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The human pathogenic fungus Candida albicans is the predominant cause of both superficial and invasive forms of candidiasis.
C. albicans primarily infects immunocompromised individuals as a result of either immunodeficiency or intervention therapy,
which highlights the importance of host immune defences in preventing fungal infections. The host defence system utilises a
vast communication network of cells, proteins, and chemical signals distributed in blood and tissues, which constitute innate and
adaptive immunity. Over the last decade the identity of many key molecules mediating host defence against C. albicans has been
identified. This review will discuss how the host recognises this fungus, the events induced by fungal cells, and the host innate and
adaptive immune defences that ultimately resolve C. albicans infections during health.

1. Introduction

Current estimates indicate that there approximately 600,000
species of fungi on Earth [1]; however, only 0.1% (600
species) of these fungi are thought to be human pathogens
[2, 3]. These range from mild infections of the skin and
cutaneous tissues (e.g., dermatophytes, Malassezia species,
and Sporothrix schenckii) to invasive life-threatening sys-
temic infections (e.g., Candida species, Aspergillus fumigatus,
Cryptococcus neoformans, and Histoplasma capsulatum) [4].
However, fungal infections only really became recognised as
being of clinical importance in the second half of the 20th
century with the onset of the AIDS epidemic. Together with
advances in medical treatments such as cancer therapy and
allogeneic transplantation, there has been a dramatic increase
in the prevalence of fungal infections over the past three
decades.This is the combined result of reduction of the CD4+
lymphocyte population of the cell-mediated immune system
and the use of immunosuppressive intervention therapies.
This trend is likely to continue over the coming decades,
particularly as further improvements are made in healthcare
for immunocompromised patients.

The predisposition of certain patient groups to oppor-
tunistic fungal infections led to a notable increase in research
into pathogenic fungi, predominantly on Candida species,
Cryptococcus neoformans, and Aspergillus fumigatus [5]. This

resulted in the unravelling of many fundamental biological
processes that take place during host-fungal interactions,
particularly with regard to Candida species. Candida species
are one of themost common fungal pathogens of humans and
the causative agents of superficial and invasive candidiasis,
giving rise to severe morbidity and mortality in millions of
individuals worldwide. Vaginal candidiasis alone affects ∼
75% of women at least once during fertile age [6, 7], equating
to∼30million infection episodes per year.Candida infections
are also a common oral manifestation of human immunod-
eficiency virus (HIV) infection, with 50% of HIV+ patients
and 90% AIDS patients suffering from oral candidiasis [8–
10]. With ∼4 million cases of HIV per year, this equates to
∼2 million oral candidiasis cases. Candida species also cause
mucosal diseases in the edentulous and elderly individuals,
such as Candida-associated denture stomatitis. Furthermore,
depending on the study, Candida infections are also the
3rd or 4th most common hospital-acquired blood stream
infection, being more deadly than most bacterial infections
including Gram-negative septicaemias such as Enterococci
(Escherichia coli) and Pseudomonas spp. [11, 12]. Therefore,
Candida pathogens carry an immense health burden and
represent a major socioeconomic challenge for worldwide
communities.

The most common fungi endogenous to humans are
Candida species. The most abundant is Candida albicans,
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a polymorphic fungus that resides as a commensal ofmucosal
tissues in approximately 40–80% of individuals and is rep-
resented by a mixed strain population [13]. Epidemiological
and mycobiome studies reveal that other Candida species
also reside in mucosal tissues, including C. glabrata, C.
parapsilosis, C. tropicalis, and C. krusei [14–16], all of which
are also important opportunistic pathogens of humans [17].
Given that the majority of life-threatening systemic Candida
infections are acquired across the mucosae (predominantly
gut), it is of paramount importance to understand the basic
biologicalmechanisms that normally restrictCandida species
to mucosal surfaces. Therefore, understanding the mecha-
nisms involved in host-Candida interactions in bothmucosal
and systemic compartments is of fundamental importance,
particularly those involved in discriminating between the
commensal and pathogenic forms of Candida species and
in initiating immune responses. Given that C. albicans is
regarded as the most pathogenic Candida species, this review
will provide a brief overview ofC. albicans virulence followed
by a detailed analysis of how this fungus interacts with the
host immune system.

2. C. albicans Virulence and Pathogenicity

All pathogenic microorganisms have developed mechanisms
that allow successful colonisation or infection of the host
[18]. However, unlike bacteria, which often develop unam-
biguous ways of causing host infections, C. albicans has
more advanced mechanisms in order to cause disease and
overcome host defences. C. albicans is highly adapted to
humans as a commensal organism and, accordingly, has
developed an effective battery of strategies and factors that
are required primarily to colonise host tissues, but which
have potential to cause disease under suitable predisposing
conditions. Notably, transition from harmless commensal
to disease-causing pathogen is finely balanced and can be
attributable to the delicate interplay of an extensive reper-
toire of virulence determinants [19]. Therefore, C. albicans
has evolved to possess general attributes that contribute to
survival, fitness, and persistence within the host, as well as
specific virulence factors associated with adhesion, invasion,
cell damage, and induction/evasion of host responses [4, 19–
28]. However, the virulence factors expressed or required
by C. albicans to cause disease will vary depending on
the infection site (e.g., mucosal or systemic), the stage of
infection, and the nature of the host response. Althoughmany
factors have been suggested to be virulence attributes for C.
albicans, hypha and biofilm formation, cell wall-associated
adhesins, invasion, and damage induction are still thought to
be the most significant fungal processes [4, 21, 29–33].

Perhaps the most widely accepted virulence attribute
of C. albicans is hypha formation leading to invasion [34–
36]. However, the role of morphogenesis in C. albicans
virulence has been debated for many years [37]. The populist
view is that hyphal cells are invasive (and by extrapolation
more pathogenic) and that yeast cells are noninvasive (and,
therefore, less pathogenic or commensal in nature). In reality,
both yeast and hyphal cells contribute to C. albicans infection

of different organs; for example, filamentation is observed in
the kidney but less so in the spleen or liver during invasive
candidiasis [38]. Although there is no clear evidence which
morphology predominates during the commensal phase in
humans, the expression of hypha-associated genes is regularly
detected during asymptomatic carriage [39–43]. Thus, the
concept of fungal burdens with regard to hypha formation
and infection is important to keep in mind, but it should
be noted that hypha-associated genes are expressed by yeast
cells under certain conditions [44, 45]. Furthermore, the
expression of hypha-associated genes by C. albicans yeasts
colonising the murine gastrointestinal tract after removal of
the bacterial flora has been demonstrated [44, 46].

With the above precautions in mind, it is generally
accepted that hypha formation is required for full virulence in
C. albicans. As such, many of virulence factors that promote
C. albicans pathogenicity appear to be inextricably linked to
hypha formation (e.g., adhesion, biofilm formation, invasion,
and damage induction). Furthermore, wild-type C. albicans
strains unable to produce true hyphae or mutants lacking
either key regulators of hyphal development (e.g., efg1Δ,
ras1Δ, hgc1Δ, eedΔ, and ume6Δ) or hypha-associated adhesins
(e.g., als3Δ and hwp1Δ) exhibit strongly reduced adhesion to
host cells and are attenuated in virulence [24, 34–36, 47–
51]. Indeed, the transcription factor, Efg1, is thought to be an
important regulator of gastrointestinal colonisation [52, 53].

Notably, hypha formation, invasion, and damage induc-
tion are closely linked. Invasion of C. albicans into host
cells requires hyphae and appears to be mediated by two
key processes: induced endocytosis and active penetration
[34, 47, 54–58]. Induced endocytosis is hostdriven and only
hyphal cells appear to be endocytosed by host cells [34,
57]. Active penetration on the other hand is fungal-driven
and is mediated by hyphal extension and the production of
hypha-associated factors, including hydrolytic enzymes such
as secreted aspartic proteinases (e.g., Sap4-6) [21, 47, 55, 59].
However, although important, hypha formation is probably
not the only factor that contributes to tissue destruction.
Irrespectively, these processes will promote invasion and
subsequently the induction of damage to host cells. These are
just some examples of howC. albicans virulence attributes are
linked and contribute to fungal pathogenicity. The reader is
guided to the following reviews for more in-depth discus-
sion of the virulence factors that contribute to C. albicans
pathogenicity [4, 21–29, 32, 33, 60–62].

Given the serious morbidity and potentially life-
threatening infections C. albicans can cause, it is essential
that the host possesses mechanisms to recognise and
discriminate between the commensal and pathogenic states
of C. albicans in order to raise an appropriate and protective
host immune response. The remainder of this review
will concentrate on the host innate and adaptive defence
mechanisms that detect and control this fungal pathogen.

3. Innate Immune Recognition of Candida

Host immune recognition of Candida occurs via several
mechanisms comprising innate and adaptive immunity.
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Table 1: Fungal pattern recognition receptors.

PRR Location Recognition molecules Role in fungal response
TLRs

TLR1/2 Surface Zymosan/𝛽-glucans? Probably
TLR2 Surface Phospholipomannan; zymosan Yes
TLR2/6 Surface Zymosan/𝛽-glucans? Probably
TLR3 Endosomal dsRNA Possibly
TLR4 Surface/cytoplasmic 𝑂-linked mannan Yes
TLR9 Endosomal Unmethylated CpG fungal DNA Yes

C-type lectins
Dectin-1 Surface 𝛽-1,3 glucan; mannan; zymosan Yes
Dectin-2/3 Surface High mannose structures; 𝛼-mannan Yes
Mannose receptor Surface 𝑁-linked mannan, N-acetylglucosamine Yes
Mincle Surface 𝛼-Mannan Probably
DC-SIGN Surface High (N-linked) mannose structures Possibly
Galectins Cytoplasm/nucleus; extracellular 𝛽-1,2 mannosides (variety of complex N-glycans) Probably

NLRs
NLRP3 Cytoplasmic Variable (zymosan; 𝛽-glucan)? Yes
NLRC4 Cytoplasmic Variable (zymosan; 𝛽-glucan)? Yes

Table adapted from [63].

