hence
𝑇 ∈ S.

Example 11.

𝑇 (𝑡
1
, . . . , 𝑡

6
) = 𝑡
1
− 𝛼

𝑡
4
𝑡
5
𝑡
6

𝑡
2
+ 𝑡
3
+ 1

,

where 0 ≤ 𝛼 < 1.
(7)

𝑇 is nonincreasing in 𝑡
5
and 𝑡
6
but not in any of 𝑡

2
, 𝑡
3
. Let

𝑢 > 0,𝑇(𝑢, V, 𝑢, V, 0, 𝑢+V) = 𝑢−𝛼(0) = 𝑢 < 0, a contradiction.
Now let 𝑇(𝑢, V, 0, 0, V, V) = 𝑢 − 𝛼(0) = 𝑢 < 0, a contradiction.
If 𝑢 = 0 then clearly 𝑢 ≤ 𝛼V. Thus (𝑇

2
) is satisfied. Also,

𝑇(𝑢, 0, 𝑢, 0, 0, 𝑢) = 𝑢 > 0 for 𝑢 > 0. Thus 𝑇 ∈ S. But 𝑇 does
not belong toT.

In view of Example 11, the class of implicit functions S is
larger than that of T introduced by Altun and Simsek [12]
and we use the implicit relation involving implicit function
of S to prove our main results.

In this paper, we prove a coupled fixed point theorem
(Theorem 16) using an implicit relation in S. In order to
obtain the uniqueness of coupled fixed point we define
another class S of implicit relations as follows.

LetS be the set of all continuous functions 𝑇 : (𝑅
+
)
6
→

𝑅 satisfying the following conditions:

(𝑇


1
) : 𝑇(𝑡

1
, . . . , 𝑡

6
) is nonincreasing in variables 𝑡

3
, 𝑡
5
, 𝑡
6
;

(𝑇


2
) : there exists a mapping 𝑓 : 𝑅

+
→ 𝑅
+
, 𝑓(𝑡) < 𝑡 for

𝑡 > 0, such that, for each 𝑢, V ≥ 0,

𝑇 (𝑢, V, 𝑢, V, 0, 𝑢 + V) ≤ 0 or 𝑇 (𝑢, V, 0, 0, V, V) ≤ 0

or 𝑇 (𝑢, V, 𝑢 + V, 0, V, 𝑢) ≤ 0,
(8)

implies 𝑢 ≤ 𝑓(V);

(𝑇


3
) : 𝑇(𝑢, 0, 𝑢, 0, 0, 𝑢) > 0 for 𝑢 > 0.

Here we observe that S ⊆ S.
All functions in Examples 8–10 are in S. Some more

examples in this direction are as follows.

Example 12. 𝑇(𝑡
1
, . . . , 𝑡

6
) = 𝑡
1
− [𝑎𝑡
2
+ 𝑏𝑡
3
+ 𝑐𝑡
4
+ 𝑑𝑡
5
+ 𝑒𝑡
6
],

where 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 ≥ 0 and 𝑎 + 𝑏 + 𝑐 + 𝑑 + 2𝑒 < 1 and 𝑏 ≤ 𝑐.
Clearly (𝑇

1
) holds. Let 𝑇(𝑢, V, 𝑢, V, 0, 𝑢 + V) = 𝑢 − (𝑎V +

𝑏𝑢 + 𝑐V + 𝑒(𝑢 + V)) = (1 − 𝑏 − 𝑒)𝑢 − (𝑎 + 𝑐 + 𝑒)V ≤ 0. Thus
𝑢 ≤ ((𝑎 + 𝑐 + 𝑒) / (1 − 𝑏 − 𝑒))V. Let𝑇(𝑢, V, 0, 0, V, V) = 𝑢−(𝑎V+
𝑑V+ 𝑒V) = 𝑢 − (𝑎 + 𝑑+ 𝑒)V ≤ 0. Thus 𝑢 ≤ (𝑎 + 𝑑+ 𝑒)V. Now let
𝑇(𝑢, V, 𝑢 + V, 0, V, 𝑢) = 𝑢 − [𝑎V + 𝑏(𝑢 + V) + 𝑑V + 𝑒𝑢] ≤ 0. This
implies 𝑢 ≤ ((𝑎 + 𝑐 + 𝑑) / (1 − 𝑏 − 𝑒))V. Now define 𝑓 : 𝑅

+
→

𝑅
+
by𝑓(𝑡) = 𝑘𝑡, where 𝑘 = max{((𝑎 + 𝑐 + 𝑒) / (1 − 𝑏 − 𝑒)) , 𝑎+

𝑑+ 𝑒, ((𝑎 + 𝑐 + 𝑑) / (1 − 𝑏 − 𝑒))} < 1, 𝑓(𝑡) < 𝑡 for 𝑡 > 0. Hence
𝑢 ≤ 𝑓(V). Also,𝑇(𝑢, 0, 𝑢, 0, 0, 𝑢) = 𝑢−(𝑏𝑢+𝑒𝑢) = (1−𝑏−𝑒)𝑢 >
0 for 𝑢 > 0. Therefore 𝑇 ∈ S.

Example 13. 𝑇(𝑡
1
, . . . , 𝑡

6
) = 𝑡
1
− 𝜑(max{𝑡

2
, 𝑡
3
/2, 𝑡
4
, (1/2) (𝑡

5
+

𝑡
6
)}), where 𝜑 : 𝑅

+
→ 𝑅
+
with 𝜑(0) = 0, 𝜑(𝑡) < 𝑡 for 𝑡 > 0.

Clearly (𝑇
1
) holds. Let 𝑢 > 0 and 𝑇(𝑢, V, 𝑢, V, 0, 𝑢 + V) =

𝑢 − 𝜑(max{V, 𝑢/2, V, (1/2) (𝑢 + V)}) = 𝑢 − 𝜑(max{𝑢, V}) ≤ 0.
If 𝑢 ≥ V, then 𝑢 − 𝜑(𝑢) ≤ 0, which is a contradiction. Hence
𝑢 < V and hence 𝑢 ≤ 𝜑(V). Let 𝑢 > 0 and 𝑇(𝑢, V, 0, 0, V, V) =
𝑢 − 𝜑(V) ≤ 0; that is, 𝑢 ≤ 𝜑(V). Let 𝑢 > 0 and 𝑇(𝑢, V, 𝑢 +
V, 0, V, 𝑢) = 𝑢 − 𝜑(max{V, 𝑢, (𝑢 + V)/2, 0, (1/2) (𝑢 + V)}) = 𝑢 −
𝜑(max{𝑢, V}) ≤ 0. If 𝑢 ≥ V, then 𝑢 − 𝜑(𝑢) ≤ 0, which is a
contradiction. Hence 𝑢 < V and hence 𝑢 ≤ 𝜑(V). If 𝑢 = 0,
then clearly 𝑢 ≤ 𝜑(V). Thus (𝑇

2
) is satisfied with 𝑓 = 𝜑. Also,

𝑇(𝑢, 0, 𝑢, 0, 0, 𝑢) = 𝑢 − 𝜑(𝑢) > 0 for 𝑢 > 0. Therefore, 𝑇 ∈ S.

The following examples suggest thatS is a proper subset
of S.

Example 14. 𝑇(𝑡
1
, . . . , 𝑡

6
) = 𝑡

1
− 𝜑(max{𝑡

2
, 𝑡
3
, 𝑡
4
, (1/2) (𝑡

5
+

𝑡
6
)}), where 𝜑 : 𝑅

+
→ 𝑅
+
defined by 𝜑(𝑡) = 𝑡/2. In view of

Example 7,𝑇 ∈ S. But𝑇 is not inS for let 𝑢, V > 0, V ≤ 𝑢 and
suppose that 𝑇(𝑢, V, 𝑢 + V, 0, V, 𝑢) = 𝑢−𝜑(max{V, 𝑢 + V, 0, (𝑢 +
V)/2}) = 𝑢 − 𝜑(𝑢 + V) = 𝑢 − (𝑢 + V)/2 ≤ 0. This implies
𝑢 ≤ V. Therefore 𝑢 = V. Hence, there cannot exist a function
𝑓 : 𝑅

+
→ 𝑅
+
with 𝑓(𝑡) < 𝑡 for 𝑡 > 0 such that 𝑢 ≤ 𝑓(V).

Hence S ⊂ S.
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Example 15. Let us consider 𝑇 as in Example 11. Then 𝑇 ∈ S.
But 𝑇 does not belong to S, since 𝑇 is not nonincreasing in
𝑡
3
, so that S is a proper subset of S.

3. Existence of Coupled Fixed Points
Using a New Implicit Relation

Theorem 16. Let (𝑋, ⪯) be a partially ordered set and suppose
that 𝑑 is a metric on 𝑋 such that (𝑋, 𝑑) is a complete metric
space. Let 𝐹 : 𝑋 × 𝑋 → 𝑋 be a mapping satisfying mixed
monotone property and suppose that there exists 𝑇 ∈ S such
that

𝑇(

𝑑 (𝐹 (𝑥, 𝑦) , 𝐹 (𝑢, V)) + 𝑑 (𝐹 (𝑦, 𝑥) , 𝐹 (V, 𝑢))
2

,

𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V)
2

,

𝑑 (𝑥, 𝐹 (𝑥, 𝑦)) + 𝑑 (𝑦, 𝐹 (𝑦, 𝑥))

2

,

𝑑 (𝑢, 𝐹 (𝑢, V)) + 𝑑 (V, 𝐹 (V, 𝑢))
2

,

𝑑 (𝑥, 𝐹 (𝑢, V)) + 𝑑 (𝑦, 𝐹 (V, 𝑢))
2

,

𝑑 (𝑢, 𝐹 (𝑥, 𝑦)) + 𝑑 (V, 𝐹 (𝑦, 𝑥))
2

) ≤ 0,

(9)

for each 𝑥, 𝑦, 𝑢, V ∈ 𝑋 with 𝑥 ⪰ 𝑢 and 𝑦 ⪯ V.
Suppose that either

(a) 𝐹 is continuous or
(b) 𝑋 has the following property:

(i) if a nondecreasing sequence {𝑥
𝑛
} ⊆ 𝑋 with 𝑥

𝑛
→

𝑥, then 𝑥
𝑛
⪯ 𝑥 for all 𝑛 and

(ii) if a nonincreasing sequence {𝑦
𝑛
} ⊆ 𝑋 with 𝑦

𝑛
→

𝑦, then 𝑦
𝑛
⪰ 𝑦 for all 𝑛.

If there exist 𝑥
0
, 𝑦
0
∈ 𝑋 such that 𝑥

0
⪯ 𝐹(𝑥

0
, 𝑦
0
) and 𝑦

0
⪰

𝐹(𝑦
0
, 𝑥
0
) then 𝐹 has a coupled fixed point.

Proof. Suppose that there exists (𝑥
0
, 𝑦
0
) ∈ 𝑋 × 𝑋 such that

𝑥
0
⪯ 𝐹(𝑥

0
, 𝑦
0
) and 𝑦

0
⪰ 𝐹(𝑦

0
, 𝑥
0
). Choose 𝑥

1
, 𝑦
1
∈ 𝑋 such

that 𝑥
1
= 𝐹(𝑥

0
, 𝑦
0
) and 𝑦

1
= 𝐹(𝑦

0
, 𝑥
0
). Then 𝑥

0
⪯ 𝑥
1
and

𝑦
0
⪰ 𝑦
1
. Now choose 𝑥

2
, 𝑦
2
∈ 𝑋 such that 𝑥

2
= 𝐹(𝑥

1
, 𝑦
1
) and

𝑦
2
= 𝐹(𝑦

1
, 𝑥
1
). Since 𝐹 has mixed monotone property, we get

𝑥
1
= 𝐹 (𝑥

0
, 𝑦
0
) ⪯ 𝐹 (𝑥

1
, 𝑦
1
) = 𝑥
2
,

𝑦
1
= 𝐹 (𝑦

0
, 𝑥
0
) ⪰ 𝐹 (𝑦

1
, 𝑥
1
) = 𝑦
2
.

(10)

Continuing this process, we obtain sequences {𝑥
𝑛
} and {𝑦

𝑛
}

in 𝑋 such that 𝑥
𝑛+1
= 𝐹(𝑥

𝑛
, 𝑦
𝑛
), 𝑦
𝑛+1
= 𝐹(𝑦

𝑛
, 𝑥
𝑛
) for 𝑛 =

0, 1, 2, . . . and

𝑥
0
⪯ 𝑥
1
⪯ 𝑥
2
⪯ ⋅ ⋅ ⋅ , 𝑦

0
⪰ 𝑦
1
⪰ 𝑦
2
⪰ ⋅ ⋅ ⋅ . (11)

Let 𝑥
𝑛+1
= 𝐹(𝑥

𝑛
, 𝑦
𝑛
) = 𝐹
𝑛
(𝑥
0
, 𝑦
0
) = 𝐹(𝐹

𝑛−1
(𝑥
0
, 𝑦
0
), 𝐹
𝑛−1
(𝑦
0
,

𝑥
0
)) and 𝑦

𝑛+1
= 𝐹(𝑦

𝑛
, 𝑥
𝑛
) = 𝐹

𝑛
(𝑦
0
, 𝑥
0
) = 𝐹(𝐹

𝑛−1
(𝑦
0
, 𝑥
0
),

𝐹
𝑛−1
(𝑥
0
, 𝑦
0
)) for each 𝑛 = 0, 1, 2, . . ..

