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An acceptance sampling plan for Gompertz distribution under a truncated life test is developed. For different acceptance numbers,
consumer’s confidence levels and values of the ratio of the experimental time to the specified mean lifetime, the minimum sample
sizes required to ensure the specified mean lifetime are obtained. The operating characteristic function values and the associated

producer’s risks are also presented. An example is provided to illustrate the acceptance sampling plan.

1. Introduction

Gompertz [1] introduced the Gompertz distribution to
describe human mortality and establish actuarial tables. It is
a well-known lifetime model and has many applications such
as biology [2], gerontology [3], and marketing science [4].

Recently, Gompertz distribution has attracted much
attention. Some characteristics of this distribution are
obtained by Pollard and Valkovics [5], Wu and Lee [6],
Read [7], and Kunimura [8]. Saracoglu et al. [9] investigated
the statistical inference for reliability and stress strength for
Gompertz distribution. Jaheen [10] conducted a Bayesian
analysis of record statistics from the Gompertz model. Lenart
[11] derived exact formulas for its moment-generating func-
tion and central moments using the generalised integroexpo-
nential function.

The probability density function of the Gompertz distri-
bution is given by

f(t0,0) = get/a exp [—6 (et/" - 1)] , t>0, (1)

where 6 > 0 is the shape parameter, ¢ > 0 is the scale
parameter, and ¢ is the life time. We denote it by writing
T ~ Gompertz(0,0). If 0 < 0 < 1, the density function is
increasing and then decreasing with mode —oIn6.If 6 > 1,
then the density function is decreasing with mode 0.

The corresponding cumulative distribution function of T
is

F(t:6,0) =1—-exp [—G(et/a—l)], t>0. (2)

Gompertz distribution has an exponentially increasing fail-

ure rate function and it is given by 8¢/ /o.
The mean of the Gompertz distribution is given by

w=E(T)=¢eT(0,0)0, 3)

where I'(s, x) = I;O t**e™'dt is known as the upper incom-
plete gamma function. Its mean is positively proportional to
the scale parameter o when the shape parameter 0 is fixed.
The mean acts as quality level for the lifetime distribution
under consideration.

On the other hand, acceptance sampling plan is an impor-
tant tool for ensuring quality in the field of statistical quality
control. It is widely used when the testing is destructive and
the cost of complete and thorough inspection is very high
and/or it takes too long. A random sample is selected from
the lot and on the basis of information yielded by the sample
a decision is made regarding the accepting or rejecting the lot.

Since the lifetime of a product is expected to be very high
and it might be time consuming to wait until all the products
fail, it is usual to terminate a life test by a preassigned time t,



for saving money and time. One object of these tests is to set a
confidence limit on the mean life and to establish a specified
mean life, y,, with a probability of at least P* which is the
consumer’s confidence level.

The decision is to accept the lot if and only if the observed
number of failures does not exceed a given acceptance
number c. If the number of failures exceeds this number,
one can stop the test at the time ¢, and reject the lot. The
problem considered is that of finding the minimum sample
size n necessary to ensure a certain mean lifetime based on
the truncated life test. A lot is considered good if the true
mean life of items, p, is not less than the specified value y,,.
A lot is considered bad if 4 < u,. For a given acceptance
sampling plan, the consumer’s risk and the producer’s risk are
the probabilities that a bad lot is accepted and a good lot is
rejected, respectively.

Truncated life tests of this type have been developed by
many authors. Sobel and Tischendrof [12] studied acceptance
sampling plans for exponential distribution. These results
are extended for the Weibull distribution by Goode and
Kao [13]. Gupta and Groll [14] and Gupta [15] studied the
sampling plans for the lifetime under the gamma and log-
normal distributions, respectively. More recently, Aslam et
al. [16], Balakrishnan et al. [17], Tsai and Wu [18], Rosaiah
and Kantam [19], Kantam et al. [20], and Al-Nasser and
Al-Omari [21] developed the acceptance sampling plans for
generalized exponential distribution, generalized Birnbaum-
Saunders distribution, generalized Rayleigh distribution,
inverse Rayleigh distribution, log-logistic distribution, and
exponentiated Fréchet distribution, respectively.