The adaptive immune system recognises specific antigenic
moieties, leading to the development of a targeted immune
response (see Section 5). In contrast, innate immune recog-
nition is nonspecific and broad and is the first line of
host defence against potentially dangerous microbes. These
nonspecific responses are immediately activated upon recog-
nition of a microbe in a preprogrammed fashion and play an
essential role in controlling fungal burdens and preventing
disease. Innate immunity comprises of a series of soluble
(complement) and cellular (neutrophil, macrophage) com-
ponents that act in concert to prevent the vast majority of
pathogens from establishing an invasive infection. Further,
it has become increasingly evident that these responses
function to activate adaptive immunity as well as acting
together with other homeostatic processes to provide further
protection.

Innate immune recognition of Candida occurs via the
recognition of pathogen-associated molecular patterns
(PAMPs). PAMPs are motifs or molecules that are common
between different types of fungi. Unlike antigens, individual
PAMPs are not specific to a single Candida species but
rather are shared between many different species and
fungal genera. These microbial PAMPs are recognised
by host germ-line encoded pattern recognition receptors
(PRRs) [64] and provide a preprogrammed mode of fungal
recognition, allowing for instant recognition of common
fungal components. Table 1 lists the current Candida PAMPs
and the PRRs that recognise them. The majority of fungal
PAMPs are cell wall associated and include 𝛽-glucans,
𝑁- and 𝑂-linked mannans, and phospholipomannans
[65]. These are recognised by three key PRR families:
toll-like receptors (TLRs), C-type lectin receptors (CLRs),
and nucleotide-binding domain leucine-rich receptors
(NLRs) [63, 65–70]. These PRRs are expressed either on

the surface, in endosomes or in the cytoplasm of host
cells, including dendritic cells, monocytes, macrophages,
polymorphonuclear leukocytes (PMNs), T cells, B cells,
and epithelial cells. Activation of these PRRs by PAMPs
leads to triggering of intracellular signalling pathways,
such as MAPK (mitogen-activated protein kinase) and
NF-𝜅B (nuclear factor kappa-light-chain-enhancer of
activated B cells) pathways, and ultimately to enhanced
transcription of amultitude of genes involved in host immune
defences, including chemokines, cytokines, inflammatory
mediators, and antimicrobial peptides. As such, PRRs are
critical mediators between innate and adaptive immune
responses.

3.1. Receptor Molecules in Candida Recognition. The human
genome encodes for ten TLR genes (TLR1–10) whilst the
murine genome encodes twelve (TLR1–9, 11–13). All TLRs are
characterized as type I transmembrane receptors possessing
an extracellular leucine-rich repeat domain that recognises
the target PAMP and a Toll/interleukin-1 receptor- (TIR-)
domain containing cytoplasmic domain that transmits the
activation signal, which has high similarity to the type 1
interleukin-1 (IL-1) receptor. The TLR family is an evolution-
arily conserved group of PRRs that respond to a variety of
bacterial, viral, and fungal PAMPs as well as some endoge-
nous factors released when host cells are damaged.The extra-
cellular domains of TLRs recognise a variety of microbial
PAMPs, including lipopolysaccharide (LPS), peptidoglycan,
proteins (including triacylated proteins and flagellin), and
modified nucleic acids (unmethylatedCpG richDNA, double
and single stranded RNA) [71–76].

3.1.1. TLR Recognition of Candida. A fundamental role for
TLRs in antifungal host defence was first discovered when
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Drosophila deficient in the Toll receptor were observed to
be highly susceptible to A. fumigatus infection [77]. As a
result, the vast majority of the initial antifungal immunity
research targeted how fungal cells were recognised. This led
to the identification of several PRRs involved in recognition
of different cell wall polysaccharides of fungi and C. albicans
in particular, including TLR2 (phospholipomannan), TLR4
(𝑂-linked mannan), and mannose receptor (MR) (𝑁-linked
mannan) [65, 66, 78]. Ultimately, these studies culminated
in the discovery of a new PRR, dectin-1 (dendritic cell-
associated C-type lectin-1), which recognises fungal 𝛽-1,3
glucan [79]. Notably, these fungal PRRs can function both
independently and in conjunction with one another. For
example, dectin-1 and TLR2 act synergistically to recognise
fungal yeasts, with dectin-1 inducing phagocytosis whilst
TLR2 induces cytokine production [80–82]. Dectin-1 also
synergises with TLR4 signalling [82]. In addition, TLR1 and
TLR6 form heterodimers with TLR2 [83] but do not appear
to play a major role in C. albicans recognition in a mouse
model of invasive candidiasis [84]. It appears that depending
on the coreceptor involved, coligation of TLR2 may either
enhance TLR2-dependent responses [85] or modulate its
PAMPs specificity as in the case with galectin-3 [86].

Although these are main receptors utilised by macropha-
ges and neutrophils to recognise C. albicans, other receptors
have also been identified including dectin-2 [87], mincle
(macrophage inducible CTL) [88], DC-SIGN (dendritic cell-
specific intercellular adhesion molecule-3-grabbing noninte-
grin) [89, 90], and galectin-3 [86]. The role of these PRRs
is currently not fully established; however, dectin-2 and
DC-SIGN are thought to play an important role in the
recognition of high mannose structures [91] and galectin-
3 in the recognition of 𝛽-1,2 mannosides [86]. Interestingly,
galectin-3 coimmunoprecipitates with dectin-1 [92], which
suggests that galectin-3 may facilitate interactions between
TLR2 and dectin-1 signalling. TLR recognition of other
medically important fungi have also been studied but are less
well characterised, although it appears that TLR3 recognises
A. fumigatus conidia and TLR4 recognises C. neoformans
glucuronoxylomannan, with TLR9 recognising A. fumigatus,
C. neoformans, and C. albicans [93].

3.1.2. TLR Signalling. PAMP recognition by TLRs results in
the activation of intracellular signalling pathways (Figure 1)
through interaction of the cytoplasmic TIR domains with
different adapter proteins: myeloid differentiation primary
response gene (88) (MyD88), MyD88-adapter-like (MAL),
TIR-domain containing adapter-inducing interferon-𝛽
(TRIF), and TRIF-related adaptor molecule (TRAM)
[71–76, 94–97]. This TLR-adapter interaction leads to the
activation of the IRAK (IL-1 receptor associated kinase)
proteins and TRAF6 (TNF receptor associated factor-6).
In turn, this leads to activation of the major signalling
pathways including NF-𝜅B, MAPK, and IRF (interferon
regulatory factor) pathways. MAPK activation comprises
three pathways: p38, JNK (c-Jun N-terminal kinase), and
ERK1/2 (extracellular signal-regulated kinase1/2). Ultimately,
signalling pathway induction leads to the activation and

nuclear localisation of transcription factors including NF-𝜅B,
AP-1 (activating protein 1), and IRF-3 and IRF-7.The outcome
of this activation cascade is to induce gene expression and
secretion of various proteins involved in immune defence
including cytokines, chemokines, antimicrobial peptides,
and other inflammatory mediators, all of which function
to trigger innate and adaptive immune responses. It should
be noted that the vast majority of studies defining the
TLR-mediated pathways have been performed using myeloid
or lymphoid cells, but detailed analysis of TLR-mediated
pathways in other cell types, and specifically epithelial cells,
may yet identify novel and unusual mechanisms of pathogen
(fungal) recognition and control at mucosal surfaces.

3.1.3. Role of TLRs during Candida Infection. Although mice
lacking the TLR signalling adapter protein MyD88 are sus-
ceptible to fungal infection [65, 98–100], the precise role of
individual TLR receptors in combating Candida infections
is less clear. This is probably due to differences in study
design, where different fungal species, morphotypes, and
routes of infection have been assessed [70]. Consequently,
studies using TLR knockout mice have revealed significant
differences in the putative roles of different TLRs in systemic
ormucosal immune responses against fungal infections [101].
For example, while some studies indicate that TLR2 and
TLR4 influence susceptibility to murine disseminated can-
didiasis [100, 102–104], not all studies support this assertion
[105, 106]. TLR7 may be required for fungal RNA recog-
nition in the autophagosome, which is required for IFN-𝛽
release and is associated with prolonged C. glabrata infection
[107]. TLR9 recognises C. albicansDNA (unmethylated CpG
sequences) resulting in cytokine production in dendritic cells
[108]; however, TLR9 knockout mice do not appear to be
more susceptible to C. albicans infection, despite producing
decreased levels of IL-12 and increased amounts of IL-
4 and IL-10 [100, 108–110]. Notably, specific TLRs (TLR2,
TLR4, TLR6, and TLR9) appear to harbour different roles
depending onwhich arm of the innate immune response they
engagewith, for example, promotion of adaptive responses by
facilitating antigen presentation in dendritic cells [111].