If 𝑥
𝑛
= 𝑥
𝑛+1

and 𝑦
𝑛
= 𝑦
𝑛+1

for some 𝑛, then (𝑥
𝑛
, 𝑦
𝑛
) is

a coupled fixed point of 𝐹. So, without loss of generality, we
assume that 𝑥

𝑛
̸= 𝑥
𝑛+1

or 𝑦
𝑛
̸= 𝑦
𝑛+1

for all 𝑛.
Now using (9), we have

𝑇(

𝑑 (𝐹 (𝑥
𝑛+1
, 𝑦
𝑛+1
) , 𝐹 (𝑥

𝑛
, 𝑦
𝑛
)) + 𝑑 (𝐹 (𝑦

𝑛+1
, 𝑥
𝑛+1
) , 𝐹 (𝑦

𝑛
, 𝑥
𝑛
))

2

,

𝑑 (𝑥
𝑛+1
, 𝑥
𝑛
) + 𝑑 (𝑦

𝑛+1
, 𝑦
𝑛
)

2

,

𝑑 (𝑥
𝑛+1
, 𝐹 (𝑥
𝑛+1
, 𝑦
𝑛+1
)) + 𝑑 (𝑦

𝑛+1
, 𝐹 (𝑦
𝑛+1
, 𝑥
𝑛+1
))

2

,

𝑑 (𝑥
𝑛
, 𝐹 (𝑥
𝑛
, 𝑦
𝑛
)) + 𝑑 (𝑦

𝑛
, 𝐹 (𝑦
𝑛
, 𝑥
𝑛
))

2

,

𝑑 (𝑥
𝑛+1
, 𝐹 (𝑥
𝑛
, 𝑦
𝑛
)) + 𝑑 (𝑦

𝑛+1
, 𝐹 (𝑦
𝑛
, 𝑥
𝑛
))

2

,

𝑑 (𝑥
𝑛
, 𝐹 (𝑥
𝑛+1
, 𝑦
𝑛+1
)) + 𝑑 (𝑦

𝑛
, 𝐹 (𝑦
𝑛+1
, 𝑥
𝑛+1
))

2

) ≤ 0,

𝑇(

𝑑 (𝑥
𝑛+2
, 𝑥
𝑛+1
) + 𝑑 (𝑦

𝑛+2
, 𝑦
𝑛+1
)

2

,

𝑑 (𝑥
𝑛+1
, 𝑥
𝑛
) + 𝑑 (𝑦

𝑛+1
, 𝑦
𝑛
)

2

,

𝑑 (𝑥
𝑛+1
, 𝑥
𝑛+2
) + 𝑑 (𝑦

𝑛+1
, 𝑦
𝑛+2
)

2

,

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
) + 𝑑 (𝑦

𝑛
, 𝑦
𝑛+1
)

2

,

𝑑 (𝑥
𝑛+1
, 𝑥
𝑛+1
) + 𝑑 (𝑦

𝑛+1
, 𝑦
𝑛+1
)

2

,

𝑑 (𝑥
𝑛
, 𝑥
𝑛+2
) + 𝑑 (𝑦

𝑛
, 𝑦
𝑛+2
)

2

) ≤ 0.

(12)

Since 𝑇 is nonincreasing in 6th variable, using triangle
inequality, we get

𝑇(

𝑑 (𝑥
𝑛+2
, 𝑥
𝑛+1
) + 𝑑 (𝑦

𝑛+2
, 𝑦
𝑛+1
)

2

,

𝑑 (𝑥
𝑛+1
, 𝑥
𝑛
) + 𝑑 (𝑦

𝑛+1
, 𝑦
𝑛
)

2

,

𝑑 (𝑥
𝑛+1
, 𝑥
𝑛+2
) + 𝑑 (𝑦

𝑛+1
, 𝑦
𝑛+2
)

2

,

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
) + 𝑑 (𝑦

𝑛
, 𝑦
𝑛+1
)

2

, 0,

(𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
) + 𝑑 (𝑥

𝑛+1
, 𝑥
𝑛+2
)

+ 𝑑 (𝑦
𝑛
, 𝑦
𝑛+1
) + 𝑑 (𝑦

𝑛+1
, 𝑦
𝑛+2
))

× (2)
−1
) ≤ 0.

(13)
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From (𝑇
2
), there exists 𝑓 : 𝑅

+
→ 𝑅
+
, 𝑓(𝑡) < 𝑡 for 𝑡 > 0 such

that

𝛿
𝑛+1
=

𝑑 (𝑥
𝑛+1
, 𝑥
𝑛+2
) + 𝑑 (𝑦

𝑛+1
, 𝑦
𝑛+2
)

2

≤ 𝑓(

𝑑 (𝑥
𝑛+1
, 𝑥
𝑛
) + 𝑑 (𝑦

𝑛+1
, 𝑦
𝑛
)

2

) = 𝑓 (𝛿
𝑛
) .

(14)

Then 𝛿
𝑛
̸= 0 for all 𝑛. Hence, from (14), we have

𝛿
𝑛+1
≤ 𝑓 (𝛿

𝑛
) < 𝛿
𝑛
, ∀𝑛. (15)

Therefore {𝛿
𝑛
} is strictly decreasing sequence of positive reals.

Hence there exists 𝛿 ≥ 0 such that

lim
𝑛→∞

𝛿
𝑛
= lim
𝑛→∞

𝑑 (𝑥
𝑛+1
, 𝑥
𝑛+2
) + 𝑑 (𝑦

𝑛+1
, 𝑦
𝑛+2
)

2

= 𝛿. (16)

We show that 𝛿 = 0. Suppose that 𝛿 > 0. On letting 𝑛 → ∞
in (13), we get

𝑇 (𝛿, 𝛿, 𝛿, 𝛿, 0, 2𝛿) ≤ 0. (17)

Then from (𝑇
2
), we have 𝛿 ≤ 𝑓(𝛿), a contradiction. Hence

𝛿 = 0.

That is, lim
𝑛→∞

𝑑 (𝑥
𝑛+1
, 𝑥
𝑛+2
) + 𝑑 (𝑦

𝑛+1
, 𝑦
𝑛+2
)

2

= 0. (18)

Now we show that {𝑥
𝑛
} and {𝑦

𝑛
} are Cauchy sequences in 𝑋.

Suppose that at least one of {𝑥
𝑛
} or {𝑦

𝑛
} is not Cauchy. Then

there exist 𝜖 > 0 and sequences of positive integers {𝑚(𝑘)}
and {𝑛(𝑘)} with𝑚(𝑘) ≥ 𝑛(𝑘) > 𝑘 such that

𝑟
𝑘
= 𝑑 (𝑥

𝑚(𝑘)
, 𝑥
𝑛(𝑘)
) + 𝑑 (𝑦

𝑚(𝑘)
, 𝑦
𝑛(𝑘)
) ≥ 𝜖. (19)

Now choose 𝑚(𝑘) the least positive integer such that (19)
holds. Then

𝑑 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑛(𝑘)
) + 𝑑 (𝑦

𝑚(𝑘)−1
, 𝑦
𝑛(𝑘)
) < 𝜖. (20)

Now

𝜖 ≤ 𝑟
𝑘
= 𝑑 (𝑥

𝑚(𝑘)
, 𝑥
𝑛(𝑘)
) + 𝑑 (𝑦

𝑚(𝑘)
, 𝑦
𝑛(𝑘)
)

≤ 𝑑 (𝑥
𝑚(𝑘)
, 𝑥
𝑚(𝑘)−1

) + 𝑑 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑛(𝑘)
)

+ 𝑑 (𝑦
𝑚(𝑘)
, 𝑦
𝑚(𝑘)−1

) + 𝑑 (𝑦
𝑚(𝑘)−1

, 𝑦
𝑛(𝑘)
)

< 𝑑 (𝑥
𝑚(𝑘)
, 𝑥
𝑚(𝑘)−1

) + 𝑑 (𝑦
𝑚(𝑘)
, 𝑦
𝑚(𝑘)−1

) + 𝜖.

(21)

On taking limit supremum as 𝑘 → ∞, we get

𝜖 ≤ lim sup
𝑘→∞

𝑟
𝑘
= lim sup
𝑘→∞

𝑑 (𝑥
𝑚(𝑘)
, 𝑥
𝑛(𝑘)
) + 𝑑 (𝑦

𝑚(𝑘)
, 𝑦
𝑛(𝑘)
) ≤ 𝜖.

(22)

Hence

lim sup
𝑘→∞

𝑟
𝑘
= lim sup
𝑘→∞

𝑑 (𝑥
𝑚(𝑘)
, 𝑥
𝑛(𝑘)
) + 𝑑 (𝑦

𝑚(𝑘)
, 𝑦
𝑛(𝑘)
) = 𝜖.

(23)

Similarly, we can show that

lim inf
𝑘→∞

𝑟
𝑘
= lim inf
𝑘→∞

𝑑 (𝑥
𝑚(𝑘)
, 𝑥
𝑛(𝑘)
) + 𝑑 (𝑦

𝑚(𝑘)
, 𝑦
𝑛(𝑘)
) = 𝜖.

(24)

Hence

lim
𝑘→∞

𝑟
𝑘
= lim
𝑘→∞

𝑑 (𝑥
𝑚(𝑘)
, 𝑥
𝑛(𝑘)
) + 𝑑 (𝑦

𝑚(𝑘)
, 𝑦
𝑛(𝑘)
) = 𝜖. (25)

Now

𝜖 ≤ 𝑟
𝑘
= 𝑑 (𝑥

𝑚(𝑘)
, 𝑥
𝑛(𝑘)
) + 𝑑 (𝑦

𝑚(𝑘)
, 𝑦
𝑛(𝑘)
)

≤ 𝑑 (𝑥
𝑚(𝑘)
, 𝑥
𝑚(𝑘)+1

) + 𝑑 (𝑥
𝑚(𝑘)+1

, 𝑥
𝑛(𝑘)+1
)

+ 𝑑 (𝑥
𝑛(𝑘)+1
, 𝑥
𝑛(𝑘)
) + 𝑑 (𝑦

𝑚(𝑘)
, 𝑦
𝑚(𝑘)+1

)

+ 𝑑 (𝑦
𝑚(𝑘)+1

, 𝑦
𝑛(𝑘)+1
) + 𝑑 (𝑦

𝑛(𝑘)+1
, 𝑦
𝑛(𝑘)
) .

(26)

Since𝑚(𝑘) ≥ 𝑛(𝑘), we have 𝑥
𝑚(𝑘)
⪰ 𝑥
𝑛(𝑘)

and 𝑦
𝑚(𝑘)
⪯ 𝑦
𝑛(𝑘)

for
each 𝑘. Hence, from (9), we get

𝑇( (𝑑 (𝐹 (𝑥
𝑚(𝑘)
, 𝑦
𝑚(𝑘)
) , 𝐹 (𝑥

𝑛(𝑘)
, 𝑦
𝑛(𝑘)
))

+ 𝑑 (𝐹 (𝑦
𝑚(𝑘)
, 𝑥
𝑚(𝑘)
) , 𝐹 (𝑦

𝑛(𝑘)
, 𝑥
𝑛(𝑘)
)))

× (2)
−1
,

𝑑 (𝑥
𝑚(𝑘)
, 𝑥
𝑛(𝑘)
) + 𝑑 (𝑦

𝑚(𝑘)
, 𝑦
𝑛(𝑘)
)

2

,

𝑑 (𝑥
𝑚(𝑘)
, 𝐹 (𝑥
𝑚(𝑘)
, 𝑦
𝑚(𝑘)
)) + 𝑑 (𝑦

𝑚(𝑘)
, 𝐹 (𝑦
𝑚(𝑘)
, 𝑥
𝑚(𝑘)
))

2

,

𝑑 (𝑥
𝑛(𝑘)
, 𝐹 (𝑥
𝑛(𝑘)
, 𝑦
𝑛(𝑘)
)) + 𝑑 (𝑦

𝑛(𝑘)
, 𝐹 (𝑦
𝑛(𝑘)
, 𝑥
𝑛(𝑘)
))

2

,

𝑑 (𝑥
𝑚(𝑘)
, 𝐹 (𝑥
𝑛(𝑘)
, 𝑦
𝑛(𝑘)
)) + 𝑑 (𝑦

𝑚(𝑘)
, 𝐹 (𝑦
𝑛(𝑘)
, 𝑥
𝑛(𝑘)
))

2

,

𝑑 (𝑥
𝑛(𝑘)
, 𝐹 (𝑥
𝑚(𝑘)
, 𝑦
𝑚(𝑘)
)) + 𝑑 (𝑦

𝑛(𝑘)
, 𝐹 (𝑦
𝑚(𝑘)
, 𝑥
𝑚(𝑘)
))

2

)

≤ 0,

𝑇(

𝑑 (𝑥
𝑚(𝑘)+1

, 𝑥
𝑛(𝑘)+1
) + 𝑑 (𝑦

𝑚(𝑘)+1
, 𝑦
𝑛(𝑘)+1
)

2

,

𝑑 (𝑥
𝑚(𝑘)
, 𝑥
𝑛(𝑘)
) + 𝑑 (𝑦

𝑚(𝑘)
, 𝑦
𝑛(𝑘)
)

2

,

𝑑 (𝑥
𝑚(𝑘)
, 𝑥
𝑚(𝑘)+1

) + 𝑑 (𝑦
𝑚(𝑘)
, 𝑦
𝑚(𝑘)+1

)

2

,

𝑑 (𝑥
𝑛(𝑘)
, 𝑥
𝑛(𝑘)+1
) + 𝑑 (𝑦

𝑛(𝑘)
, 𝑦
𝑛(𝑘)+1
)

2

,
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𝑑 (𝑥
𝑚(𝑘)
, 𝑥
𝑛(𝑘)+1
) + 𝑑 (𝑦

𝑚(𝑘)
, 𝑦
𝑛(𝑘)+1
)

2

,

𝑑 (𝑥
𝑛(𝑘)
, 𝑥
𝑚(𝑘)+1

) + 𝑑 (𝑦
𝑛(𝑘)
, 𝑦
𝑚(𝑘)+1

)

2

) ≤ 0.