The acceptance sampling plans based on truncated life
tests for the well-known Gom-pertz distribution have not
been studied. This problem will be discussed in the paper.
The rest of this paper is organized as follows. in Section 2,
the proposed acceptance sampling plans are developed and
the operating characteristic values and the producer’s risk are
analyzed. The numerical results and illustrative examples are
presented in Section 3. The work is concluded in Section 4.

2. Design of the Sampling Plan

Suppose that life time of products follows a Gompertz
distribution defined by (1). The life test terminates at a
preassigned time f, and the number of failures during this
time interval [0, t] is recorded. The decision to accept the lot
occurs if and only if the recorded number of failures at the
end of the time point ¢, is less than or equal to the acceptance
number c.

The lot size is assumed to be infinitely large so that the the-
ory of binomial distribution can be applied. The acceptance or
rejection of the lot is equivalent to the acceptance or rejection
of the hypothesis H, : y > y,. From (3), it is clear that, for
fixed 0, y > y, © o > 0,, where

_ Ho
%= BT (0,0)° (4)

Note that o, also depends on the shape parameter 8. We
assume that 6 is known in this paper.
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For the sake of convenience, set the termination time
as a multiple of the specified mean lifetime; that is, t, =
ayy, where a is a positive constant. The proposed acceptance
sampling plan is characterized by (n, ¢, a), which consists of

(1) the number of items 7 to be drawn from the lot,
(2) the acceptance number c,

(3) the ratio a = t,/p,, where y, corresponds to the
specified mean lifetime and ¢, is the preassigned
testing time.

Let P* be the consumer’s confidence level in the sense that
the chance of rejecting a bad lot (having mean lifetime p < )
isatleast P*. The consumers risk, the probability of accepting
a bad lot, is fixed not to exceed 1 — P*.

The probability of accepting a lot is obtained by
Y, (M) pi(1—p)", where p = F(ty;0,0) = probability of
a failure before time ¢, and is given by

p=1-exp [—6 (et"/g - 1)]

(, (5)
=1-exp [_9 (eae L(0.0)/(u/pg) _ 1)] )

One wants to find the minimum sample size () satisfying
the inequality

C

Z(?) po(1-pp) < 1-P", 6)

i=0

where p, = F(t,;0,0,) = probability of a failure in time ¢, if
true mean life is equal to 4, and is given by

po=1-exp[-0(e"? - 1)]. ?)

It depends only on the ratio a = t,/y, and is a
monotonically increasing function of the ratio. Hence, the
experiment needs to specify only this ratio.

If the number of observed failures is at most ¢, from (6),
we can establish that F(t;0,0) < F(t;0,0,) with probability
P*, which implies 0 > 0, (or 4 > pg). Thus, the mean
lifetime of the items can be assured to be at least equal to their
specified value with probability P*.

The minimum values of n satistying inequality (6) have
been obtained for P* = 0.75,0.90,0.95,0.99 and a =
to/ty = 0.4,0.6,0.8,1.0,1.5,2.0,2.5,3.0. These are presented
in Tables 1 and 2 for 8 = 1,2, respectively. This choice of a is
consistent with the corresponding tables of Tsai and Wu [18],
Gupta and Groll [14], Kantam et al. [20], Aslam et al. [16], and
Al-Nasser and Al-Omari [21].

The operating characteristic function is associated with
acceptance sampling plans. It measures the efficiency of a
statistical hypothesis test designed to accept or reject alot. The
operating characteristic function of the proposed sampling
plan (n,c,a = t,/u,) provides the probability of accepting the
lot and is given by