Several studies have associated common genetic variants
(polymorphisms) in TLR genes with susceptibility or predis-
position to systemic candidiasis or chronic mucocutaneous
candidiasis (CMC). These include polymorphisms in TLR1
(R80T, N248S, and S602I) [112, 113] and TLR3 (L412F) [114,
115]. Polymorphisms in TLR4 (D299G) and TLR2 (D753Q)
have also been identified as possible susceptibility markers
for systemic candidiasis [116] but these could not be sub-
stantiated in a larger study [113]. Currently, most of the
data available suggests a strong role for TLRs in antifungal
defence but identifying specific roles for each TLR has been
overshadowed by redundant signals induced by other PRRs
[112].

3.1.4. C-Type Lectin Receptors. C-type lectin receptors
(CLRs) are a superfamily of heterogeneous binding proteins
that are characterised by the presence of an extracellular
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Figure 1: Signal pathway activation byTLRs andCLRs. TLRs andCLRs activateMAPK andNF-𝜅B signal pathways to varying extents, thereby
allowing different innate immune responses to be generated. TLRs utilise TIR-domain containing adapter proteins such as MyD88, Mal,
TRAM, and TRIF. CLRs signal using ITAM domains within their cytoplasmic region (e.g., dectin-1) or associate with an ITAM-containing
transducing protein (e.g., dectin-2 with FcR𝛾). Dectin-1 utilises Src kinases and Syk kinase to activate a complex containing CARD9, MALT1,
and Bcl10 to activate the downstream signal pathways. Figure adapted from [63].

carbohydrate-recognition domain (CRD) or a C-type lectin-
like domain (CTLD) [117]. The role of CLRs in antifungal
immunity has been the subject of intense study in recent
years and several key CLRs have now been demonstrated
to display critical functions in Candida recognition, uptake,
and killing and also contribute to the initiation and/or
modulation of the immune response to fungi [65, 118, 119].
Currently, the key CTLs in Candida recognition appear to be
dectin-1, dectin-2, and MR.

CLRs signal through activation of ITAM/ITIM (immun-
oreceptor tyrosine-based activation/inhibition motif) cyto-
plasmic domains (Figure 1). This can be achieved via their
own cytoplasmic domain, as with dectin-1, or through use
of coreceptor cytoplasmic domains, for example, DAP12
(DNAX activation protein of 12 kDa) and FcR𝛾 (Fc receptor
gamma chain), as with dectin-2. CLR ligation leads to the
activation of different adaptors to those activated by TLRs,
predominantly Src family kinases such as Src, Lyn, and
Fyn. With regard to dectin-1, this leads to activation of
spleen tyrosine kinase (SYK) and the downstream activation
of the CARD9/Bcl10/MALT1 (caspase recruitment domain
family/B cell CLL-lymphoma 10/mucosa associated lymphoid
tissue lymphoma translocation gene 1) signalling complex.
Irrespective of the CLR pathways and adapters used, the
ultimate consequence is the activation of similar signalling
pathways as those activated by TLRs, predominantly NF-𝜅B
and MAPK.

3.1.5. Dectin-1. Dectin-1, (also known as CLEC7a) is the
main CLR identified as playing a major role in fungal

recognition by the host immune system [120] and is a type
II transmembrane protein that belongs to a subgroup of
CLRs called natural killer (NK) receptor-like CLRs. The
target ligands of dectin-1 are 𝛽-1,3 glucan polymers, which
comprise a major part (∼60%) of fungal cell walls. The
intracellular region of dectin-1 contains a modified ITAM
motif containing a single tyrosine residue instead of the
usual two (hence the terms hemITAM or hemi-ITAM).
Activation of the dectin-1 leads to phosphorylation of this
domain and phosphorylation of SYK and activation of the
Bcl10-CARD9-MALT1 complex as mentioned above. This
leads to activation of both the canonical and noncanon-
ical NF-𝜅B pathways [121] as well as nuclear factor of
activated T cells (NFAT) pathway [122]. Dectin-1 can also
induce signalling via Raf-1 in a SYK-dependent fashion [121]
and is associated with phospholipase C and A2 activation
[68].

One of the major functions of dectin-1 binding appears
to be the induction of phagocytosis [123]. However, a unique
feature of dectin-1 is its ability to be activated or suppressed
by its target ligand. To fully activate dectin-1, cells need to
be exposed to insoluble 𝛽-glucan particles. Notably, exposure
of dectin-1 to soluble 𝛽-glucan appears to block activation.
This seems to be due to the apparent need to form a “phago-
cytic synapse,” whereby phosphatases that normally suppress
ITAM motifs are accumulated. This exclusion subsequently
permits the phosphorylation of the intracellular hemITAM
motif [124], thereby enabling phagocytosis. Dectin-1 has
also been shown to synergise with both TLR2 and TLR4,
resulting in the induction of tumour necrosis factor (TNF)𝛼,
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IL-10, transforming growth factor (TGF)𝛽 and dendritic cell
maturation [125–127].

Given that 𝛽-1,3 glucan polymers are major constituents
of fungal cell walls and strongly immune activatory, dectin-
1 also plays a role in inducing host antifungal activity. This
could also possibly explain why some fungi have developed
surface structures to “mask” 𝛽-1,3 glucan from the immune
system. For instance,Histoplasma capsulatummasks its 𝛽-1,3
glucan with a layer 𝛼-1,3 glucan [128] and it seems that C.
albicans hyphae 𝛽-1,3 glucan is masked by layers of 𝑁- and
𝑂-linked mannoproteins to prevent detection by dectin-1.
However, in the yeast form ofC. albicans, although𝑁- and𝑂-
linked mannoproteins are present, the underlying 𝛽-glucan
layer can become exposed at the budding scar, allowing
recognition by dectin-1. Thus, it could be postulated that the
primary role of dectin-1 is in the recognition of yeast forms
of Candida. In addition, the 𝛽-glucan that is present in C.
albicans hyphal cell walls appears to be structurally different
to yeast 𝛽-glucan [129] and, thus, may not be as immune
activatory or recognisable by dectin-1.

Although some studies have failed to demonstrate dectin-
1 expression in epithelial cells from the gastrointestinal tract
[130] and the lung [131, 132], oral epithelial cells do express
dectin-1 [133, 134]. Interestingly, dectin-1 expression appears
to be downregulated in the presence of viable C. albicans cells
[134] and is unaffected by dectin-1 ligands [133, 135]. This
suggests that dectin-1 probably plays aminor role in epithelial
cell detection of C. albicans.

Studies using dectin-1 knockout mice have provided
mixed data sets with regard to systemic C. albicans infection
models, showing both no difference [136] and increased
mortality [137] depending on the study and the C. albicans
strain used. On the one hand, a role for dectin-1 is sup-
ported given that CARD9 knockout mice are susceptible
to systemic fungal infection [138] and that patients with
CARD9 primary immunodeficiency are susceptible to both
mucosal and systemic candidiasis [139]. On the other hand,
another study investigating the role of the common genetic
polymorphism in CARD9 (S12N) showed no role for CADR9
in systemic candidiasis, suggesting that the 𝛽-glucan recog-
nition pathway might be redundant in systemic immunity to
C. albicans [140]. Nevertheless, a recent study has identified
a potential role for dectin-1 in the maintenance of mucosal
health. Dectin-1−/−mice showed increased severity of disease
during induced colitis but this severity could be reversed by
the application of fluconazole to remove the fungal micro-
biota [141]. Histologically, extensive invasion by fungi of the
underlying tissue was observed that was not evident in wild-
type mice. Clinical data showed that a subgroup of ulcerative
colitis patients with particularly aggressive disease shows
a common single nucleotide polymorphism (rs2078178) in
dectin-1, potentially suggesting a requirement for a functional
dectin-1 receptor to maintain the mycobiota in a commensal
state [141]. However, the role of dectin-1 inmucosal infections
is far from clear as a recent study in mice indicated that
dectin-1 did not play a role in controlling gastrointestinal
colonisation of C. albicans [142]. Notably, in humans, a
stop codon mutation (Tyr238X) in dectin-1 is known to be

associated with an increased risk of developing mucocuta-
neous fungal infections with increased oral and gastrointesti-
nal colonisation and recurrent vulvovaginalCandida (RVVC)
infection [143, 144]. Another dectin-1 polymorphism (I223S)
has also been associated with susceptibility to oropharyngeal
candidiasis (OPC) in a West African cohort of HIV positive
patients [145].Therefore, although important, the precise role
of dectin-1 in the susceptibility to Candida infection is still
unclear and requires further investigation.

3.1.6. Dectin-2. Dectin-2 (also known as CLEC6a) is a type II
transmembrane protein but is activated differently to dectin-
1. Dectin-2 lacks an intracellular signalling domain [146]
and needs to dimerise with FcR𝛾, which does possess an
intracellular signalling domain, to transmit a signal [87]. In
myeloid cells and inflammatory monocytes, dectin-2 recog-
nises high mannose structures that are common to many
fungi and binds to hyphae with higher affinity than to yeast
[147, 148]. This may explain why dectin-2 deficient mice are
susceptible to C. albicans infection but, interestingly, not C.
neoformans [148, 149]. Dectin-2 may also detect 𝛼-mannosyl
linkages [150]. Dectin-2 can induce several cytokines and
chemokines through multiple signalling pathways, including
NF-𝜅B, MAPK, SYK, CARD9-Bcl10-Malt1, and PKC𝛿, and
can activate the NLRP3 (NOD-like receptor family, pyrin
domain containing 3) inflammasome and respiratory burst
[87, 151]. Recently, dectin-2 was shown to potentially play a
role in host defense against C. glabrata infections as dectin-
2−/− deficient mice were more susceptible to C. glabrata
infections, showing a defective fungal clearance in kidneys
[152].