(27)

Since 𝑇 is nonincreasing in 5th and 6th variable, using tri-
angle inequality, we get

𝑇(

𝑑 (𝑥
𝑚(𝑘)+1

, 𝑥
𝑛(𝑘)+1
) + 𝑑 (𝑦

𝑚(𝑘)+1
, 𝑦
𝑛(𝑘)+1
)

2

,

𝑑 (𝑥
𝑚(𝑘)
, 𝑥
𝑛(𝑘)
) + 𝑑 (𝑦

𝑚(𝑘)
, 𝑦
𝑛(𝑘)
)

2

,

𝑑 (𝑥
𝑚(𝑘)
, 𝑥
𝑚(𝑘)+1

) + 𝑑 (𝑦
𝑚(𝑘)
, 𝑦
𝑚(𝑘)+1

)

2

,

𝑑 (𝑥
𝑛(𝑘)
, 𝑥
𝑛(𝑘)+1
) + 𝑑 (𝑦

𝑛(𝑘)
, 𝑦
𝑛(𝑘)+1
)

2

,

(𝑑 (𝑥
𝑚(𝑘)
, 𝑥
𝑚(𝑘)+1

) + 𝑑 (𝑥
𝑚(𝑘)+1

, 𝑥
𝑛(𝑘)+1
)

+ 𝑑 (𝑦
𝑚(𝑘)
, 𝑦
𝑚(𝑘)+1

) + 𝑑 (𝑦
𝑚(𝑘)+1

, 𝑦
𝑛(𝑘)+1
))

× (2)
−1
,

(𝑑 (𝑥
𝑛(𝑘)
, 𝑥
𝑛(𝑘)+1
) + 𝑑 (𝑥

𝑛(𝑘)+1
, 𝑥
𝑚(𝑘)+1

)

+ 𝑑 (𝑦
𝑛(𝑘)
, 𝑦
𝑛(𝑘)+1
) + 𝑑 (𝑦

𝑛(𝑘)+1
, 𝑦
𝑚(𝑘)+1

))

× (2)
−1
) ≤ 0.

(28)

On letting 𝑘 → ∞, we get

𝑇( lim
𝑘→∞

𝑑 (𝑥
𝑚(𝑘)+1

, 𝑥
𝑛(𝑘)+1
) + 𝑑 (𝑦

𝑚(𝑘)+1
, 𝑦
𝑛(𝑘)+1
)

2

,

𝜖

2

, 0, 0,

𝜖

2

,

𝜖

2

) ≤ 0.

(29)

From (𝑇
2
), we get

lim
𝑘→∞

𝑑 (𝑥
𝑚(𝑘)+1

, 𝑥
𝑛(𝑘)+1
) + 𝑑 (𝑦

𝑚(𝑘)+1
, 𝑦
𝑛(𝑘)+1
)

2

≤ 𝑓(

𝜖

2

) .

(30)

Now on letting 𝑘 → ∞, in (26), we get

𝜖 ≤ lim
𝑘→∞

[𝑑 (𝑥
𝑚(𝑘)
, 𝑥
𝑚(𝑘)+1

) + 𝑑 (𝑥
𝑚(𝑘)+1

, 𝑥
𝑛(𝑘)+1
)

+ 𝑑 (𝑥
𝑛(𝑘)+1
, 𝑥
𝑛(𝑘)
) + 𝑑 (𝑦

𝑚(𝑘)
, 𝑦
𝑚(𝑘)+1

)

+ 𝑑 (𝑦
𝑚(𝑘)+1

, 𝑦
𝑛(𝑘)+1
) + 𝑑 (𝑦

𝑛(𝑘)+1
, 𝑦
𝑛(𝑘)
)]

= lim
𝑘→∞

[𝑑 (𝑥
𝑚(𝑘)+1

, 𝑥
𝑛(𝑘)+1
) + 𝑑 (𝑦

𝑚(𝑘)+1
, 𝑦
𝑛(𝑘)+1
)] .

(31)

Hence

𝜖

2

≤ lim
𝑘→∞

𝑑 (𝑥
𝑚(𝑘)+1

, 𝑥
𝑛(𝑘)+1
) + 𝑑 (𝑦

𝑚(𝑘)+1
, 𝑦
𝑛(𝑘)+1
)

2

≤ 𝑓(

𝜖

2

) , a contradiction.
(32)

Therefore {𝑥
𝑛
} and {𝑦

𝑛
} are Cauchy sequences in 𝑋. Since 𝑋

is complete there exists 𝑥, 𝑦 ∈ 𝑋 with lim
𝑛→∞

𝑥
𝑛
= 𝑥 and

lim
𝑛→∞

𝑦
𝑛
= 𝑦.

Suppose that 𝐹 is continuous. Then

𝑥 = lim
𝑛→∞

𝑥
𝑛+1
= lim
𝑛→∞

𝐹 (𝑥
𝑛
, 𝑦
𝑛
) = 𝐹 (𝑥, 𝑦) ,

𝑦 = lim
𝑛→∞

𝑦
𝑛+1
= lim
𝑛→∞

𝐹 (𝑦
𝑛
, 𝑥
𝑛
) = 𝐹 (𝑦, 𝑥) .

(33)

Therefore (𝑥, 𝑦) is a coupled fixed point of 𝐹.
Now suppose that conditions (b) hold. Hence, we have

𝑥
𝑛
⪯ 𝑥 for all 𝑛 and 𝑦 ⪯ 𝑦

𝑛
for all 𝑛.

Now from (9), we have

𝑇(

𝑑 (𝐹 (𝑥, 𝑦) , 𝐹 (𝑥
𝑛
, 𝑦
𝑛
)) + 𝑑 (𝐹 (𝑦, 𝑥) , 𝐹 (𝑦

𝑛
, 𝑥
𝑛
))

2

,

𝑑 (𝑥, 𝑥
𝑛
) + 𝑑 (𝑦, 𝑦

𝑛
)

2

,

𝑑 (𝑥, 𝐹 (𝑥, 𝑦)) + 𝑑 (𝑦, 𝐹 (𝑦, 𝑥))

2

,

𝑑 (𝑥
𝑛
, 𝐹 (𝑥
𝑛
, 𝑦
𝑛
)) + 𝑑 (𝑦

𝑛
, 𝐹 (𝑦
𝑛
, 𝑥
𝑛
))

2

,

𝑑 (𝑥, 𝐹 (𝑥
𝑛
, 𝑦
𝑛
)) + 𝑑 (𝑦, 𝐹 (𝑦

𝑛
, 𝑥
𝑛
))

2

,

𝑑 (𝑥
𝑛
, 𝐹 (𝑥, 𝑦)) + 𝑑 (𝑦

𝑛
, 𝐹 (𝑦, 𝑥))

2

) ≤ 0.

(34)

On letting 𝑛 → ∞, we get

𝑇(

𝑑 (𝐹 (𝑥, 𝑦) , 𝑥) + 𝑑 (𝐹 (𝑦, 𝑥) , 𝑦)

2

, 0,

𝑑 (𝑥, 𝐹 (𝑥, 𝑦)) + 𝑑 (𝑦, 𝐹 (𝑦, 𝑥))

2

, 0, 0,

𝑑 (𝑥, 𝐹 (𝑥, 𝑦)) + 𝑑 (𝑦, 𝐹 (𝑦, 𝑥))

2

) ≤ 0.

(35)

If 𝑑(𝐹(𝑥, 𝑦), 𝑥) + 𝑑(𝐹(𝑦, 𝑥), 𝑦) = 0, then (𝑥, 𝑦) is a coupled
fixed point of 𝐹.

If 𝑑(𝐹(𝑥, 𝑦), 𝑥) + 𝑑(𝐹(𝑦, 𝑥), 𝑦) > 0, then (35) yields a
contradiction to (𝑇

3
). Hence 𝐹(𝑥, 𝑦) = 𝑥 and 𝐹(𝑦, 𝑥) = 𝑦.

Therefore (𝑥, 𝑦) is a coupled fixed point of 𝐹.

Theorem 16 does not guarantee the uniqueness of coupled
fixed point of 𝐹. The following example supports this asser-
tion.

Example 17. Let 𝑋 = {2, 4, 6, 8} with the usual metric. We
define a partial order ⪯ on𝑋 as follows:

⪯= {(2, 2) , (4, 4) , (6, 6) , (8, 8) , (2, 8)} . (36)
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We define 𝑇 : (𝑅
+
)
6
→ 𝑅 by 𝑇(𝑡

1
, . . . , 𝑡
6
) = 𝑡

1
− 𝛼(𝑡
4
𝑡
5
𝑡
6
/

(𝑡
2
+ 𝑡
3
+ 1)), 𝑡

1
, 𝑡
2
, . . . , 𝑡

6
≥ 0 and 𝛼 = 15/16. Then 𝑇 ∈ S

(Example 11).
Let

𝐴 = {(2, 2) , (2, 8) , (4, 2) , (4, 4) , (4, 8) ,

(6, 2) , (6, 8) , (8, 2) , (8, 8)}

𝐵 = {(2, 4) , (8, 4) , (8, 6)} ,

𝐶 = {(2, 6) , (4, 6) , (6, 4) , (6, 6)} .

(37)

We define 𝐹 : 𝑋 × 𝑋 → 𝑋 by

𝐹 (𝑥, 𝑦) =

{
{

{
{

{

4, if (𝑥, 𝑦) ∈ 𝐴
8, if (𝑥, 𝑦) ∈ 𝐵
2, if (𝑥, 𝑦) ∈ 𝐶.

(38)

Clearly 𝐹 satisfies the mixed monotone property. We choose
(𝑥
0
, 𝑦
0
) = (2, 4). Then 𝐹(𝑥

0
, 𝑦
0
) = 8 and 𝐹(𝑦

0
, 𝑥
0
) = 4 so

that 𝑥
0
⪯ 𝐹(𝑥

0
, 𝑦
0
) and 𝑦

0
⪰ 𝐹(𝑦

0
, 𝑥
0
). The elements (𝑥, 𝑦),

(𝑢, V) in 𝑋 × 𝑋 such that 𝑥 ⪰ 𝑢 and 𝑦 ⪯ V are the following:
(2, 2), (2, 2); (2, 2), (2, 8); (2, 4), (2, 4); (2, 6), (2, 6); (2, 8),
(2, 8); (4, 2), (4, 2); (4, 2), (4, 8); (4, 4), (4, 4); (4, 6), (4, 6);
(4, 8), (4, 8); (6, 2), (6, 2); (6, 2), (6, 8); (6, 4), (6, 4); (6, 6),
(6, 6); (6, 8), (6, 8); (8, 2), (2, 2); (8, 2), (2, 8); (8, 2), (8, 2);
(8, 2), (8, 8); (8, 4), (2, 4); (8, 4), (8, 4); (8, 6), (2, 6); (8, 6),
(8, 6); (8, 8), (2, 8); (8, 8), (8, 8). We now verify inequality (9)
for the above pairs.