L =Y (1) s ®
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TABLE 1: Minimum sample sizes 7 to be tested for a time t,, necessary TABLE 2: Minimum sample sizes 71 to be tested for a time t, necessary
to assert the mean life y to exceed a given value, 4, with probability to assert the mean life y to exceed a given value, 4, with probability
P* and the corresponding acceptance number, ¢, using binomial P* and the corresponding acceptance number, ¢, using binomial
probabilities (6 = 1). probabilities (6 = 2).
P . a=ty/m, P c a =ty/m
0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0
0 6 4 3 2 1 1 1 1 0 5 3 3 2 1 1 1 1
1 11 7 5 4 3 2 2 2 1 10 7 5 4 3 2 2 2
2 16 11 8 6 4 4 3 3 2 14 10 7 6 4 4 3 3
3 21 14 11 8 6 5 4 4 3 19 13 10 8 6 5 4 4
4 26 17 13 10 7 6 5 5 4 23 16 12 10 7 6 5 5
075 5 31 20 15 12 9 7 6 6 075 5 27 19 14 12 9 7 7 6
6 35 24 18 14 10 8 7 7 6 31 21 17 14 10 8 8 7
7 40 27 20 16 11 9 8 8 7 35 24 19 16 12 10 9 8
8 45 30 23 18 13 11 10 9 8 39 27 21 17 13 11 10 9
9 49 33 25 20 14 12 11 10 9 44 30 23 19 14 12 11 10
10 54 36 27 22 16 13 12 11 10 48 33 25 21 16 13 12 11
0 9 6 4 3 2 2 1 1 0 8 5 4 3 2 2 1 1
1 15 10 7 4 3 2 2 1 14 9 7 4 3 3 2
2 21 14 10 8 5 4 3 3 2 19 13 10 8 5 4 4 3
3 27 18 13 10 7 5 5 4 3 24 16 12 10 7 6 5 4
4 32 21 16 13 8 7 6 5 4 28 19 15 12 8 7 6 5
090 5 38 25 18 15 10 8 7 6 090 5 33 22 17 14 10 8 7 7
6 43 28 21 17 11 9 8 7 6 38 25 20 16 11 9 8 8
7 48 32 24 19 13 10 9 8 7 42 29 22 18 13 1 9 9
8 53 35 26 21 14 1 10 9 8 46 32 24 20 14 12 10 10
9 58 38 29 23 16 13 11 10 9 51 35 27 22 16 13 12 11
10 63 42 31 25 17 14 12 11 10 55 38 29 24 17 14 13 12
0 12 7 5 4 3 2 1 1 0 10 7 5 3 2 2 1
1 19 12 9 7 4 3 3 2 1 16 11 8 7 4 3 3 2
2 25 16 12 9 6 5 4 3 2 22 15 1 9 6 5 4 4
3 31 20 15 12 8 6 5 4 3 27 18 14 11 8 6 5 5
4 37 24 18 14 9 7 6 5 4 32 22 16 13 9 7 6 6
095 5 42 28 20 16 11 8 7 6 095 5 37 25 19 15 11 9 7 7
6 48 31 23 18 12 10 8 7 6 42 28 21 17 12 10 9 8
7 53 35 26 21 14 11 9 9 7 46 31 24 20 14 11 10 9
8 58 38 28 23 15 12 10 10 8 51 35 26 22 15 12 11 10
9 63 42 31 25 17 13 1 11 9 56 38 29 24 17 14 12 11
10 69 45 34 27 18 14 13 12 10 60 41 31 26 18 15 13 12
0 18 11 8 6 3 2 1 0 15 10 7 6 4 3 2 2
1 26 16 12 9 6 4 3 3 1 22 15 11 9 6 4 3 3
2 33 21 15 12 5 4 4 2 29 19 14 11 8 6 5 4
3 39 25 19 14 9 7 5 5 3 34 23 17 14 7 6 5
4 46 30 22 17 11 8 7 6 4 40 27 20 16 11 8 7 6
099 5 52 34 25 19 13 9 8 7 099 5 45 30 23 18 13 10 8 7
6 58 38 28 22 14 1 9 8 6 50 34 25 21 14 1 9 9
7 64 41 30 24 16 12 10 9 7 56 37 28 23 16 12 1 10
8 69 45 33 26 17 13 11 10 8 61 41 31 25 17 14 12 11
9 75 49 36 29 19 14 12 11 9 66 44 33 27 19 15 13 12
10 80 53 39 31 20 16 13 12 10 70 47 36 29 20 16 14 13
where p = F(ty;0,0). Notice that L(p) is a decreasing  p); thus the operating characteristic function is an increasing

function of p and p is a decreasing function of o (or the mean  function of o (or p). For given P*, a = t,/u,, the choice of ¢



TABLE 3: Operating characteristic values of the sampling plan
(n, ¢, a) for a given P*, under Gompertz distribution (6 = 1).
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TABLE 4: Operating characteristic values of the sampling plan
(n, ¢, a) for a given P*, under Gompertz distribution (6 = 2).