3.1.7. Dectin-3. Dectin-3 (also called CLECsf8, MCL, or
CLEC4d) was recently identified and appears to form het-
erodimers with dectin-2 to recognise 𝛼-mannans on the
surface of C. albicans hyphae, leading to NF-𝜅B activation
[153]. Notably, dectin-3−/− mice were highly susceptible to C.
albicans infection. Compared with their respective homod-
imers, dectin-2/3 heterodimers bound 𝛼-mannans more
effectively, leading to potent inflammatory responses. This
suggests that different CLRs may form a variety of hetero-
and homodimers that may provide different sensitivity and
diversity for host cells to detect various fungal infections.

3.1.8. Mannose Receptor. TheMR (also known as CD206) is a
prototypical type I (group VI) transmembrane protein that is
predominantly expressed on macrophage and dendritic cells.
MR receptor binds several carbohydratemolecules, including
branched𝑁-linked mannans, N-acetylglucosamine, glucose,
and fucose [154].Thus,MR can recognisemany fungal, bacte-
rial, and viral pathogens. MR lacks conventional intracellular
signalling domains although ligation still induces a variety
of cellular responses, including signal pathway induction,
phagocytosis, promotion of antigen presentation to T cells,
and cytokine secretion [81, 154–158]. For example, the MR
is recruited to the phagosome after C. albicans ingestion
and activates intracellular signalling and cytokine production
[159].MRmay also be required for the induction of protective
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Th17 responses in C. albicans infection [158] but may inhibit
cytokine production in response to other fungi, for example,
Pneumocystis carinii [160]. Notably, MR deficiency does
not appear to confer susceptibility to C. albicans systemic
infection [161] like it does to C. neoformans [162], although
minor changes in fungal burdens can be observed [161]. In
oral epithelial cells, MR blocking does not alter the secretion
of IL-6, IL-8, and GM-CSF upon stimulation with Candida
cell wall components [135]. Currently, there is no definitive
role for MR in mucosal antifungal host defences.

3.1.9. Mincle. Mincle (also known as CLEC4e or CLECsf9)
is also a type II transmembrane protein that transmits its
signal after dimerisation with the FcR𝛾 adaptor protein [146].
Mincle is usually expressed in macrophages, monocytes,
neutrophils, myeloid dendritic cells, and some B cell subsets,
but not in plasmacytoid dendritic cells, T cells, and NK cells
[151]. Mincle predominantly binds carbohydrate structures
containing 𝛼-mannans [161, 163] and recognises C. albicans
[88, 164, 165], Malassezia spp. [163], and Fonsecaea pedrosoi,
the causative agent of chromoblastomycosis [166]. As with
dectin-2, mincle is not thought to be required for phagocyto-
sis [88] but does contribute to the induction of cytokines and
chemokines via NF-𝜅B, MAPK, SYK, CARD9-Bcl10-Mat1t,
and PKC𝛿 [151, 163]. Although mincle-induced responses
appear to beMyD88 independent, mincle may synergise with
TLRs to induce inflammatory cytokines and the respiratory
burst [167].

3.1.10. DC-SIGN. DC-SIGN (also known as CD209) is
another type II transmembrane receptor that is expressed
predominantly on dendritic cells andmacrophages. However,
the role of DC-SIGN in antifungal immunity is unclear
[119], although DC-SIGN does appear to recognise high
(𝑁-linked) mannose containing glycoproteins and induce
IL-6 production [89, 156]. Although the role of DC-SIGN
in the endocytosis and uptake of pathogens to promote
antigen presentation is well documented [155, 156], its role in
phagocytosis is questionable [89, 156].

3.1.11. Nod-Like Receptors (NLRs) and Inflammasomes. NLRs
are a family of intracellular PRRs characterized by leucine-
rich repeats and a nucleotide-binding domain that detect
PAMPs present in the cell cytoplasm. Like TLRs and CTLs,
NLRs recognise microbial products but they also recog-
nise host-derived danger signals or alarmins [168]. Cur-
rently, 23 human and 34 mouse NLRs have been identified
[169]. NLRs usually associate with two other proteins, ASC
(apoptosis-associated speck-like protein containing a CARD)
and procaspase-1 (procysteine-dependent aspartate-directed
protease 1) to form largemultimeric protein complexes called
the inflammasome. The main function of the inflammasome
is to convert procaspase-1 into active caspase-1, which leads
to the processing of immature pro-IL-1𝛽 and pro-IL-18
into mature IL-1𝛽 and IL-18 [170]. Although C. albicans
is not recognized by NLRC1 (NLR family CARD domain
containing protein 1) or NLRC2 [171], C. albicans is known
to activate inflammasomes incorporating NLRP3 (NACHT,

LRR, and PYD domains-containing protein 3) [172] and
NLRC4 [173], resulting in IL-1𝛽 production. Notably, NLRP3
is strongly expressed in nonkeratinizing epithelia such as the
oral cavity and oesophagus [174] suggesting a potential role of
NLRP3 in fungal recognition in oral epithelial cells, which is
supported by studies showing increased IL-1𝛽 and IL-18 levels
upon stimulationwithC. albicans [133, 175–178].Mice lacking
NLRP3 appear susceptible to candidiasis [179] whereas mice
lacking IL-1 receptor type 1 (IL-1RI), IL-18, or caspase-1
have contrasting susceptibility profiles to fungal infections
[180]. Notably, IL-1𝛽 (and IL-1𝛼) deficient mice demonstrate
increased mortality during disseminated candidiasis [181].
Recent reports have also identified a crucial role for NLRP3
together with TLR2 and dectin-1 in preventing dissemination
of C. albicans in a murine model of oral infection [182].
Consistent with a role forNLRP3 inmucosal protection [183],
defective NLRP3 activation increasesC. albicans colonisation
in the gut and exacerbates Crohn’s disease [184], and a length
polymorphism in intron 4 of the gene (CIAS1) that codes for
NLRP3 predisposes patients to RVVC [185]. Nevertheless, the
full extent of the functional roles for NLRs and inflamma-
somes in antifungal host defences is still not fully understood.

3.2. Soluble Molecules in Candida Recognition. The comple-
ment cascade plays an important role in host defence against
fungal pathogens and is rapidly activated in response to host
invasion by Candida [186–188]. Candida activates all three
knownpathways (classical, alternative, andmannose-binding
lectin (MBL)) with no one obvious pathway dominating the
response [189]. Given that the Candida cell surface is covered
with an abundance of mannoproteins, it is not surprising that
Candida pathogens are effective at activating the MBL path-
way,which appears important for opsonisation, phagocytosis,
and other complement functions [190, 191]. The interaction
between activated C3b and the complement receptor CR3 is
usually required for the uptake ofCandida cells by phagocytes
[192]. C. albicans cell wall proteins (e.g., Gpm1, Pra1, and
Gpd2) have the potential to bind complement components
such as Factor H, FHL-1, C4BP and plasminogen from
human plasma that interfere with phagocytic opsonisation
and uptake [186, 188, 193–198]. For instance, binding of Pra1
to factorH and FHL-1 probably comprises an evasion strategy
involving the inhibition of C3 cleavage into opsonic and
anaphylatoxic components, thereby preventing recognition
and uptake by phagocytes [199].

C5 is also important in Candida infections since mice
that lack functional C5 gene copies are susceptible to invasive
systemic infections [200–203]. C5 deficiency is associated
with increased production of proinflammatory cytokines
(TNF𝛼 and IL-6) and rapid fungal replication in organs
that can lead to cardiac failure [204, 205]. Activation of C5
leads to the formation of C5b, which subsequently triggers
the formation of the membrane attack complex (MAC).
Although deposition of MAC on the surface of C. albicans
does not result in fungicidal activity, probably as a result
of the thickness of the fungal cell wall, it may facilitate the
stimulation of phagocytes and subsequent release of terminal
complement components from these cells. Interestingly, as
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no effect on inflammation is detected in C3 deficient mice,
this may suggest a largely C3-independent processing of C5
in systemic C. albicans infection [206].

After phagocytosis, the oxidative burst is triggered which
leads to fungal killing, a process that can be blocked with
monoclonal antibodies to prevent C3b-CR3 interactions.
C3b-CR3 interactions also appear necessary for the inhibition
of hyphal growth and cytokine production by lymphocytes
[207].MBL has also been reported to directly inhibitCandida
growth [208] and enhancing TNF𝛼 release from Candida-
infected monocytes [209]. The anaphylatoxin C3a released
from C3 during complement activation may also have direct
antifungal activity, independent of its chemotactic activity
[210]. Together, these data indicate the importance of comple-
ment activation in host defence againstC. albicans infections.
However, formore in-depth information regarding the role of
complement inCandida infections, the reader is guided to the
following reviews [186, 188].

3.3. Cellular Responses to Candida

3.3.1. Neutrophils. Neutrophils are the major effector cell
of innate immunity and possess a dual role in antifun-
gal responses. First, they phagocytose and kill infecting
Candida cells (below) and, second, they indirectly medi-
ate mucosal protection via cross talk with epithelial cells
(addressed above). Neutrophils predominantly phagocytose
nonopsonised Candida via TLRs and CTLs and opsonised
Candida via CR3 and Fc receptor (FcR) [211]. Once phago-
cytosed, this leads to both intra- and extracellular killing of
Candida via oxidative and nitrosative mechanisms, although
fungicidal activity varies against different Candida spp. [45,
212, 213]. Intracellularly, preformed cytoplasmic granules
fuse with the phagosome but, unlike in macrophages, no
major pH modifications occur [214]. Neutrophil granules
contain antimicrobial proteins including defensins, lactofer-
rin, lysozyme, myeloperoxidase, and elastase amongst others
[215], which can also be released into the extracellular
environment.