Case i. (𝑥, 𝑦), (𝑢, V) ∈ 𝑋 × 𝑋 such that (𝑥, 𝑦), (𝑢, V), (𝑦, 𝑥),
(V, 𝑢) are either in 𝐴 or 𝐵 or 𝐶 or (𝑥, 𝑦) = (𝑢, V).

In this case (𝑑(𝐹(𝑥,𝑦),𝐹(𝑢, V)) + 𝑑(𝐹(𝑦,𝑥),𝐹(V, 𝑢)))/2 = 0
so that inequality (9) holds trivially.

Case ii. (𝑥, 𝑦) = (6, 2), (𝑢, V) = (6, 8) or (𝑥, 𝑦) = (6, 8), (𝑢, V) =
(2, 6).

In this case

𝑑 (𝐹 (𝑥, 𝑦) , 𝐹 (𝑢, V)) + 𝑑 (𝐹 (𝑦, 𝑥) , 𝐹 (V, 𝑢))
2

= 3 =

15

16

16

5

=

15

16

× (

𝑑 (𝑢, 𝐹 (𝑢, V)) + 𝑑 (V, 𝐹 (V, 𝑢))
2

)

× (

𝑑 (𝑥, 𝐹 (𝑢, V)) + 𝑑 (𝑦, 𝐹 (V, 𝑢))
2

)

× (

𝑑 (𝑢, 𝐹 (𝑥, 𝑦)) + 𝑑 (V, 𝐹 (𝑦, 𝑥))
2

)

× (

𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V)
2

+

𝑑 (𝑥, 𝐹 (𝑥, 𝑦)) + 𝑑 (𝑦, 𝐹 (𝑦, 𝑥))

2

+ 1)

−1

.

(39)

Hence inequality (9) holds. Therefore all the hypotheses of
Theorem 16 hold and (8, 4) and (4, 4) are two coupled fixed
points of 𝐹.

In the following theorem, we prove the uniqueness of
coupled fixed points by using an implicit relation in S.

We define a partial order ⪯
1
on𝑋×𝑋 by (𝑥, 𝑦) ⪯

1
(𝑢, V) if

𝑥 ⪯ 𝑢, 𝑦 ⪰ V.

Theorem 18. In addition to the hypotheses ofTheorem 16 with
𝑇 ∈ S suppose that the following condition holds:

for any (𝑥, 𝑦) and (𝑢, V) in 𝑋 × 𝑋

there exists (𝑧, 𝑡) ∈ 𝑋 × 𝑋 that is comparable with

(𝑥, 𝑦) and (𝑢, V) .
(40)

Then 𝐹 has a unique coupled fixed point.

Proof. With the hypotheses of Theorem 16, 𝐹 has a coupled
fixed point (𝑥, 𝑦), that is, 𝑥 = 𝐹(𝑥, 𝑦) and 𝑦 = 𝐹(𝑦, 𝑥).
Suppose that if possible there exists (𝑢, V) ∈ 𝑋 × 𝑋 such that
𝑢 = 𝐹(𝑢, V) and V = 𝐹(V, 𝑢). We show that 𝑥 = 𝑢 and 𝑦 = V.

Case i. (𝑥, 𝑦) and (𝑢, V) are comparable.
Without loss of generality, we assume that (𝑢, V) ⪯

1
(𝑥, 𝑦).

That is, 𝑥 ⪰ 𝑢 and 𝑦 ⪯ V.
Suppose that either 𝑥 ̸= 𝑢 or 𝑦 ̸= V. Then

𝑇(

𝑑 (𝐹 (𝑥, 𝑦) , 𝐹 (𝑢, V)) + 𝑑 (𝐹 (𝑦, 𝑥) , 𝐹 (V, 𝑢))
2

,

𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V)
2

,

𝑑 (𝑥, 𝐹 (𝑥, 𝑦)) + 𝑑 (𝑦, 𝐹 (𝑦, 𝑥))

2

,

𝑑 (𝑢, 𝐹 (𝑢, V)) + 𝑑 (V, 𝐹 (V, 𝑢))
2

,

𝑑 (𝑥, 𝐹 (𝑢, V)) + 𝑑 (𝑦, 𝐹 (V, 𝑢))
2

,

𝑑 (𝑢, 𝐹 (𝑥, 𝑦)) + 𝑑 (V, 𝐹 (𝑦, 𝑥))
2

) ≤ 0,

𝑇(

𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V)
2

,

𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V)
2

, 0, 0,

𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V)
2

,

𝑑 (𝑢, 𝑥) + 𝑑 (V, 𝑦)
2

) ≤ 0.

(41)

Then, from (𝑇
2
), there exists 𝑓 : 𝑅

+
→ 𝑅
+
, 𝑓(𝑡) < 𝑡 for 𝑡 > 0

such that

𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V)
2

≤ 𝑓(

𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V)
2

) , (42)

a contradiction. Hence 𝑥 = 𝑢 and 𝑦 = V.
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Case ii.There exists (𝑧, 𝑡) ∈ 𝑋 × 𝑋 which is comparable with
(𝑥, 𝑦) and (𝑢, V).

Without loss of generality, we assume that (𝑥, 𝑦) ⪯
1
(𝑧, 𝑡)

and (𝑢, V) ⪯
1
(𝑧, 𝑡), that is, 𝑧 ⪰ 𝑥, 𝑡 ⪯ 𝑦 and 𝑧 ⪰ 𝑢, 𝑡 ⪯ V.

We denote 𝐹𝑛+1(𝑥, 𝑦) = 𝐹(𝐹𝑛(𝑥, 𝑦), 𝐹𝑛(𝑦, 𝑥)) for each
𝑥, 𝑦 ∈ 𝑋.

Since 𝐹 has mixed monotone property, we have

𝐹 (𝑥, 𝑦) ⪯ 𝐹 (𝑧, 𝑡) , 𝐹 (𝑢, V) ⪯ 𝐹 (𝑧, 𝑡) ,

𝐹 (𝑦, 𝑥) ⪰ 𝐹 (𝑡, 𝑧) , 𝐹 (V, 𝑢) ⪰ 𝐹 (𝑡, 𝑧) .
(43)

Now suppose that

𝐹
𝑛
(𝑥, 𝑦) ⪯ 𝐹

𝑛

(𝑧, 𝑡) , 𝐹
𝑛

(𝑢, V) ⪯ 𝐹𝑛 (𝑧, 𝑡) ,

𝐹
𝑛
(𝑦, 𝑥) ⪰ 𝐹

𝑛

(𝑡, 𝑧) , 𝐹
𝑛

(V, 𝑢) ⪰ 𝐹𝑛 (𝑡, 𝑧)

for some 𝑛.

𝐹
𝑛+1
(𝑥, 𝑦) = 𝐹 (𝐹

𝑛
(𝑥, 𝑦) , 𝐹

𝑛
(𝑦, 𝑥))

⪯ 𝐹 (𝐹
𝑛

(𝑧, 𝑡) , 𝐹
𝑛

(𝑡, 𝑧)) = 𝐹
𝑛+1

(𝑧, 𝑡) ,

𝐹
𝑛+1

(𝑢, V) = 𝐹 (𝐹𝑛 (𝑢, V) , 𝐹𝑛 (V, 𝑢))

⪯ 𝐹 (𝐹
𝑛

(𝑧, 𝑡) , 𝐹
𝑛

(𝑡, 𝑧)) = 𝐹
𝑛+1

(𝑧, 𝑡) ,

𝐹
𝑛+1
(𝑦, 𝑥) = 𝐹 (𝐹

𝑛
(𝑦, 𝑥) , 𝐹

𝑛
(𝑥, 𝑦))

⪰ 𝐹 (𝐹
𝑛

(𝑡, 𝑧) , 𝐹
𝑛

(𝑧, 𝑡)) = 𝐹
𝑛+1

(𝑡, 𝑧) ,

𝐹
𝑛+1

(V, 𝑢) = 𝐹 (𝐹𝑛 (V, 𝑢) , 𝐹𝑛 (𝑢, V))

⪰ 𝐹 (𝐹
𝑛

(𝑡, 𝑧) , 𝐹
𝑛

(𝑧, 𝑡)) = 𝐹
𝑛+1

(𝑡, 𝑧) .

(44)

Hence by mathematical induction,

𝐹
𝑛
(𝑥, 𝑦) ⪯ 𝐹

𝑛

(𝑧, 𝑡) , 𝐹
𝑛

(𝑢, V) ⪯ 𝐹𝑛 (𝑧, 𝑡) ,

𝐹
𝑛
(𝑦, 𝑥) ⪰ 𝐹

𝑛

(𝑡, 𝑧) , 𝐹
𝑛

(V, 𝑢) ⪰ 𝐹𝑛 (𝑡, 𝑧)

for each 𝑛 = 0, 1, 2, . . . .

(45)

We now show that

lim
𝑛→∞

𝐹
𝑛

(𝑧, 𝑡) = 𝑥, lim
𝑛→∞

𝐹
𝑛

(𝑡, 𝑧) = 𝑦. (46)

Using (9), we get

𝑇 ( (𝑑 (𝐹 (𝐹
𝑛

(𝑧, 𝑡) , 𝐹
𝑛

(𝑡, 𝑧)) , 𝐹 (𝑥, 𝑦))

+ 𝑑 (𝐹 (𝐹
𝑛

(𝑡, 𝑧) , 𝐹
𝑛

(𝑧, 𝑡)) , 𝐹 (𝑦, 𝑥)))

× (2)
−1
,

𝑑 (𝐹
𝑛
(𝑧, 𝑡) , 𝑥) + 𝑑 (𝐹

𝑛
(𝑡, 𝑧) , 𝑦)

2

,

(𝑑 (𝐹
𝑛

(𝑧, 𝑡) , 𝐹 (𝐹
𝑛

(𝑧, 𝑡)) , 𝐹
𝑛

(𝑡, 𝑧))

+ 𝑑 (𝐹
𝑛

(𝑡, 𝑧) , 𝐹 (𝐹
𝑛

(𝑡, 𝑧) , 𝐹
𝑛

(𝑧, 𝑡))))

× (2)
−1
,

𝑑 (𝑥, 𝐹 (𝑥, 𝑦)) + 𝑑 (𝑦, 𝐹 (𝑦, 𝑥))

2

,

𝑑 (𝐹
𝑛
(𝑧, 𝑡) , 𝑥) + 𝑑 (𝐹

𝑛
(𝑡, 𝑧) , 𝑦)

2

,

(𝑑 (𝑥, 𝐹 (𝐹
𝑛

(𝑧, 𝑡)) , 𝐹
𝑛

(𝑡, 𝑧))

+ 𝑑 (𝑦, 𝐹 (𝐹
𝑛

(𝑡, 𝑧) , 𝐹
𝑛

(𝑧, 𝑡))))

× (2)
−1
) ≤ 0.

(47)

This implies

𝑇(

𝑑 (𝐹
𝑛+1
(𝑧, 𝑡) , 𝑥) + 𝑑 (𝐹

𝑛+1
(𝑡, 𝑧) , 𝑦)

2

,

𝑑 (𝐹
𝑛+1
(𝑡, 𝑧) , 𝑥) + 𝑑 (𝐹

𝑛+1
(𝑧, 𝑡) , 𝑦)

2

,

𝑑 (𝐹
𝑛
(𝑧, 𝑡) , 𝐹

𝑛+1
(𝑧, 𝑡)) + 𝑑 (𝐹

𝑛
(𝑡, 𝑧) , 𝐹

𝑛+1
(𝑡, 𝑧))

2

, 0,

𝑑 (𝐹
𝑛
(𝑧, 𝑡) , 𝑥) + 𝑑 (𝐹

𝑛
(𝑡, 𝑧) , 𝑦)

2

,

𝑑 (𝑥, 𝐹
𝑛+1
(𝑧, 𝑡)) + 𝑑 (𝑦, 𝐹

𝑛+1
(𝑡, 𝑧))

2

) ≤ 0.

(48)

Since 𝑇 is nonincreasing in 3rd variable, using triangle
inequality, we get

𝑇(

𝑑 (𝐹
𝑛+1
(𝑧, 𝑡) , 𝑥) + 𝑑 (𝐹

𝑛+1
(𝑡, 𝑧) , 𝑦)

2

,

𝑑 (𝐹
𝑛+1
(𝑡, 𝑧) , 𝑥) + 𝑑 (𝐹

𝑛+1
(𝑧, 𝑡) , 𝑦)

2

,

(𝑑 (𝐹
𝑛

(𝑧, 𝑡) , 𝑥) + 𝑑 (𝑥, 𝐹
𝑛+1

(𝑧, 𝑡))

+ 𝑑 (𝐹
𝑛

(𝑡, 𝑧) , 𝑦) + 𝑑 (𝑦, 𝐹
𝑛+1

(𝑡, 𝑧)))

× (2)
−1
, 0,

𝑑 (𝐹
𝑛
(𝑧, 𝑡) , 𝑥) + 𝑑 (𝐹

𝑛
(𝑡, 𝑧) , 𝑦)

2

,

𝑑 (𝑥, 𝐹
𝑛+1
(𝑧, 𝑡)) + 𝑑 (𝑦, 𝐹

𝑛+1
(𝑡, 𝑧))

2

) ≤ 0.