. _ b . _ 1l v

Pron e a=tol 2 4 6 8 0 12 Pl e a=tlu 2 4 6 8 0 12
16 2 04 0705 0934 0.976 0.989 0.994 0.996 14 2 04 0692 0928 0974 0.988 0.993 0.996
12 06 069 0932 0976 0.989 0.994 0.996 10 2 06 0664 0920 0971 0.986 0.992 0.995
8 2 08 0713 0941 0979 0991 0.995 0.997 7 2 08 0720 0939 0978 0.990 0.995 0.997

05 6 2 10 0756 0954 0984 0.993 0.996 0.998 05 6 2 10 0693 0932 0976 0.989 0.994 0.996
4 2 15 0783 0964 0.988 0.995 0.997 0.998 4 2 15 0740 0.948 0982 0.992 0.996 0.997
4 2 20 0597 0921 0974 0.988 0.994 0.996 4 2 20 0557 0.894 0.962 0.982 0.990 0.994
3 2 25 0700 0952 0985 0.994 0.997 0.998 3 2 25 068 0937 0979 0.990 0.995 0.997
32 30 0553 0920 0.975 0.989 0.994 0.997 32 30 055 09 0965 0.984 0.991 0.995
21 2 04 0536 0873 0951 0976 0.987 0.992 19 2 04 0495 0.852 0941 0.971 0.984 0.990
14 2 06 0534 0877 0953 0978 0.988 0.992 13 2 06 048 0850 0940 0.971 0.984 0.990
10 2 08 0567 0893 0961 0.981 0.990 0.994 10 2 08 0474 0.847 0940 0.971 0.984 0.990

o0 8 2 10 0568 0897 0963 0.983 0991 0.994 o0 8 2 10 0484 0854 0943 0973 0.985 0991
5 2 15 0628 0924 0974 0.988 0.994 0.996 5 2 15 0568 0.894 0961 0.982 0.990 0.994
4 2 20 0597 0921 0974 0.988 0.994 0.996 4 2 20 0557 0.894 0.962 0.982 0.990 0.994
3 2 25 0700 0952 0.985 0.994 0.997 0.998 4 2 25 0382 0824 0932 0.968 0.982 0.989
3 2 30 0553 0920 0.975 0.989 0.994 0.997 3 2 30 0556 09 0965 0984 0.991 0.995
25 2 04 0415 0815 0925 0.963 0979 0.987 22 2 04 0392 0798 0915 0.957 0976 0.985
16 2 06 0439 0833 0934 0968 0.982 0.989 52 06 0381 0795 0914 0957 0.976 0.985
2 2 08 0435 0836 0936 0969 0.983 0.989 11 2 08 0403 0811 0923 0962 0.978 0.987

o5 O 2 L0 0480 0862 0948 0.975 0.986 0.992 o5 O 2 L0 0393 0808 0922 0.962 0.978 0.987
6 2 15 0480 0.873 0954 0.979 0.988 0.993 6 2 15 0415 0.828 0.932 0.967 0.982 0.989
5 2 20 0393 0.845 0944 0.974 0.986 0.992 5 2 20 0350 0799 0.920 0.961 0.978 0.987
4 2 25 0402 0.860 0.952 0.978 0.988 0.993 4 2 25 0382 0824 0932 0.968 0.982 0.989
3 2 30 0553 0920 0.975 0.989 0.994 0.997 4 2 30 0240 0740 0.894 0.948 0.971 0.982
33 2 04 0231 0.68 0858 0.925 0.956 0.973 29 2 04 0211 0.661 0.842 0916 0.950 0.968
21 2 06 0251 0712 0.873 0935 0.962 0.976 19 2 06 0222 0676 0852 0922 0.954 0.971
152 08 0276 0739 0.889 0.944 0.968 0.980 14 2 08 0234 0.692 0.862 0.928 0.958 0.974