Oxidative mechanisms are crucial for phagocytic killing
of Candida. Upon activation, neutrophils produce reactive
oxygen species (ROS) during the oxidative burst, which
requires assembly of the NADPH oxidase enzyme complex
in the cytoplasmic and phagosomal membrane [216]. First,
the superoxide radical is generated, which is then dismutated
to hydrogen peroxide, a strongly oxidative and damaging
molecule [217]. Next, myeloperoxidase utilises hydrogen
peroxide to generate hypochlorous acid, which is also a
highly oxidative molecule that reacts with organic amines to
form chloramines that have further antimicrobial properties
[211, 218]. Reactive nitrogen species (RNS) are also utilised
in the phagocytic killing of Candida [211]. Upon activation,
neutrophils express inducible nitric oxide synthase (iNOS),
which generates nitric oxide (NO) from arginine and oxygen.
NO is highly reactive and is transformed into peroxynitrite,
which in turn is reduced to nitrogen dioxide and a hydroxyl
radical. Since iNOS is localised intracellularly, the production
of RNS is restricted to the intracellular compartment [217].

Another more recently discovered mechanism of Candida
killing is the production of neutrophil extracellular traps
(NETs) [219, 220], which are formed during a unique process
of neutrophil cell death termed NETosis. In this process, the
neutrophil “explodes,” releasing a web of chromatin fibrils
coated with the contents of the neutrophil, such as serine
proteases, antimicrobial peptides (e.g., calprotectin), and
other microbicidal compounds.

Candida spp. are well adapted to survive the oxidative,
nitrosative, osmotic, and nutritional stresses encountered
during interactions with neutrophils. Multiple processes,
genes, and proteins are altered within the fungus in response
to the stresses.These include activation of signalling pathways
(e.g., the stress-activated protein kinase Hog1), utilisation of
alternative carbon and nitrogen sources and metabolic cycles
(e.g., glycolysis, glyoxylate, fatty acid, and amino acid), upreg-
ulation of transporters (e.g., oligopeptide, ammonium, and
iron), and detoxification of neutrophil oxidative/nitrosative
killing mechanisms (e.g., catalase, superoxide dismutases,
and nitric oxide dioxygenase). However, these details are
outside the scope of this review and the reader is guided
to recent reviews that focus on the Candida response to
neutrophils [211, 221].

3.3.2. Macrophages. Macrophages are able to act as phago-
cytic cells and also as antigen presenting cells capable of
activating T cells. Upon activation, macrophages differentiate
into two phenotypically and functionally diverse subsets,
M1 and M2 [222–224], which depends on the cytokine
milieu in which they are activated. The classical M1 pheno-
type is derived from exposure the T helper (Th)1 cytokine
IFN𝛾, whereas the alternatively activated M2 phenotype
is derived from exposure to Th2 cytokines, IL-4 and IL-
13. M1 macrophages are microbicidal and proinflammatory,
whilst M2 macrophages are involved in wound healing and
extracellular matrix remodelling.

Like neutrophils, macrophages predominantly recognise
and phagocytose nonopsonised Candida via TLRs and CTLs
and opsonised Candida via CR3 and FcR [211, 225]. However,
phagosome maturation in the macrophage is different to that
of neutrophils, in that macrophage phagosomes follow the
endocytic maturation pathway and develop into phagolyso-
somes with a characteristic acidic pH that promotes enzyme
activity, for example, cathepsin D [226]. M1 macrophages
utilise both oxidative and nitrosative killing mechanisms (as
described above for neutrophils) but predominantly synthe-
sise the RNS, NO, through the action of iNOS to directly
kill phagocytosed Candida. M1 macrophages also secrete
TNF𝛼 and the chemokines CXCL9 and CXCL10 [227]. These
chemokines are ligands for the CXCR3 receptor expressed
on Th1 cells and NK cells, thereby attracting these immune
cells to infection sites. M2 macrophages, on the other hand,
promote fungal persistence within the macrophage, provid-
ing a mechanism for immune evasion. M2 macrophages also
express higher levels of MR (CD206) resulting in increased
phagocytosis of Candida [228]. Concomitantly, the arginase-
1 (Arg1) gene is also increased in expression, which competes
with iNOS for the same substrate (arginine), thereby reducing
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NO levels [229]. This is further exacerbated by reduced
levels of TNF𝛼 production in M2 macrophages. As such,
macrophages play a critical role in host resistance to Candida
but this depends on the Candida strain interacting with the
macrophage [230].

Candida spp. likely utilise similar adaptions to survive
in macrophages as they do in neutrophils. C. albicans
and C. glabrata are known to alter metabolic requirements
by utilising alternative carbon sources and upregulating
enzymes required for gluconeogenesis, glyoxylate cycle, and
𝛽-oxidation of fatty acids and downregulating protein syn-
thesis and glycolysis [211, 225]. This includes production of
catalase and superoxide dismutases to detoxify extracellular
ROS [231] and secretion of flavohemoglobin enzymes to
combat intracellular RNS killing [232]. With regard to C.
albicans, intracellular trafficking also appears aberrant and
the fungus may inhibit both lysosomal acidification and NO
release [233]. For further details the reader is guided to recent
reviews that focus on the Candida response to macrophages
[225].

4. Nonimmune Responses to Candida

Candida spp. andC. albicans, in particular, are highly versatile
pathogens and have the ability to infect any site of the body.
Therefore, it will come as no surprise that several different
host cell types in multiple body compartments are capable of
recognising and responding toCandida. Also, given themany
different environmental conditions and circumstances under
which these host cells and tissues might encounter Candida,
they will mount an array of immune responses. The host
cells that recognise Candida broadly fall into two categories:
haemopoietic and nonhaemopoietic cells. Haemopoietic cells
include myeloid and lymphoid cells and these play a central
role in host defence against microbial infections. Thus, they
are key players in removing fungal pathogens from multiple
sites. Foremost are the neutrophils, which play a dominant
role in fungal clearance. However, both macrophages and
dendritic cells also have key roles, not just in directly
combating fungi but also in activating and informing sub-
sequent adaptive immune responses. Adaptive responses are
predominantly coordinated by CD4+ T helper cells and
with the recent discovery of new T helper phenotypes,
our understanding of how fungal infections are controlled
has expanded enormously (see Section 5). In addition, the
role of nonhaemopoietic cells and particularly epithelial
cells has also expanded rapidly in recent years. Apart from
maintaining barrier function at mucosal surfaces, the key
roles that epithelial cells appear to play in identifying fungal
pathogens and orchestrating protective immune responses
are now being elucidated.

4.1. Epithelial Cells and Immunity. Epithelial cells comprise
mucosal surfaces and are usually the first line of defence
against Candida pathogens. In the vast majority of cases
Candida infections are superficial and restricted to mucosal
surfaces, and it is only when mucosal surfaces are breached
(as in the case of disseminated infections) that systemic

immunity comes in to play. Until recently, though, it was
thought that the main role of epithelial cells was limited
to providing an anchorage point for colonisation and a
food source for Candida. However, recent studies have
dramatically changed our view of the importance of epithelial
cells in host-fungal interactions. Specifically, it has emerged
that one of the fundamental roles of epithelial cells appears
to be in targeted responses to C. albicans hyphae and the
subsequent discrimination between commensal/colonising
and invasive/pathogenic C. albicans [133, 134, 234, 235].

4.1.1. Epithelial Cell Detection of Candida. Being a commen-
sal eukaryotic microbe, the interactions between Candida
spp. and epithelial cells are likely to be numerous and
complex. Although several innate receptors for fungi have
been identified (above), there is debate as to how influential
these receptors are in epithelial recognition of and innate
responses to Candida and to microbes in general. TLRs are
known to be expressed by epithelial cells but their expression
profile depends on anatomical and cellular location [67,
177, 236–248]. However, epithelial TLRs are functionally
active and induce antimicrobial peptide responses [240, 243,
246, 249–251] and proinflammatory cytokines [241–243, 245,
251–260] when stimulated with different microbial ligands.
Notably, the majority of these studies have been performed
in intestinal, respiratory, or uterine epithelial cells. Less is
known regarding TLR activation of oral and vaginal epithelial
cells, with some studies demonstrating a lack of cytokine
induction by bacterial [240, 261] or fungal [133] agonists, even
though viable C. albicans cells are able to induce cytokines
[63, 262, 263]. In oral epithelial cells the predominant TLR
expressed in vivo are TLR1, TLR2, TLR4, andTLR8 [177, 246];
however, epithelial TLR4 does not appear to be activated by
LPS [133]. Furthermore, whilst heat killed C. albicans has
no apparent effect on epithelial TLR expression [177, 239],
viable C. albicans appears to downregulate all TLRs apart
from TLR2, which is marginally upregulated [134].