(49)

Therefore, from (𝑇
2
), there exists 𝑓 : 𝑅

+
→ 𝑅
+
, 𝑓(𝑡) < 𝑡 for

𝑡 > 0 such that

𝑑 (𝐹
𝑛+1
(𝑧, 𝑡) , 𝑥) + 𝑑 (𝐹

𝑛+1
(𝑡, 𝑧) , 𝑦)

2

≤ 𝑓(

𝑑 (𝐹
𝑛
(𝑧, 𝑡) , 𝑥) + 𝑑 (𝐹

𝑛
(𝑡, 𝑧) , 𝑦)

2

) .

(50)
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If 𝑑(𝐹𝑛(𝑧, 𝑡), 𝑥) + 𝑑(𝐹𝑛(𝑡, 𝑧), 𝑦) = 0 for some 𝑛 then

𝐹
𝑛+1

(𝑧, 𝑡) = 𝐹 (𝐹
𝑛

(𝑧, 𝑡) , 𝐹
𝑛

(𝑡, 𝑧)) = 𝐹 (𝑥, 𝑦) = 𝑥,

𝐹
𝑛+1

(𝑡, 𝑧) = 𝐹 (𝐹
𝑛

(𝑡, 𝑧) , 𝐹
𝑛

(𝑧, 𝑡)) = 𝐹 (𝑦, 𝑥) = 𝑦.

(51)

Hence, 𝐹𝑛+𝑘(𝑧, 𝑡) = 𝑥 and 𝐹𝑛+𝑘(𝑡, 𝑧) = 𝑦 for 𝑘 = 0, 1, 2, . . .,
that is, lim

𝑛→∞
𝐹
𝑛
(𝑧, 𝑡) = 𝑥 and lim

𝑛→∞
𝐹
𝑛
(𝑡, 𝑧) = 𝑦, so that

(46) holds.
Suppose that 𝑑(𝐹𝑛(𝑧, 𝑡), 𝑥) + 𝑑(𝐹𝑛(𝑡, 𝑧), 𝑦) > 0 for all 𝑛;

then, from (49), we get

𝑑 (𝐹
𝑛+1
(𝑧, 𝑡) , 𝑥) + 𝑑 (𝐹

𝑛+1
(𝑡, 𝑧) , 𝑦)

2

≤ 𝑓(

𝑑 (𝐹
𝑛
(𝑧, 𝑡) , 𝑥) + 𝑑 (𝐹

𝑛
(𝑡, 𝑧) , 𝑦)

2

)

<

𝑑 (𝐹
𝑛
(𝑧, 𝑡) , 𝑥) + 𝑑 (𝐹

𝑛
(𝑡, 𝑧) , 𝑦)

2

, ∀𝑛.

(52)

Therefore {(𝑑(𝐹𝑛(𝑧, 𝑡), 𝑥) + 𝑑(𝐹𝑛(𝑡, 𝑧), 𝑦)) /2} is a decreasing
sequence of nonnegative real numbers. Thus, there exists 𝛿 ≥
0 such that lim

𝑛→∞
(𝑑(𝐹
𝑛
(𝑧, 𝑡), 𝑥) + 𝑑(𝐹

𝑛
(𝑡, 𝑧), 𝑦)) /2 = 𝛿.

If 𝛿 > 0, then, on letting 𝑛 → ∞ in (49), we get 𝑇(𝛿, 𝛿,
2𝛿, 0, 𝛿, 𝛿) ≤ 0.

Then, from (𝑇
2
), we have 𝛿 ≤ 𝑓(𝛿), a contradiction.

Hence 𝛿 = 0.

That is, lim
𝑛→∞

𝑑 (𝐹
𝑛
(𝑧, 𝑡) , 𝑥) + 𝑑 (𝐹

𝑛
(𝑡, 𝑧) , 𝑦)

2

= 0.

That is, lim
𝑛→∞

𝐹
𝑛

(𝑧, 𝑡) = 𝑥, lim
𝑛→∞

𝐹
𝑛

(𝑡, 𝑧) = 𝑦.

(53)

Since (𝑢, V) is also a coupled fixed point of 𝐹, we have

lim
𝑛→∞

𝐹
𝑛

(𝑧, 𝑡) = 𝑢, lim
𝑛→∞

𝐹
𝑛

(𝑡, 𝑧) = V. (54)

Hence, by the uniqueness of limit, we have 𝑥 = 𝑢 and 𝑦 =
V.

Remark 19. In Example 17, 𝑇 does not belong to 𝑆 (Exam-
ple 15) and condition (40) does not hold and 𝑇 has two
coupled fixed points.

Theorem20. In addition to the hypotheses ofTheorem 16 with
𝑇 ∈ S suppose that𝑥

0
and𝑦
0
are comparable. Further, assume

that (40) holds. Then 𝐹 has a unique coupled fixed point (𝑥, 𝑦)
and 𝑥 = 𝑦.

Proof. From the proof of Theorem 16, we have that 𝐹 has a
coupled fixed point say (𝑥, 𝑦). That is, 𝑥 = 𝐹(𝑥, 𝑦) and 𝑦 =
𝐹(𝑦, 𝑥). Suppose that 𝑥

0
⪯ 𝑦
0
. We show that

𝑥
𝑛
⪯ 𝑦
𝑛
, ∀𝑛, (55)

using principle of mathematical induction on 𝑛, where 𝑥
𝑛
=

𝐹(𝑥
𝑛−1
, 𝑦
𝑛−1
) and 𝑦

𝑛
= 𝐹(𝑦

𝑛−1
, 𝑥
𝑛−1
), 𝑛 = 0, 1, 2, . . . are the

sequences defined in the proof of Theorem 16. Suppose that
(55) is true for some 𝑛 ≥ 0. Then, by mixed monotone
property of 𝐹,

𝑥
𝑛+1
= 𝐹 (𝑥

𝑛
, 𝑦
𝑛
) ≤ 𝐹 (𝑦

𝑛
, 𝑥
𝑛
) = 𝑦
𝑛+1
. (56)

Thus (55) is true for each 𝑛 = 1, 2, 3, . . .. Now, from (9), we
have

𝑇(

𝑑 (𝐹 (𝐹
𝑛
(𝑥, 𝑦) , 𝐹

𝑛
(𝑦, 𝑥)) , 𝐹 (𝐹

𝑛
(𝑦, 𝑥) , 𝐹

𝑛
(𝑥, 𝑦))) + 𝑑 (𝐹 (𝐹

𝑛
(𝑦, 𝑥) , 𝐹

𝑛
(𝑥, 𝑦)) , 𝐹 (𝐹

𝑛
(𝑥, 𝑦) , 𝐹

𝑛
(𝑦, 𝑥)))

2

,

𝑑 (𝐹
𝑛
(𝑥, 𝑦) , 𝐹

𝑛
(𝑦, 𝑥)) + 𝑑 (𝐹

𝑛
(𝑦, 𝑥) , 𝐹

𝑛
(𝑥, 𝑦))

2

,

𝑑 (𝐹
𝑛
(𝑥, 𝑦) , 𝐹 (𝐹

𝑛
(𝑥, 𝑦) , 𝐹

𝑛
(𝑦, 𝑥))) + 𝑑 (𝐹

𝑛
(𝑦, 𝑥) , 𝐹 (𝐹

𝑛
(𝑦, 𝑥) , 𝐹

𝑛
(𝑥, 𝑦)))

2

,

𝑑 (𝐹
𝑛
(𝑦, 𝑥) , 𝐹 (𝐹

𝑛
(𝑦, 𝑥) , 𝐹

𝑛
(𝑥, 𝑦))) + 𝑑 (𝐹

𝑛
(𝑥, 𝑦) , 𝐹 (𝐹

𝑛
(𝑥, 𝑦) , 𝐹

𝑛
(𝑦, 𝑥)))

2

𝑑 (𝐹
𝑛
(𝑥, 𝑦) , 𝐹 (𝐹

𝑛
(𝑦, 𝑥) , 𝐹

𝑛
(𝑥, 𝑦))) + 𝑑 (𝐹

𝑛
(𝑦, 𝑥) , 𝐹 (𝐹

𝑛
(𝑥, 𝑦) , 𝐹

𝑛
(𝑦, 𝑥)))

2

,

𝑑 (𝐹
𝑛
(𝑦, 𝑥) , 𝐹 (𝐹

𝑛
(𝑥, 𝑦) , 𝐹

𝑛
(𝑦, 𝑥))) + 𝑑 (𝐹

𝑛
(𝑥, 𝑦) , 𝐹 (𝐹

𝑛
(𝑦, 𝑥) , 𝐹

𝑛
(𝑥, 𝑦)))

2

) ≤ 0.

(57)
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This implies

𝑇(

𝑑 (𝐹
𝑛+1
(𝑥, 𝑦) , 𝐹

𝑛+1
(𝑦, 𝑥)) + 𝑑 (𝐹

𝑛+1
(𝑦, 𝑥) , 𝐹

𝑛+1
(𝑥, 𝑦))

2

,

𝑑 (𝐹
𝑛
(𝑥, 𝑦) , 𝐹

𝑛
(𝑦, 𝑥)) + 𝑑 (𝐹

𝑛
(𝑦, 𝑥) , 𝐹

𝑛
(𝑥, 𝑦))

2

,

𝑑 (𝐹
𝑛
(𝑥, 𝑦) , 𝐹

𝑛+1
(𝑥, 𝑦)) + 𝑑 (𝐹

𝑛
(𝑦, 𝑥) , 𝐹

𝑛+1
(𝑦, 𝑥))

2

,

𝑑 (𝐹
𝑛
(𝑦, 𝑥) , 𝐹

𝑛+1
(𝑦, 𝑥)) + 𝑑 (𝐹

𝑛
(𝑥, 𝑦) , 𝐹

𝑛+1
(𝑥, 𝑦))

2

𝑑 (𝐹
𝑛
(𝑥, 𝑦) , 𝐹

𝑛+1
(𝑦, 𝑥)) + 𝑑 (𝐹

𝑛
(𝑦, 𝑥) , 𝐹

𝑛+1
(𝑥, 𝑦))

2

,

𝑑 (𝐹
𝑛
(𝑦, 𝑥) , 𝐹

𝑛+1
(𝑥, 𝑦)) + 𝑑 (𝐹

𝑛
(𝑥, 𝑦) , 𝐹

𝑛+1
(𝑦, 𝑥))

2

)

≤ 0.

(58)

On letting 𝑛 → ∞, we get

𝑇 (𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑦) , 0, 0, 𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑦)) ≤ 0, (59)

a contradiction to (𝑇
3
), if 𝑑(𝑥, 𝑦) > 0. Hence, 𝑑(𝑥, 𝑦) = 0; that

is, 𝑥 = 𝑦.

Remark 21. Theorem 16 is an extension of Theorem 5 to
coupled fixed points with an implicit relation of 𝑆.

Corollary 22. Let (𝑋, ⪯) be a partially ordered set and suppose
that 𝑑 is a metric on 𝑋 such that (𝑋, 𝑑) is a complete metric
space. Let 𝐹 : 𝑋 × 𝑋 → 𝑋 be a mapping satisfying mixed
monotone property and suppose that there exists a continuous
map 𝜓 : 𝑅

+
→ 𝑅
+
, 𝜓(𝑡) < 𝑡 for 𝑡 > 0, 𝜓(𝑡) = 0 if and only if

𝑡 = 0 such that

𝑑 (𝐹 (𝑥, 𝑦) , 𝐹 (𝑢, V)) + 𝑑 (𝐹 (𝑦, 𝑥) , 𝐹 (V, 𝑢))
2

≤

𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V)
2

− 𝜓(

𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V)
2

) ,

(60)

for each 𝑥, 𝑦, 𝑢, V ∈ 𝑋 with 𝑥 ⪰ 𝑢 and 𝑦 ⪯ V.
Suppose that either (a) or (b) of Theorem 16 holds.

If there exist 𝑥
0
, 𝑦
0
∈ 𝑋 such that 𝑥

0
⪯ 𝐹(𝑥

0
, 𝑦
0
) and 𝑦

0
⪰

𝐹(𝑦
0
, 𝑥
0
) then 𝐹 has a coupled fixed point.

Proof. By defining 𝑇 : (𝑅
+
)
6
→ 𝑅 in (9) as 𝑇(𝑡

1
, . . . , 𝑡

6
) =

𝑡
1
− (𝑡
2
− 𝜓(𝑡
2
)), 𝑡
1
, 𝑡
2
, . . . , 𝑡

6
≥ 0, we obtain (60). Hence the

conclusion follows fromTheorem 16.

Corollary 23. Let (𝑋, ⪯) be a partially ordered set and suppose
that 𝑑 is a metric on 𝑋 such that (𝑋, 𝑑) is a complete metric
space. Let 𝐹 : 𝑋 × 𝑋 → 𝑋 be a mapping satisfying mixed
monotone property and suppose that there exists a continuous

map 𝜓 : 𝑅
+
→ 𝑅
+
, 𝜓(𝑡) < 𝑡 for 𝑡 > 0, 𝜓(𝑡) = 0 if and only if

𝑡 = 0 such that

𝑑 (𝐹 (𝑥, 𝑦) , 𝐹 (𝑢, V)) ≤
𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V)

2

− 𝜓(

𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V)
2

) ,

(61)

for each 𝑥, 𝑦, 𝑢, V ∈ 𝑋 with 𝑥 ⪰ 𝑢 and 𝑦 ⪯ V.
Suppose that either (a) or (b) of Theorem 16 holds.

If there exist 𝑥
0
, 𝑦
0
∈ 𝑋 such that 𝑥

0
⪯ 𝐹(𝑥

0
, 𝑦
0
) and 𝑦

0
⪰

𝐹(𝑦
0
, 𝑥
0
) then 𝐹 has a coupled fixed point.

Proof. From (61), we obtain

𝑑 (𝐹 (V, 𝑢) , 𝐹 (𝑦, 𝑥)) ≤
𝑑 (𝑦, V) + 𝑑 (𝑥, 𝑢)

2

− 𝜓(

𝑑 (𝑦, V) + 𝑑 (𝑥, 𝑢)
2

) .

(62)

Adding (61) and (62), we obtain inequality (60). Hence the
conclusion follows from Corollary 22.

Remark 24. Corollary 23 is another version of Theorem 4
with different 𝜓.

Corollary 25. Let (𝑋, ⪯) be a partially ordered set and suppose
that 𝑑 is a metric on 𝑋 such that (𝑋, 𝑑) is a complete metric
space. Let 𝐹 : 𝑋 × 𝑋 → 𝑋 be a mapping satisfying mixed
monotone property and suppose that there exists a continuous
map 𝜑 : 𝑅

+
→ 𝑅
+
, 𝜑(𝑡) < 𝑡 for 𝑡 > 0, 𝜑(0) = 0 such that

𝑑 (𝐹 (𝑥, 𝑦) , 𝐹 (𝑢, V)) + 𝑑 (𝐹 (𝑦, 𝑥) , 𝐹 (V, 𝑢))
2

≤ 𝜑(

𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V)
2

) ,

(63)

for each 𝑥, 𝑦, 𝑢, V ∈ 𝑋 with 𝑥 ⪰ 𝑢 and 𝑦 ⪯ V.
Suppose that either (a) or (b) of Theorem 16 holds.

If there exist 𝑥
0
, 𝑦
0
∈ 𝑋 such that 𝑥

0
⪯ 𝐹(𝑥

0
, 𝑦
0
) and 𝑦

0
⪰

𝐹(𝑦
0
, 𝑥
0
) then 𝐹 has a coupled fixed point.

Proof. Bydefining𝑇 : (𝑅
+
)
6
→ 𝑅 in (9) as𝑇(𝑡

1
, . . . , 𝑡

6
) = 𝑡
1
−

𝜑(𝑡
2
), 𝑡
1
, 𝑡
2
, . . . , 𝑡

6
≥ 0, we obtain (63). Hence the conclusion

follows fromTheorem 16.

Corollary 26. Let (𝑋, ⪯) be a partially ordered set and suppose
that 𝑑 is a metric on 𝑋 such that (𝑋, 𝑑) is a complete metric
space. Let 𝐹 : 𝑋 × 𝑋 → 𝑋 be a mapping satisfying mixed
monotone property and suppose that there exists a continuous
map 𝜑 : 𝑅

+
→ 𝑅
+
, 𝜑(𝑡) < 𝑡 for 𝑡 > 0, 𝜑(0) = 0 such that

𝑑 (𝐹 (𝑥, 𝑦) , 𝐹 (𝑢, V)) ≤ 𝜑(
𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V)

2

) , (64)

for each 𝑥, 𝑦, 𝑢, V ∈ 𝑋 with 𝑥 ⪰ 𝑢 and 𝑦 ⪯ V.
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Suppose that either (a) or (b) of Theorem 16 holds.
If there exist 𝑥

0
, 𝑦
0
∈ 𝑋 such that 𝑥

0
⪯ 𝐹(𝑥

0
, 𝑦
0
) and 𝑦

0
⪰

𝐹(𝑦
0
, 𝑥
0
) then 𝐹 has a coupled fixed point.

Proof. From (64), we obtain

𝑑 (𝐹 (V, 𝑢) , 𝐹 (𝑦, 𝑥)) ≤
𝑑 (𝑦, V) + 𝑑 (𝑥, 𝑢)

2

− 𝜓(

𝑑 (𝑦, V) + 𝑑 (𝑥, 𝑢)
2

) .

(65)

Adding (64) and (65), we obtain inequality (63). Hence the
conclusion follows from Corollary 25.

Remark 27. In addition to the hypotheses of Corollary 26,
if 𝐹 satisfies (40), then 𝐹 has a unique coupled fixed point.
Further, if 𝑥

0
and 𝑦

0
are comparable, then 𝐹 has a unique

coupled fixed point (𝑥, 𝑦) and 𝑥 = 𝑦. The same is true in
respect of Corollaries 22, 23, and 25.

Remark 28. In view of Examples 11, 13, and 14, we obtain new
coupled fixed point results for mappings satisfying (7), the
implicit relations in Examples 13 and 14, respectively, by using
Theorem 16.

Remark 29. We obtain Theorem 3 as a corollary to Theo-
rem 16 by choosing 𝑇(𝑡

1
, 𝑡
2
, . . . , 𝑡

6
) = 𝑡
1
− 𝑘𝑡
2
, 0 ≤ 𝑘 < 1.

Example 30. Let 𝑋 = 𝑅
+
with the usual metric and usual

ordering. We define 𝑇 : 𝑅
+
→ 𝑅
+
by

𝑇 (𝑡
1
, . . . , 𝑡

6
) = 𝑡
1
− [𝑎𝑡
2
+ 𝑏𝑡
3
+ 𝑐𝑡
4
+ 𝑑𝑡
5
+ 𝑒𝑡
6
] ,

where 𝑎 = 2
3

, 𝑏 = 𝑐 = 𝑑 = 𝑒 =

1

18

.

(66)

Now we define 𝐹 : 𝑋 × 𝑋 → 𝑋 by

𝐹 (𝑥, 𝑦) =

{
{

{
{

{

𝑥 − 𝑦

2

, if 𝑥 ≥ 𝑦

0, otherwise.
(67)

Then 𝐹 satisfies mixed monotone property. There exists a
point (𝑥

0
, 𝑦
0
) = (0, 1) ∈ 𝑋 × 𝑋 such that 𝑥

0
⪯ 𝐹(𝑥

0
, 𝑦
0
) and

𝑦
0
⪰ 𝐹(𝑦

0
, 𝑥
0
). We now verify inequality (9) for 𝑥, 𝑦, 𝑢, V ∈ 𝑋

with 𝑥 ≥ 𝑢 and 𝑦 ≤ V in the following cases.

Case i. 𝑥 ≥ 𝑦 and 𝑢 ≥ V.
In this case, 𝐹(𝑥, 𝑦) = (𝑥 − 𝑦)/2, 𝐹(𝑢, V) = (𝑢 − V)/2,

𝐹(𝑦, 𝑥) = 0 and 𝐹(V, 𝑢) = 0.

Hence
𝑑 (𝐹 (𝑥, 𝑦) , 𝐹 (𝑢, V)) + 𝑑 (𝐹 (𝑦, 𝑥) , 𝐹 (V, 𝑢))

2

=

1

2

[

(𝑥 − 𝑢) + (V − 𝑦)
2

]

<

2

3

[

(𝑥 − 𝑢) + (𝑦 − V)
2

]

=

2

3

[

𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V)
2

] .

(68)

Case ii. 𝑥 ≥ 𝑦 and 𝑢 < V.
In this case, 𝐹(𝑥, 𝑦) = (𝑥 − 𝑦)/2, 𝐹(𝑢, V) = 0, 𝐹(𝑦, 𝑥) = 0

and 𝐹(V, 𝑢) = (V − 𝑢)/2.
The verification is similar as in Case i.

Case iii. 𝑥 < 𝑦 and 𝑢 ≥ V.
This case does not arise, for we have 𝑥 ≥ 𝑢 and 𝑦 ≤ V, and

hence 𝑥 ≥ 𝑢 ≥ V ≥ 𝑦 > 𝑥, which does not hold.
Case iv. 𝑥 < 𝑦 and 𝑢 < V.

In this case, 𝐹(𝑥, 𝑦) = 0, 𝐹(𝑢, V) = 0, 𝐹(𝑦, 𝑥) = (𝑦 − 𝑥)/2
and 𝐹(V, 𝑢) = (V − 𝑢)/2.

The verification is similar as in Case i.
From all the above cases, we get

𝑑 (𝐹 (𝑥, 𝑦) , 𝐹 (𝑢, V)) + 𝑑 (𝐹 (𝑦, 𝑥) , 𝐹 (V, 𝑢))
2

<

2

3

[

𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V)
2

]

< 𝑎

𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V)
2

+ 𝑏

𝑑 (𝑥, 𝐹 (𝑥, 𝑦)) + 𝑑 (𝑦, 𝐹 (𝑦, 𝑥))

2

+ 𝑐

𝑑 (𝑢, 𝐹 (𝑢, V)) + 𝑑 (V, 𝐹 (V, 𝑢))
2

+ 𝑑

𝑑 (𝑥, 𝐹 (𝑢, V)) + 𝑑 (𝑦, 𝐹 (V, 𝑢))
2

+ 𝑒

𝑑 (𝑢, 𝐹 (𝑥, 𝑦)) + 𝑑 (V, 𝐹 (𝑦, 𝑥))
2

.

(69)

Thus, 𝐹 satisfies inequality (9). Hence all the hypotheses
of Theorem 16 hold and (0,0) is the unique coupled fixed
point of 𝐹.

Here we observe that (2) fails to hold, for, at 𝑥 = 1, 𝑢 =
V = 𝑦 = 0, we have 𝑑(𝐹(𝑥, 𝑦), 𝐹(𝑢, V)) = 1/2 and (𝑑(𝑥, 𝑢) +
𝑑(𝑦, V))/2 = 1/2. Hence, Theorem 3 is not applicable.

Example 31. Let 𝑋 = [0, 1] with the usual metric and usual
ordering. Suppose that 𝜑 : 𝑅

+
→ 𝑅
+
be defined by

𝜑 (𝑡) =

{
{
{

{
{
{

{

3

4

𝑡, if 0 ≤ 𝑡 < 1

3

4

√𝑡, if 𝑡 ≥ 1.
(70)
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We now define 𝑇 : 𝑅
+
→ 𝑅
+
by

𝑇 (𝑡
1
, . . . , 𝑡

6
) = 𝑡
1
− 𝜑(max {𝑡

2
,

𝑡
3

2

, 𝑡
4
,

1

2

(𝑡
5
+ 𝑡
6
)}) .

(71)

Define 𝐹 : 𝑋 × 𝑋 → 𝑋 by

𝐹 (𝑥, 𝑦) =

{

{

{

𝑥
2
− 𝑦
2

2

, if 𝑥 ≥ 𝑦
0, otherwise.

(72)

Then 𝐹 satisfies mixed monotone property. There exists a
point (𝑥

0
, 𝑦
0
) = (0, 1) ∈ 𝑋 × 𝑋 such that 𝑥

0
⪯ 𝐹(𝑥

0
, 𝑦
0
) and

𝑦
0
⪰ 𝐹(𝑦

0
, 𝑥
0
). We now verify inequality (9) for 𝑥, 𝑦, 𝑢, V ∈ 𝑋

with 𝑥 ≥ 𝑢 and 𝑦 ≤ V in the following cases.

Case i. 𝑥 ≥ 𝑦 and 𝑢 ≥ V.
In this case,

𝐹 (𝑥, 𝑦) =

𝑥
2
− 𝑦
2

2

, 𝐹 (𝑢, V) =
𝑢
2
− V2

2

,

𝐹 (𝑦, 𝑥) = 0, 𝐹 (V, 𝑢) = 0.
(73)

Hence
𝑑 (𝐹 (𝑥, 𝑦) , 𝐹 (𝑢, V)) + 𝑑 (𝐹 (𝑦, 𝑥) , 𝐹 (V, 𝑢))

2

=

1

2













(𝑥
2
− 𝑦
2
) − (𝑢

2
− V2)

2













=

1

2

[

(𝑥
2
− 𝑢
2
) + (V2 − 𝑦2)
2

]

=

1

2

[

(𝑥 + 𝑢) (𝑥 − 𝑢) + (V + 𝑦) (V − 𝑦)
2

]

≤

1

2

[

2 (𝑥 − 𝑢) + 2 (V − 𝑦)
2

]

<

3

4

𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V)
2

.