With regard to C. albicans, a role for epithelial TLRs is
both supported and refuted. For example, in oral epithelial
cells, recognition of yeast cells seems to be via conventional
fungal PAMPs (TLRs, CTLs), whereas recognition of hyphae
appears to be independent of these PAMPs (or at least
TLR2, TLR4, or dectin-1) [133]. Other conflicting studies
indicate a potential role for TLRs in recognition of several
Candida species; however, it appears that TLR recognition
(or involvement) is a secondary event that acts to induce
a protective or inflammatory epithelial response [177, 264].
With regard to A. fumigatus conidia, lung epithelial cell
recognition appears to require both TLR-dependent and
independent pathways, in that IL-8 production appears TLR-
independent [265]. Interestingly, recent studies indicate that
non-PRRs may also be involved in C. albicans recognition,
most notably Her2 (human epidermal growth factor receptor
2), a member of the epidermal growth factor receptor family
(EGFR/ErbB) [58]. In this instance, rather than acting as
a generic fungal PAMP, Her2 interacts with the hypha-
associated protein, Als3 (agglutinin-like sequence 3), which
then triggers the induced endocytosis of C. albicans.
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4.1.2. Epithelial Identification of “Pathogenic” Candida. One
of the most fundamental functions of the mucosal surfaces
and epithelial cells in particular is the ability to identify when
an opportunistic microbe such as C. albicans has become
dangerous or pathogenic.This ability to discriminate between
“commensal” and “pathogenic” states of any endogenous
microbe is essential to health. During mucosal infections,
C. albicans forms highly penetrative hyphae that invade and
damage tissue as well as inducing strong mucosal inflamma-
tory responses [133, 266]. These observations, together with
the fact that C. albicans strains unable to produce hyphae or
maintain hypha formation are noninvasive and avirulent in
mucosal models [34, 42, 47, 48, 267, 268], strongly indicate
that hypha formation plays key role in disease progression.
Therefore, it stands to reason that epithelia cells must possess
mechanisms that enable them to detect and respond strongly
to hyphae when necessary.

Epithelial cells are capable of rapidly detecting different
Candida species and C. albicans in its yeast or hyphal
form [133, 235]. Initial detection is independent of fungal
viability, indicating that activation of epithelial signalling is
the result of specific recognition of the fungus and not a
feature of invasion or damage induction. Transcript profiling
experiments and targeted proteomics indicate that viable
Candida strongly activates NF-𝜅B, phosphatidylinositide 3-
kinase (PI3K), and MAPK signalling pathways [133, 134] and
appears tailored to the hyphal form of the fungus (Figure 2).
In C. albicans, yeast cells activate NF-𝜅B and PI3K signalling
along with weak, transient activation of all three MAPK
pathways (p38, JNK, and ERK1/2) [133]. This drives the early
and brief activation of the transcription factor c-Jun via JNK
and ERK1/2 pathways. However, the presence of C. albicans
hyphae induces sustained NF-𝜅B and PI3K signalling along
with much stronger activation of MAPK signalling, resulting
in the activation of the transcription factor c-Fos via the p38
pathway. Hyphal presence also activates the MAPK phos-
phatase, MKP1 [133], which stabilises and regulates MAPK-
induced immune responses [269]. This combination of c-
Fos activation andMKP1 regulation appears to be specifically
associated with hypha formation and correlates with proin-
flammatory cytokine responses and cell damage [133, 235].
Interestingly, thisMAPK-p38/c-Fos pathway is only activated
by hypha-formingCandida species (C. albicans andC. dublin-
iensis), but not by non-hypha forming Candida species (C.
tropicalis, C. glabrata, C. parapsilosis, and C. krusei) [235].
Also, although vaginal epithelial cells show different initial
recognition characteristics and cytokine/chemokine profiles
to oral epithelial cells, the key components of the hyphal
response pathway are identical (p38/c-Fos), indicating a com-
monality in hypha-induced responses in different epithelial
cell types [234]. Notably, this hyphal response is highly
dependent on the fungal burden encountered by the epithelial
cell, indicating that a threshold level needs to be reached
prior to full activation [133]. Thus, this mechanism may
represent a “danger response” mechanism allowing epithelial
surfaces to remain quiescent in the presence of colonising C.
albicans (low burdens of yeast and/or hyphae) but permitting
a specific and strong response to potentially dangerous levels
of invasive hyphae common in disease pathologies. If so, this

mechanism may be critical to the host’s ability to identify
when this normally benign fungus has become pathogenic.

4.1.3. Epithelial Activation of Protective Innate Immunity. The
terminal stage of epithelial activation is the induction of an
effector immune response. Epithelial cells produce a variety
of cytokines and chemokines, but the precise combination
depends upon theCandida strain or species and the epithelial
cell type involved [63, 67, 263, 270–273]. For example,
infection of oral epithelial cells with C. albicans results in
the induction of the cytokines G-CSF, GM-CSF, IL-1𝛼, IL-1𝛽,
IL-6, and the chemokines RANTES and IL-8 [133, 175, 177,
263, 274–276]. For C. albicans, cytokine induction appears to
be associated with hypha formation, since those species or
strains that do not produce hyphae in culture conditions are
unable to produce strong effector responses [34, 48, 133, 235,
276, 277].

The secretion of epithelial proinflammatory cytokines
and chemokines in response to C. albicans will result in
the recruitment and activation of a variety of immune cells
including neutrophils. Interestingly, neutrophils appear to
protect against C. albicans infection indirectly via immuno-
logical cross talk with the epithelium [278]. This intriguing
mechanism was characterised in a reconstituted oral epithe-
lial model system and showed that neutrophils could protect
the epithelium from C. albicans induced cell injury via a
process that was independent of phagocytosis, neutrophil
transmigration, or physical neutrophil-epithelial cell contact
[177]. Notably, the addition of neutrophils to the C. albicans
infectionmodel strongly upregulated epithelial TLR4 expres-
sion, which was directly responsible for protection since both
C. albicans invasion and cell damage could be restored by
TLR4 blockade (antibody) or “knockdown” of TLR4 using
siRNA (short interfering RNA), even in the presence of
PMNs. Importantly, this work demonstrated that although
TLR4 was not required for the initial activation of epithelial
cells, epithelial TLR4 was required to mediate antifungal
protective responses in the presence of neutrophils.Themost
potent cytokines produced by neutrophils that induced this
protective TLR4-mediated response was TNF𝛼 [177], which
confirms the important role of this cytokine in host defence
against opportunistic fungal infections [279]. Furthermore,
in an in vitro model of esophageal candidiasis, coincubation
of neutrophils with C. albicans led to a significant upregu-
lation of 𝛽-defensin 2 and 3 in esophageal cells compared
with effects of neutrophils or C. albicans alone [280]. Thus,
increased PMN-dependent production of antimicrobial pep-
tides by epithelial cells could contribute to the protective
effect and further underlines the important role for PMNs in
clearance of experimental oral candidiasis [67].

However, neutrophils may not play an obvious protective
role in the vaginal lumen and, indeed, in humans, neutrophils
might even exacerbate vaginal disease [281]. The reasons
for this are as yet unknown but the triggers for epithelial
and neutrophil activation may be different in the vaginal
lumen, perhaps due to differences in the microenvironment
and heightened responsiveness to oestrogen. As a result,
neutrophils may not function as well in the vagina and thus
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Figure 2: Signalling and damage pathways activated by C. albicans hyphae. C. albicans hyphal cells, when in sufficient quantities, are
recognised by an unknown PRR mechanism that results in the activation of NF-𝜅B, MAPK, and PI3K pathways. MAPK signalling via p38
and ERK1/2 appears to discriminate between yeast and hyphal cells. Activation of p38 by hyphae leads to activation of the c-Fos transcription
factor, which, in conjunction with the p65/p50 NF-𝜅B heterodimers and PI3K/AKT results in upregulation of cytokine and inflammatory
mediator expression. Concurrently, activation of ERK1/2 signalling results in stabilisation of the MKP1 phosphatase, which deactivates p38
and JNK, hence acting as part of a negative feedback loop and preventing a potentially deleterious overreaction of the immune system.Damage
induced by hyphae appears to be mediated via JNK activation and prevented via the PI3K/AKT/mTor pathway. Figure adapted from [262]
and based on data from [48, 133, 134, 234, 235, 277].

cause more harm than good. In the oral cavity the triggers
may not be so dynamic and the neutrophils function more
efficiently and, as such, tend to be beneficial rather than
immunopathogenic (Paul Fidel, personal communication).

Other key epithelial responses include the production of
antimicrobial peptides such as 𝛽-defensins and cathelicidin
(LL-37) in response to C. albicans infection [282].These pep-
tides have direct candidacidal activity and play a significant
role in combating infections and invasion as well as initiating
other immune responses [283, 284]. However, it is still
somewhat unclear whether these peptides are induced after
direct recognition of C. albicans or in response to damage
caused by C. albicans. Other peptides, including S100A8/9
alarmins, are also produced, which act as key chemotactic
mediators and appear critical in recruiting neutrophils to
the vagina during C. albicans infections [285–287]. Matrix
metalloproteases are also produced, which play a role in
epithelium remodelling and barrier function [288]. Oral and
vaginal epithelial cells also appear to possess direct innate
antifungal activity via an annexin-A1 dependent mechanism
[289]. This fungistatic effect does not require live epithelial
cells and suggests that the uppermost surface epithelial layers
are able to naturally inhibit the growth and proliferation of
C. albicans at the mucosal surface [290, 291]. This may help
maintain C. albicans in the commensal state during health.