(74)

Case ii. 𝑥 ≥ 𝑦 and 𝑢 < V.
In this case, 𝐹(𝑥, 𝑦) = (𝑥2 − 𝑦2) /2, 𝐹(𝑢, V) = 0, 𝐹(𝑦, 𝑥) =

0 and 𝐹(V, 𝑢) = (V2 − 𝑢2) /2.
The verification is similar as in Case i.

Case iii. 𝑥 < 𝑦 and 𝑢 ≥ V.
This case does not arise, for we have 𝑥 ≥ 𝑢 and 𝑦 ≤ V, and

hence 𝑥 ≥ 𝑢 ≥ V ≥ 𝑦 > 𝑥, which does not hold.
Case iv. 𝑥 < 𝑦 and 𝑢 < V.

In this case,

𝐹 (𝑥, 𝑦) = 0, 𝐹 (𝑢, V) = 0, 𝐹 (𝑦, 𝑥) =

𝑦
2
− 𝑥
2

2

,

𝐹 (V, 𝑢) =
V2 − 𝑢2

2

.

(75)

The verification is similar as in Case i.

From all the above cases, we get

𝑑 (𝐹 (𝑥, 𝑦) , 𝐹 (𝑢, V)) + 𝑑 (𝐹 (𝑦, 𝑥) , 𝐹 (V, 𝑢))
2

<

3

4

𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V)
2

≤ 𝜑(max{
𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V)

2

,

1

2

𝑑 (𝑥, 𝐹 (𝑥, 𝑦)) + 𝑑 (𝑦, 𝐹 (𝑦, 𝑥))

2

,

𝑑 (𝑢, 𝐹 (𝑢, V)) + 𝑑 (V, 𝐹 (V, 𝑢))
2

,

1

2

[

𝑑 (𝑥, 𝐹 (𝑢, V)) + 𝑑 (𝑦, 𝐹 (V, 𝑢))
2

+

𝑑 (𝑢, 𝐹 (𝑥, 𝑦)) + 𝑑 (V, 𝐹 (𝑦, 𝑥))
2

]}) .

(76)

Hence 𝐹 satisfies inequality (9). Hence all the hypotheses
of Theorem 16 hold and (0, 0) is the unique coupled fixed
point of 𝐹. Here we observe that 𝐹 satisfies the hypotheses
of Theorem 18 andTheorem 20 too.

Remark 32. There is another viewpoint of coupled fixed
points; that is, they can be viewed as fixed points of an oper-
ator on product spaces like what follows.

Let 𝐹 : 𝑋×𝑋 → 𝑋 have a coupled fixed point (𝑥, 𝑦), that
is, 𝐹(𝑥, 𝑦) = 𝑥 and 𝐹(𝑦, 𝑥) = 𝑦. We construct an operator
𝑆 : 𝑋 × 𝑋 → 𝑋 × 𝑋 as

𝑆 (𝑥, 𝑦) = (𝐹 (𝑥, 𝑦) , 𝐹 (𝑦, 𝑥)) . (77)

Then (𝑥, 𝑦) is a coupled fixed point of𝐹 if and only if (𝑥, 𝑦) is a
fixed point of 𝑆. But this viewpoint may not be helpful always,
a case being the present one. It is not immediately possible to
find the characterization of the operator 𝑆 from the implicit
inequality satisfied by 𝐹. This justifies the study of coupled
fixed points as it is traditionally done without an appeal to
the product space.

4. An Application

In this section, we establish the existence of solution for an
integral equation as an application to the above results in
Section 3.

Consider the integral equation

𝑥 (𝑡) = ∫

𝑏

𝑎

(𝐾
1
(𝑡, 𝑠) + 𝐾

2
(𝑡, 𝑠)) (𝑓 (𝑠, 𝑥 (𝑠)) + 𝑔 (𝑠, 𝑥 (𝑠))) 𝑑𝑠

+ ℎ (𝑡) , 𝑡 ∈ 𝐼 = [𝑎, 𝑏] .

(78)
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Assumption A. Suppose that𝐾
1
, 𝐾
2
∈ 𝐶(𝐼×𝐼, 𝑅),𝑓, 𝑔 ∈ 𝐶(𝐼×

𝑅, 𝑅) and ℎ ∈ 𝐶(𝐼, 𝑅) satisfy the following assumptions:

(i) 𝐾
1
(𝑡, 𝑠) ≥ 0, 𝐾

2
(𝑡, 𝑠) ≤ 0 for all 𝑡, 𝑠 ∈ [𝑎, 𝑏];

(ii) there exist 𝜆, 𝜇 > 0 and a nondecreasing mapping 𝜃 :
𝑅
+
→ 𝑅
+
such that, for all 𝑥, 𝑦 ∈ 𝐼, 𝑥 ≥ 𝑦,

0 ≤ 𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦) ≤ 𝜆𝜃 (𝑥 − 𝑦) ,

−𝜇𝜃 (𝑥 − 𝑦) ≤ 𝑔 (𝑡, 𝑥) − 𝑔 (𝑡, 𝑦) ≤ 0.

(79)

(iii) there exists 𝜑 : 𝑅
+
→ 𝑅
+
, 𝜑(𝑡) < 𝑡 for 𝑡 > 0 such that

𝜃(𝑡) = 𝜑(𝑡/2) for all 𝑡 ≥ 0;

(iv) max{𝜆, 𝜇}sup
𝑡∈𝐼
∫

𝑏

𝑎
(𝐾
1
(𝑡, 𝑠) − 𝐾

2
(𝑡, 𝑠))𝑑𝑠 ≤ 1/2.

As an example for the existence of mappings satisfying
(iii), we can consider the following.

For 𝜃(𝑥) = 𝑥2/2(𝑥 + 2), there exists 𝜑, 𝜑(𝑥) = 𝑥2/(𝑥 + 1)
such that 𝜃 (𝑥) = 𝜑 (𝑥/2), 𝜑(𝑥) < 𝑥 for 𝑥 > 0.

Definition 33. An element (𝛼, 𝛽) ∈ 𝐶(𝐼, 𝑅) × 𝐶(𝐼, 𝑅) is called
a coupled lower and upper solution of the integral equation
(78), if 𝛼(𝑡) ≤ 𝛽(𝑡) for each 𝑡 ∈ 𝐼 and

𝛼 (𝑡) ≤ ∫

𝑏

𝑎

𝐾
1
(𝑡, 𝑠) (𝑓 (𝑠, 𝛼 (𝑠)) + 𝑔 (𝑠, 𝛽 (𝑠))) 𝑑𝑠

+ ∫

𝑏

𝑎

𝐾
2
(𝑡, 𝑠) (𝑓 (𝑠, 𝛽 (𝑠)) + 𝑔 (𝑠, 𝛼 (𝑠))) 𝑑𝑠

+ ℎ (𝑡) ,

𝛽 (𝑡) ≥ ∫

𝑏

𝑎

𝐾
1
(𝑡, 𝑠) (𝑓 (𝑠, 𝛽 (𝑠)) + 𝑔 (𝑠, 𝛼 (𝑠))) 𝑑𝑠

+ ∫

𝑏

𝑎

𝐾
2
(𝑡, 𝑠) (𝑓 (𝑠, 𝛼 (𝑠)) + 𝑔 (𝑠, 𝛽 (𝑠))) 𝑑𝑠

+ ℎ (𝑡) ,

(80)

for each 𝑡 ∈ 𝐼 = [𝑎, 𝑏].

Theorem 34. Consider the integral equation (78) with
𝐾
1
, 𝐾
2
∈ 𝐶(𝐼 × 𝐼, 𝑅), 𝑓, 𝑔 ∈ 𝐶(𝐼 × 𝑅, 𝑅) and ℎ ∈ 𝐶(𝐼, 𝑅) and

suppose that Assumption A holds. If the integral equation (78)
has a coupled lower and upper solution, then it has a unique
solution in 𝐶(𝐼, 𝑅).

Proof. Let𝑋 = 𝐶(𝐼, 𝑅). Define an ordering on𝑋 as follows:

𝑥 ⪯ 𝑦 ⇐⇒ 𝑥 (𝑡) ≤ 𝑦 (𝑡) , ∀𝑡 ∈ [𝑎, 𝑏] , 𝑥, 𝑦 ∈ 𝐶 (𝐼, 𝑅) .

(81)

With this relation,𝑋 is a partially ordered set. Define ametric
𝑑 on𝑋 by

𝑑 (𝑥, 𝑦) = sup
𝑡∈𝐼





𝑥 (𝑡) − 𝑦 (𝑡)





, 𝑥, 𝑦 ∈ 𝐶 (𝐼, 𝑅) . (82)

Then (𝑋, 𝑑) is a complete metric space.

Suppose that {𝑢
𝑛
} is a nondecreasing sequence in𝑋which

converges to 𝑢 in𝑋. Then we have

𝑢
1
(𝑡) ≤ 𝑢

2
(𝑡) ≤ ⋅ ⋅ ⋅ ≤ 𝑢

𝑛
(𝑡) ≤ ⋅ ⋅ ⋅ , ∀𝑡 ∈ 𝐼. (83)

Therefore {𝑢
𝑛
(𝑡)} is a nondecreasing sequence of real numbers

and converges to 𝑢(𝑡). Hence 𝑢
𝑛
(𝑡) ≤ 𝑢(𝑡) for all 𝑡 ∈ 𝐼 and

𝑛 = 1, 2, 3, . . . so that 𝑢
𝑛
≤ 𝑢 for all 𝑛.

Similarly, it is easy to see that if {V
𝑛
} is a nonincreasing

sequence in𝑋 that converges to V ∈ 𝑋 then V ≤ V
𝑛
for all 𝑛.

Define 𝐹 : 𝑋 × 𝑋 → 𝑋 by

𝐹 (𝑥, 𝑦) (𝑡) = ∫

𝑏

𝑎

𝐾
1
(𝑡, 𝑠) (𝑓 (𝑠, 𝑥 (𝑠)) + 𝑔 (𝑠, 𝑦 (𝑠))) 𝑑𝑠

+ ∫

𝑏

𝑎

𝐾
2
(𝑡, 𝑠) (𝑓 (𝑠, 𝑦 (𝑠)) + 𝑔 (𝑠, 𝑥 (𝑠))) 𝑑𝑠

+ ℎ (𝑡) , ∀𝑡 ∈ 𝐼.

(84)

Now we show that 𝐹 satisfies mixed monotone property.
Let 𝑥
1
, 𝑥
2
∈ 𝑋, 𝑦 ∈ 𝑋 with 𝑥

1
⪯ 𝑥
2
. That is, 𝑥

1
(𝑡) ≤ 𝑥

2
(𝑡)

for all 𝑡 ∈ 𝐼. Then we have

𝐹 (𝑥
1
, 𝑦) (𝑡) − 𝐹

2
(𝑥
2
, 𝑦) (𝑡)

= ∫

𝑏

𝑎

𝐾
1
(𝑡, 𝑠) (𝑓 (𝑠, 𝑥

1
(𝑠)) + 𝑔 (𝑠, 𝑦 (𝑠))) 𝑑𝑠

+ ∫

𝑏

𝑎

𝐾
2
(𝑡, 𝑠) (𝑓 (𝑠, 𝑦 (𝑠)) + 𝑔 (𝑠, 𝑥

1
(𝑠))) 𝑑𝑠

− ∫

𝑏

𝑎

𝐾
1
(𝑡, 𝑠) (𝑓 (𝑠, 𝑥

2
(𝑠)) + 𝑔 (𝑠, 𝑦 (𝑠))) 𝑑𝑠

+ ∫

𝑏

𝑎

𝐾
2
(𝑡, 𝑠) (𝑓 (𝑠, 𝑦 (𝑠)) + 𝑔 (𝑠, 𝑥

2
(𝑠))) 𝑑𝑠

= ∫

𝑏

𝑎

𝐾
1
(𝑡, 𝑠) (𝑓 (𝑠, 𝑥

1
(𝑠)) − 𝑓 (𝑠, 𝑥

2
(𝑠))) 𝑑𝑠

+ ∫

𝑏

𝑎

𝐾
2
(𝑡, 𝑠) (𝑔 (𝑠, 𝑥

1
(𝑠)) − 𝑔 (𝑠, 𝑥

2
(𝑠))) 𝑑𝑠

≤ 0, by Assumption A.