It is apparent that there is a significant amount of cross
talk between epithelial cells and other cells of the immune

system during Candida infections. This cross talk fulfills two
functions, acting to bothmaintain normal physiological con-
ditions when Candida are recognised as commensal organ-
isms and to initiate a protective immune response to clear
the fungi when recognised as pathogenic. The production
of cytokines and chemokines by epithelial cells in response
to fungal infection results in the recruitment and activation
of various different immune cells, including neutrophils,
monocyte/macrophages, dendritic cells, and T cells. This
leads to the generation of tailored immune responses with
the aim of clearing fungal infections via both the innate and
adaptive immune pathways (see below).

4.2. Endothelial Cells and Immunity. SystemicCandida infec-
tions pose a significant threat to health, particularly in
immunocompromised hosts. In order to gain access to
the host vasculature to facilitate dissemination, invading
Candida pathogens must cross the endothelial lining of the
blood vessels by passing from the abluminal to the luminal
surface. Once Candida cells enter the bloodstream they are
transported throughout the host where they accumulate in
the major organs and contribute to increased morbidity. The
endothelium is not merely a static physical barrier but func-
tions as an integral component of the innate immune system
that contributes to the host response to fungal pathogens.
Endothelial cells induce proinflammatory and procoagulant
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responses to Candida infection and are themselves targets
for immune suppression by fungal invaders. Endothelial cells
mount different responses to Candida pathogens depending
upon morphology and species.

C. albicans hyphae are endocytosed by endothelial cells
[292] via the interaction between host N-cadherin and
fungal Als3 protein [56, 57], often resulting in endothelial
cell injury or death [293, 294]. In response to C. albicans
infection, endothelial cells express mRNAs encoding for E-
selectin, ICAM-1, VCAM-1, IL-6, IL-8, MCP-1, and cox2
[295]. Expression was dependent upon endocytosis and
fungal viability, since cytochalasin D blocked chemokine
induction and heat killed C. albicans had no stimulatory
effect. Infection with a mutant strain of C. albicans (V6)
that was unable to germinate failed to induce the same
response, as did infection with C. tropicalis or C. glabrata,
suggesting that endothelial cells can distinguish between
infecting Candida species as well as between morphological
forms [295]. Other studies show that endothelial cells also
produce TNF𝛼, which stimulates the production of IL-
8, E-selectin, ICAM-1, VCAM-1, IL-1𝛼, and IL-1𝛽 [296].
These proinflammatory cytokines and adhesion molecules
act to recruit leukocytes to the site of vascular invasion,
which help clear the fungus. Notably, endothelial cells
express ICAM-1 independently from TNF𝛼, IL-1𝛼, and IL-
1𝛽, indicating that the induction of distinct proinflammatory
responses most likely occurs through different mechanisms
[296].

Genome-wide responses to C. albicans infection are both
varied and complex. Transcript profiling experiments of
primary HUVEC (human umbilical vein endothelial cells)
revealed that 56 genes were upregulatedwhilst 69were down-
regulated following infection with C. albicans yeasts [297].
Upregulated genes included those involved in chemotaxis,
cell death and proliferation, transcriptional regulation, and
intercellular signalling. Particularly overrepresented were
genes involved in neutrophil recruitment and signal trans-
duction. Endothelial cells invoke a number of key signalling
pathways in response to Candida infection including the
proinflammatory NF-𝜅B pathway and the stress-activated
p38 MAPK pathway. Indeed, activation of NF-𝜅B appears
critical in the endothelial response, as attenuation of NF-
𝜅B signalling by a dominant negative (kinase-dead) IKK2
mutant (IKK2KD) abolished production of IL-8 and CCL20.
Endothelial cells appear to recognise C. albicans through
a receptor mediated process since depletion of IRAK1 and
MyD88 in endothelial cells by RNA interference abolished
C. albicans induced expression of NF-𝜅B target genes [297].
The target genes of C. albicans transcription factors Cph1p
and Efg1p are important for correct endothelial cell responses
to infection since a C. albicans cph1/efg1Δ mutant strain
induced fewer genes and a weaker transcriptional response
overall when compared with a wild-type control [298]. Thus,
the production of leukocyte adhesion molecules, proinflam-
matory cytokines, and procoagulant factors by endothelial
cells contributes to the host innate immune response to
infiltration by pathogenic Candida and may facilitate clear-
ance through active recruitment of leukocytes to the site of
invasion.

5. Adaptive Immune Responses and
Therapeutic Targets

5.1. T Cell Responses to Candida. The adaptive arm of the
anti-Candida response is initiated through the recruitment
of dendritic cells (or Langerhans cells) and macrophages
during innate immunity. During infection, epithelial cells
initiate host defence via the production of multiple proin-
flammatory molecules, including CCL20 and 𝛽-defensin 2
which act as chemoattractants to recruit mucosal homing
CCR6-expressing dendritic cells (Figure 3). Dendritic cells
recognise Candida through PRRs including TLR2/4, dectin-
1, dectin-2, DC-SIGN and MR, which results in fungal
ingestion, dendritic cell activation and trafficking to the
local lymph nodes. In the lymph node, dendritic cells will
present processed fungal antigens to naı̈ve and memory
T cells, initiating adaptive immunity. However, following
PRR recognition, different dendritic cell subsets can be
activated via distinct signalling pathways to shape T cell
responses against Candida infections [299, 300]. Myeloid
(inflammatory) dendritic cells initiate Th17 and Th2 cell
responses via TLR-MyD88 pathways, whereas plasmacytoid
(tolerogenic) dendritic cells activate Th1 and T regulatory
(Treg) cells via TRIF [93]. The nature of the T cell response
is determined by the cytokine milieu the T cells encounter
during activation: IL-12/IFN𝛾 for Th1 cells, IL-4 for Th2
cells, IL-1𝛽/IL-6/IL-23 for Th17 cells, and IL-2/TGF-𝛽 for
Treg cells. In addition, signal transducer and activator of
transcription 3 (STAT3) is involved in determining canonical
or noncanonical activation of NF-𝜅B and, therefore, the
expression of indoleamine 2,3-dioxygenase (IDO), which
is a key enzyme that controls dendritic cell function and
plasticity. These functionally distinct pathways in dendritic
cells ultimately affect the equilibrium between Th and Treg
cells and may be exploited by Candida spp. to promote
commensalism or infection [93].

Although there is ongoing debate as to the protective
role of Th1 phenotypes in Candida infection, the role of Th2
cells is widely accepted as more deleterious, being associated
with increased fungal growth and dissemination [93].Murine
and human clinical studies indicate a role for cell-mediated
immunity and specifically the Th1 phenotype in combating
oral and gastrointestinal C. albicans infections [278, 301–
303]. Indeed, a high proportion of AIDS patients who have
low CD4+ T cell levels develop OPC [304], indicating the
importance of CD4+ T cells in host defence against oral
infections [305]. In murine Candida gut infections, fungal
clearance correlated with increased IFN𝛾 levels and IL-5
producing T cells in Peyer’s patches and mesenteric lymph
nodes [306]. In this study, neutralisation of Th2 responses
via IL-4 blocking resulted in improved Candida clearance
and a concomitant enhancement of Th1 responses. There-
fore, for a number of years, Th1 responses were regarded
as protective against Candida infections [302, 307]. This
viewpoint was supported by studies demonstrating that T
cell deficient mice, although susceptible to OPC, could be
protected using adoptive transfer of CD4+ T cells [308].
However, as with epithelial cell responses, it is apparent that
the role of the different Th phenotypes is location specific.
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Figure 3: Initiation of innate and adaptive immunity during C. albicans infection. Infection of epithelial cells by C. albicans results in
the production of cytokines (blue) and chemokines (red) which recruit and activate various other immune cells. IL-8 recruits circulating
neutrophils (PMNs) that are in turn activated by a variety of cytokines including GM-CSF, G-CSF, and IL-1 family members. Activated PMNs
produce TNF𝛼 among other cytokines, which affect epithelial gene transcription. TGF𝛽 is produced constitutively by epithelial cells and will
act with IL-1𝛼 and IL-6 to induce T cell differentiation to the Th17 phenotype. Mucosal homing cells including Th17 T cells and activating
dendritic cells will also be recruited by the increased expression of CCL20 and 𝛽-defensin 2, acting through the CCR6 receptor.This will lead
to the presence of active Th17 T cells at the site of infection. CCL20 and 𝛽-defensin 2 will also recruit in Treg cells which will act to suppress
and control the Th17 response. Figure adapted from [262].

For example, although Th1 immunity is generated during
vulvovaginal candidiasis it is not protective. Instead, local
mucosal responses governed by 𝛾𝛿T cells andDCs have been
implicated as being the predominant mechanism for anti-
Candida cellular immunity at this site [309]. In contrast toTh
cells, Treg cells prevent expansion ofTh17 subsets (see below)
and minimise host damage [310] and suppress inflammatory
responses in disseminated C. albicans resulting in higher
susceptibility in mice [103, 311]. However, Tregs may also
enhance Th17-mediated fungal clearance [312]. Notably, the
tolerance-inducing effects of Tregs seem to be beneficial at
mucosal sites [313, 314] and it is notable that mice lacking
TLR2 have reduced numbers of Treg cells [103], indicating a
possible role for TLR2 in maintaining peripheral tolerance.