(85)

Hence 𝐹(𝑥
1
, 𝑦)(𝑡) ≤ 𝐹(𝑥

2
, 𝑦)(𝑡) for all 𝑡 ∈ 𝐼. That is, 𝐹(𝑥

1
, 𝑦) ⪯

𝐹(𝑥
2
, 𝑦).
Now let 𝑦

1
⪰ 𝑦
2
. That is, 𝑦

1
(𝑡) ≥ 𝑦

2
(𝑡) for all 𝑡 ∈ 𝐼. Then

we have

𝐹 (𝑥, 𝑦
1
) (𝑡) − 𝐹

2
(𝑥, 𝑦
2
) (𝑡)

= ∫

𝑏

𝑎

𝐾
1
(𝑡, 𝑠) (𝑓 (𝑠, 𝑥 (𝑠)) + 𝑔 (𝑠, 𝑦

1
(𝑠))) 𝑑𝑠

+ ∫

𝑏

𝑎

𝐾
2
(𝑡, 𝑠) (𝑓 (𝑠, 𝑦

1
(𝑠)) + 𝑔 (𝑠, 𝑥 (𝑠))) 𝑑𝑠

− ∫

𝑏

𝑎

𝐾
1
(𝑡, 𝑠) (𝑓 (𝑠, 𝑥 (𝑠)) + 𝑔 (𝑠, 𝑦

2
(𝑠))) 𝑑𝑠
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+ ∫

𝑏

𝑎

𝐾
2
(𝑡, 𝑠) (𝑓 (𝑠, 𝑦

2
(𝑠)) + 𝑔 (𝑠, 𝑥 (𝑠))) 𝑑𝑠

= ∫

𝑏

𝑎

𝐾
1
(𝑡, 𝑠) (𝑔 (𝑠, 𝑦

1
(𝑠)) − 𝑔 (𝑠, 𝑦

2
(𝑠))) 𝑑𝑠

+ ∫

𝑏

𝑎

𝐾
2
(𝑡, 𝑠) (𝑓 (𝑠, 𝑦

1
(𝑠)) − 𝑓 (𝑠, 𝑦

2
(𝑠))) 𝑑𝑠

≤ 0, by Assumption A.
(86)

Hence𝐹(𝑥, 𝑦
1
)(𝑡) ≤ 𝐹(𝑥, 𝑦

2
)(𝑡) for all 𝑡 ∈ 𝐼.That is,𝐹(𝑥, 𝑦

1
) ⪯

𝐹(𝑥, 𝑦
2
). Thus 𝐹 satisfies mixed monotone property.

Now, we show that inequality (60) is satisfied. Let 𝑥 ⪰ 𝑢
and 𝑦 ⪯ V; that is, 𝑥(𝑡) ≥ 𝑢(𝑡) and 𝑦(𝑡) ≤ V(𝑡). Then, we have

𝑑 (𝐹 (𝑥, 𝑦) , 𝐹 (𝑢, V))

= sup
𝑡∈𝐼





𝐹 (𝑥, 𝑦) (𝑡) − 𝐹 (𝑢, V) (𝑡)



= sup
𝑡∈𝐼











(∫

𝑏

𝑎

𝐾
1
(𝑡, 𝑠) (𝑓 (𝑠, 𝑥 (𝑠)) + 𝑔 (𝑠, 𝑦 (𝑠))) 𝑑𝑠

+∫

𝑏

𝑎

𝐾
2
(𝑡, 𝑠) (𝑓 (𝑠, 𝑦 (𝑠)) + 𝑔 (𝑠, 𝑥 (𝑠))) 𝑑𝑠)

− (∫

𝑏

𝑎

𝐾
1
(𝑡, 𝑠) (𝑓 (𝑠, 𝑢 (𝑠)) + 𝑔 (𝑠, V (𝑠))) 𝑑𝑠

+∫

𝑏

𝑎

𝐾
2
(𝑡, 𝑠) (𝑓 (𝑠, V (𝑠)) + 𝑔 (𝑠, 𝑢 (𝑠))) 𝑑𝑠)











= sup
𝑡∈𝐼











∫

𝑏

𝑎

𝐾
1
(𝑡, 𝑠)

× [(𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑢 (𝑠)))

+ (𝑔 (𝑠, 𝑦 (𝑠)) − 𝑔 (𝑠, V (𝑠)))] 𝑑𝑠

+ ∫

𝑏

𝑎

𝐾
2
(𝑡, 𝑠)

× [(𝑓 (𝑠, 𝑦 (𝑠)) − 𝑓 (𝑠, V (𝑠)))

+ (𝑔 (𝑠, 𝑥 (𝑠)) − 𝑔 (𝑠, 𝑢 (𝑠)))] 𝑑𝑠











= sup
𝑡∈𝐼











∫

𝑏

𝑎

𝐾
1
(𝑡, 𝑠)

× [(𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑢 (𝑠)))

− (𝑔 (𝑠, V (𝑠)) − 𝑔 (𝑠, 𝑦 (𝑠)))] 𝑑𝑠

− ∫

𝑏

𝑎

𝐾
2
(𝑡, 𝑠)

× [(𝑓 (𝑠, V (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠)))

− (𝑔 (𝑠, 𝑥 (𝑠)) − 𝑔 (𝑠, 𝑢 (𝑠)))] 𝑑𝑠











≤ sup
𝑡∈𝐼











∫

𝑏

𝑎

𝐾
1
(𝑡, 𝑠)

× [𝜆𝜃 (𝑥 (𝑠) − 𝑢 (𝑠))

+ 𝜇𝜃 (V (𝑠) − 𝑦 (𝑠))] 𝑑𝑠

− ∫

𝑏

𝑎

𝐾
2
(𝑡, 𝑠) [𝜆𝜃 (V (𝑠) − 𝑦 (𝑠))

+ 𝜇𝜃 (𝑥 (𝑠) − 𝑢 (𝑠))] 𝑑𝑠











≤ max {𝜆, 𝜇}

× sup
𝑡∈𝐼

∫

𝑏

𝑎

(𝐾
1
(𝑡, 𝑠) − 𝐾

2
(𝑡, 𝑠))

× (𝜃 ((𝑥 (𝑠) − 𝑢 (𝑠))) + 𝜃 (V (𝑠) − 𝑦 (𝑠)))

≤ max {𝜆, 𝜇}

× (sup
𝑡∈𝐼

∫

𝑏

𝑎

(𝐾
1
(𝑡, 𝑠) − 𝐾

2
(𝑡, 𝑠)))

× (𝜃 (𝑑 (𝑥, 𝑢)) + 𝜃 (𝑑 (𝑦, V)))

≤

1

2

[𝜃 (𝑑 (𝑥, 𝑢)) + 𝜃 (𝑑 (𝑦, V))]

≤ 𝜃 (𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V))

= 𝜑(

𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V)
2

) , by Assumption A (iii) .

(87)

Therefore, for 𝑥 ⪰ 𝑢 and 𝑦 ⪯ V, we have

𝑑 (𝐹 (𝑥, 𝑦) , 𝐹 (𝑢, V)) ≤ 𝜑(
𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V)

2

) . (88)

Let (𝛼, 𝛽) be lower and upper solution of the integral
equation (78); then we have 𝛼(𝑡) ≤ 𝛽(𝑡) and 𝛼(𝑡) ≤ 𝐹(𝛼, 𝛽)(𝑡)
and 𝛽(𝑡) ≥ 𝐹(𝛽, 𝛼)(𝑡) for all 𝑡 ∈ 𝐼. Hence, 𝛼 ≤ 𝛽, 𝛼 ≤ 𝐹(𝛼, 𝛽)
and 𝛽 ≥ 𝐹(𝛽, 𝛼).

Thus 𝐹 satisfies all the hypotheses of Corollary 22 and
hence 𝐹 has a coupled fixed point.

Also, with the partial ordering ⪯ on𝑋 × 𝑋 defined by

(𝑥, 𝑦) ⪯ (𝑢, V) ⇐⇒ 𝑥 (𝑡) ≤ 𝑢 (𝑡) ,

𝑦 (𝑡) ≥ V (𝑡) , ∀𝑡 ∈ 𝐼,
(89)

we have (max{𝑥, 𝑢},min{𝑦, V}) ∈ 𝑋 × 𝑋 comparable with
(𝑥, 𝑦) and (𝑢, V) for each (𝑥, 𝑦), (𝑢, V) ∈ 𝑋 × 𝑋.

Thus 𝐹 also satisfies condition (40). Hence 𝐹 has a unique
coupled fixed point (𝑥, 𝑦) (say).
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Since 𝛼 and 𝛽 are comparable, by Theorem 18, it follows
that 𝑥 = 𝑦. Hence

𝑥 (𝑡)

= 𝐹 (𝑥, 𝑥) (𝑡)

= ∫

𝑏

𝑎

𝐾
1
(𝑡, 𝑠) (𝑓 (𝑠, 𝑥 (𝑠)) + 𝑔 (𝑠, 𝑥 (𝑠))) 𝑑𝑠

+ ∫

𝑏

𝑎

𝐾
2
(𝑡, 𝑠) (𝑓 (𝑠, 𝑥 (𝑠)) + 𝑔 (𝑠, 𝑥 (𝑠))) 𝑑𝑠 + ℎ (𝑡)

= ∫

𝑏

𝑎

(𝐾
1
(𝑡, 𝑠) + 𝐾

2
(𝑡, 𝑠)) (𝑓 (𝑠, 𝑥 (𝑠)) + 𝑔 (𝑠, 𝑥 (𝑠))) 𝑑𝑠

+ ℎ (𝑡) .

(90)

Hence𝑥(𝑡) is the unique solution of the integral equation (78).

The following is an example as an illustration of Theo-
rem 34.

Example 35. Let 𝐼 = [0, 1]. Let us now consider the integral
equation

𝑥 (𝑡) = −

1

6

∫

1

0

𝑠 (𝑡 + 𝑠) (

𝑥

8

𝑥 (𝑠) +

𝑠

4 (1 + 𝑥
2
(𝑠))

) 𝑑𝑠

+ (𝑎𝑡 + 𝑏) , 𝑡 ∈ 𝐼,

(91)

where 𝑎 = 145/288+(log 5) /2−(log 2) /16 and 𝑏 = 65/384−
Tan−1 (1/2).

We transform this equation into Fredholm integral equa-
tion of the form (78). That is,

𝑥 (𝑡) = ∫

𝑏

𝑎

(𝐾
1
(𝑡, 𝑠) + 𝐾

2
(𝑡, 𝑠))

× (𝑓 (𝑠, 𝑥 (𝑠)) + 𝑔 (𝑠, 𝑥 (𝑠))) 𝑑𝑠

+ ℎ (𝑡) , 𝑡 ∈ 𝐼 = [𝑎, 𝑏] ,

(92)

where𝐾
1
(𝑡, 𝑠),𝐾

2
(𝑡, 𝑠) : 𝐼×𝐼 → 𝑅,𝐾

1
(𝑡, 𝑠) = (1/6) (𝑡+𝑠) and

𝐾
2
(𝑡, 𝑠) = − (1/3) (𝑡 + 𝑠) for all 𝑡, 𝑠 ∈ [0, 1], 𝑓, 𝑔 : 𝐼 ×𝑋 → 𝑋,

𝑓(𝑡, 𝑥) = (𝑡/8) 𝑥 and 𝑔(𝑡, 𝑥) = 𝑡/4(1 + 𝑥2), 𝑡 ∈ 𝐼, 𝑥 ∈ 𝑋 and
ℎ : 𝐼 → 𝑅, ℎ(𝑡) = 𝑎𝑡 + 𝑏. Here 𝐾

1
(𝑡, 𝑠) ≥ 0 and 𝐾

2
(𝑡, 𝑠) ≤ 0

for all 𝑡, 𝑠 ∈ [0, 1]. It is easy to see that sup
𝑡∈𝐼
∫

1

0
(𝐾
1
(𝑡, 𝑠) −

𝐾
2
(𝑡, 𝑠))𝑑𝑠 = 3/4.
Write 𝑋 = 𝐶(𝐼). We define 𝜃, 𝜑 : 𝑅

+
→ 𝑅
+
by 𝜃(𝑡) = 𝑡/4

and 𝜑(𝑡) = 𝑡/2. We choose 𝜆 = 1/2 and 𝜇 = 3√3/8 so that

0 ≤ 𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦) ≤ 𝜆𝜃 (𝑥 − 𝑦) ,

−𝜇𝜃 (𝑥 − 𝑦) ≤ 𝑔 (𝑡, 𝑥) − 𝑔 (𝑡, 𝑦) ≤ 0,

(93)

hold. Also, max{𝜆, 𝜇}sup
𝑡∈𝐼
∫

𝑏

𝑎
(𝐾
1
(𝑡, 𝑠)−𝐾

2
(𝑡, 𝑠))𝑑𝑠 = 3√3/8⋅

3/4 = 9√3/32 < 1/2.

Hence the conditions (i) to (iv) of Assumption A hold.
Then (𝛼, 𝛽) with 𝛼(𝑡) = 𝑡/2 and 𝛽(𝑡) = 𝑡 is a coupled lower
and upper solution of the integral equation (78) and 𝑥(𝑡) =
𝑡/2 is the unique solution.
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