5.2. T Helper 17 Cells. Recently, our view of the importance of
different T cell phenotypes during fungal infections changed
with the discovery of Th17 cells, so named as they secrete IL-
17 [315]. It appears that dendritic cell recognition of Candida
through dectin-1 and dectin-2 is instrumental in drivingTh17
development [316].Th17 cells are induced by a combination of

IL-6, IL-1𝛽, and TGF𝛽 and further matured (or reactivated)
upon stimulationwith IL-23.Th17 cells secrete IL-17A, IL-17F,
and IL-22 and are now accepted as playing amajor role in pre-
venting extracellular infections and autoimmunity [317, 318].
Furthermore, IL-17A and IL-17F are known to stimulate a
variety of cells (e.g., epithelial cells and fibroblasts) to produce
antimicrobial peptides, metalloproteases, and chemokines
that promote neutrophil recruitment and activation [319],
ultimately resulting in clearance of fungal infections [320].
Concomitantly, IL-22 plays amajor role in limiting fungal cell
growth andmaintaining epithelial barrier function [321–323].
Indeed, recently it was shown that polymorphisms in the IL-
22 gene associated with protection against RVVC correlated
with high levels of vaginal IL-22 and decreased levels of IL-
17A and TNF𝛼 [324].

There is now good evidence to suggest that IL-17 pro-
duction is a key event in the protection against C. albicans
infections [320, 325–328]. The first evidence for a role for
Th17 cells and IL-17 in host defence against C. albicans
demonstrated that IL-17 receptor knockout mice were more
susceptible to systemic C. albicans infection than wild-type
animals [329]. Since then, the majority of studies suggest
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a protective role for IL-17 during both systemic and mucosal
infections. For example, mice lacking Th1 cytokines (e.g.,
IFN𝛾) resist oral infections, whilst those lacking the Th17-
driving IL-23 cytokine show increased susceptibility to oral
infection [330]. In addition, IL-17RA−/− and IL-23p19−/−
deficient mice have increased susceptibility to OPC [331], and
patients with impaired IL-17 production suffer frommucosal
C. albicans infections in hyper-IgE syndrome and CMC
[332–334]. However, there are also reports suggesting that
Th17 immunity may exacerbate C. albicans infections [313,
335] or that C. albicans may downregulate Th17 responses
[336]. Thus, the Th17 pathway may also be involved in the
immunopathogenesis of chronic fungal diseases, in which
persistent fungal antigens may promote immune dysregula-
tion [93]. Notably, a specific role for Th17 cells in vaginal
candidiasis remains unclear in mouse models, as one study
demonstrated a requirement for IL-17 and IL-23 to reduce
fungal burdens [337], whereas another study showed that the
acute neutrophil response mediated by S100 alarmins was
independent of the Th17 pathway [286].

Recent studies investigating patients with autoimmune
conditions (e.g., CMC) have also highlighted the importance
of Th17 responses in protection against C. albicans [112, 332,
338, 339].This link is supported by the increased incidence of
CMC in cases of autoimmunity with neutralising antibodies
toTh17 cytokines (IL-17A, IL-17F, and IL-22) [340]. Recently,
two genetic aetiologies of CMCwere identified: an autosomal
recessive deficiency in the IL-17 cytokine receptor, IL-17RA,
and autosomal dominant deficiency of IL-17F [139]. IL-17RA
deficiency completely abolished cellular responses to IL-17A
and IL-17F. By contrast, IL-17F deficiency was partial, with
mutant IL-17F displaying impaired but not abolished activity.
These data indicate that IL-17A and IL-17F are essential
for mucocutaneous immunity against C. albicans. Other
primary immunodeficiencies associated with an increased
susceptibility to Candida infection through their effects on
Th17/IL-17 signalling include mutations in STAT-1 [341–
343], STAT-3 [344, 345], tyrosine kinase (TYK)-2 [346],
dedicator of cytokinesis (DOCK)8 [347], IL-12R𝛽1 [348], and
autoimmune regulator (AIRE) [349]. It should be noted that
although originally thought to be exclusively produced by
Th17 T cells, it is now known that IL-17 is also produced by
a variety of innate immune cell types, including 𝛾𝛿 T cells,
NKT cells, innate lymphoid cells (ILCs), lymphoid tissue
inducer (LTi) cells, andmacrophages [350, 351]. However, the
functional role of IL-17 produced by these cell types during
Candida infections remains to be fully explored.

5.3. B Cells and Antibody Responses to Candida. Antibody
production comprises the final part of the adaptive immune
response. For many years the role of antibody-mediated
immunity in antifungal defence was controversial, especially
since hypogammaglobulinaemia (reduction or absence of
immunoglobulins) is not thought to be associated with
a predisposition to fungal disease [352]. However, recent
advances and new experimental methods have indicated
that antibody-mediated immunity constitutes an important
arm of host antifungal defence [353, 354]. Antibodies are

capable of mediating several different effects, ranging from
protective to nonprotective, or even pathogenic (enhanc-
ing disease). Typically, the main mechanisms of antibody-
mediated immunity include neutralisation (against viruses or
toxins), opsonisation, complement activation, and antibody-
dependent cellular cytotoxicity (ADCC). However, although
neutralisation is not (currently) thought to play a significant
role in antifungal immunity, the other three mechanisms
appear to play some role [354, 355].

A number of studies have now demonstrated that anti-
bodies can be protective against Candida, with a number of
protective monoclonals or antibody fragments (Fabs) having
been described for C. albicans [356–369]. These studies
demonstrated that there are multiple targets for antibodies
including polysaccharides, proteins, and glycolipids. Since
many of these targets are present in the Candida cell wall,
the antibodies probably act by disrupting or interfering with
fungal cell wall processes, dynamics, or remodelling [370]. As
such, a number of these antibodies are able to directly affect
the host-fungal interaction via the inhibition of Candida
biofilm formation [371], growth [362], hypha formation [361],
and metabolic processes such as nutrient (iron) acquisition
[372]. Antibody binding may also inhibit fungal replication
and even induce cell death [361], although the mechanisms
by which this occurs are unclear. Notably, some monoclonals
(e.g., MAb 2G8) possess cross protective properties against
multiple fungal pathogens (C. albicans, A. fumigatus, and C.
neoformans) by targeting commonly shared fungal moieties
such as𝛽-glucan [362, 373].This latter finding is of significant
importance conceptually and economically as it suggests that
a single therapeutic (or vaccine) could provide protection
against multiple fungal pathogens.

With respect to C. albicans vaccine candidates, one mon-
oclonal (MycoGrab/efungumab) targeting the heat shock
protein 90 progressed through to Phase III clinical evaluation
against invasive systemic infection [374]. However, despite
promising results, MycoGrab/efungumab was nevertheless
not pursued into a marketable product. Another vaccine
targeting recombinant C. albicans Sap2 using influenza viro-
somes (PEV7) to protect against RVVC is also currently in
clinical evaluation by Pevion BiotechAG (Bern, Switzerland).
Rodent studies indicated that PEV7 generated potent serum
and vaginal IgG and IgA antibody responses following
intramuscular or intravaginal immunization. This appeared
to establish long-lasting, antibody-mediated protection in the
rat model [375]. Finally, a vaccine targeting the recombinant
N-terminal region of the hyphal protein Als3 (rAls3p-N)
formulated with alum adjuvant (NDV-3) was also recently
tested in a Phase 1 clinical trial, inducing robust humoral
and cellular immune responses [376, 377]. Recently, NDV-3
was evaluated in a murine model of vulvovaginal candidiasis
and induced high anti-rAls3p-N serum IgG and vaginal IgA
titers, as well as reducing fungal burdens [378]. Furthermore,
anti-rAls3p-N antibodies enhanced the ex vivo killing of C.
albicans by neutrophils primed with IFN𝛾. This suggests that
NDV-3 may protect by priming both humoral and adaptive
immune responses [378].

Although antibody-based therapies against Candida
infections are still somewhat of a controversial topic, there are



New Journal of Science 15

no conceptual limitations for the development of such ther-
apies. Antibodies remain an attractive therapeutic option for
fungal diseases, especially with regard to enhancing immune
function in susceptible patients with impaired immunity.
However, given the efficacy of current antifungal drugs,
antibody-based therapies will need to be developed as an
adjunctive combination therapy that is superior to conven-
tional therapy. This would require large clinical trials and
would have cost implications. Irrespective, antibody-based
therapies provide new and versatile options for developing
new antifungal therapeutics in the future [379–382].

6. Summary

Host responses to Candida are highly diverse due to the
variety of fungal PAMPs and antigens recognised by dif-
ferent immune cells at multiple infection sites. As such, a
variety of detection mechanisms are utilised by host cells,
some of which enable the host to discriminate between the
morphological status and potentially the commensal and
pathogenic state of Candida. Furthermore, the importance
of nonhaemopoietic cells in host defence has begun to be
elucidated, which provides a more complete picture of the
complex network of immune interactions between host and
Candida. We have come a long way in deciphering the
key proteins, cells, and mechanisms that contribute to host
immunity against Candida, but the next few decades should
provide a seismic leap forward in clinical and translational
applications with regard to how Candida infections can be
managed and controlled.
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[245] G. Köllisch, B. N. Kalali, V. Voelcker et al., “Various members of
the Toll-like receptor family contribute to the innate immune
response of human epidermal keratinocytes,” Immunology, vol.
114, no. 4, pp. 531–541, 2005.

[246] Y. Sugawara, A. Uehara, Y. Fujimoto et al., “Toll-like receptors,
NOD1, and NOD2 in oral epithelial cells,” Journal of Dental
Research, vol. 85, no. 6, pp. 524–529, 2006.

[247] M. Mempel, V. Voelcker, G. Köllisch et al., “Toll-like receptor
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