o912 2 L0 0269 0741 0891 0945 0.969 0.981 hog 1 2 10 0248 0709 0872 0.934 0962 0.976
7 2 15 0354 0813 0928 0.966 0.981 0.988 8 2 15 0198 0.674 0.854 0.925 0.956 0.973
5 2 20 0393 0.845 0944 0974 0.986 0.992 6 2 20 0206 0.693 0.867 0932 0.961 0.976
4 2 25 0402 0.860 0.952 0.978 0.988 0.993 5 2 25 0189 0.687 0.865 0932 0.961 0.976
4 2 30 0237 0783 0921 0.964 0.980 0.988 4 2 30 0240 0740 0.894 0.948 0.971 0.982

and 7 is made on the basis of operating characteristics. Values
of operating characteristics as a function of u/y, for several
sampling plans are given in Tables 3 and 4 for ¢ = 2 and
0 = 1, 2, respectively.

The producer’s risk is the probability of rejection of the
lot when it is good (¢ > 4, or equivalently o > o;). For the
proposed sampling plan and a given value for the producer’s
risk y, one is interested in knowing the value of p/p, that will
ensure the producer’s risk to be at most y. Notice that p is a
function of u/u, as shown in (5); then p/y, is the smallest
positive number for which p satisfies the inequality

él (7) P-p)" <y (9)

For a given acceptance sampling plan (n, c, a), at a specified
confidence level P*, the minimum values of y/y, satisfying

(9) are presented in Tables 5 and 6 for 6 = 1, 2, respectively.
The tables can be generated for any other values of the shape
parameter 8 > 0.

Figures 1 and 2 are the plots of the required minimum
sample size versus a = t,/u, for some selected values of the
confidence level P* and the shape parameter 0, respectively.
Figure 1 shows that the required minimum sample size
decreases as a increases, and the required minimum sample
sizes get close for all selected confidence levels when a is
large. Figure 2 shows that the required minimum sample size
increases as the value of 0 decreases when the value of a is
small, and the required minimum sample sizes for different
values of 0 get close when the value of a is large.

3. Illustration of the Tables

Assume that the lifetime distribution of the test items follows
Gompertz distribution with shape parameter 6 = 1 and we
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TABLE 5: Minimum ratio of p/y, for the acceptability of a lot with TABLE 6: Minimum ratio of y/u, for the acceptability of a lot with

producer’s risk of y = 0.05 (0 = 1). producer’s risk of y = 0.05 (0 = 2).
P* ¢ a =t/ P* ¢ a =t/
0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0

0 28.03 28.09 2815 23,55 1789 23.85 29.81 35.77 0 2825 2547 3396 2836 2141 2854 35.68 42.81
1 716 671 624 610 659 529 6.61 793 1 779 8.02 742 722 773 6.07 759 910
2 449 454 429 388 356 475 395 474 2 466 486 434 453 406 541 437 525
3 352 344 353 3.08 326 341 3.02 3.62 3 377 374 370 355 3.69 380 326 391
4 3.02 289 287 266 257 276 255 3.06 4 315 317 3.04 305 286 3.02 270 324

075 5 272 256 249 241 254 238 227 272 0755 278 283 265 275 283 256 320 283
6 244 245 239 224 221 213 207 249 6 253 247 257 254 243 227 283 256
7 230 228 218 212 198 195 194 232 7 236 232 236 239 245 248 257 237
8§ 220 215 214 202 202 213 227 220 8§ 222 222 220 212 221 226 237 222
9 207 204 201 19 187 199 214 210 9 217 213 208 205 202 210 222 210
10 201 19 191 189 191 188 204 202 10 2.08 206 198 2 207 197 209 2.01
0 4198 42.04 3745 3518 35.33 4710 29.81 35.77 0 4516 4238 4523 42.45 4254 56.72 35.68 42.81
1 98 973 894 949 915 879 6.61 793 1 11.05 10.46 10.69 1132 10.83 10.30 12.87 9.10
2 595 586 546 536 470 475 395 474 2 643 646 648 632 544 541 677 525
3 457 449 423 396 394 341 426 3.62 3 483 470 456 4.63 452 492 475 391
4 375 362 361 359 305 342 345 3.06 4 388 384 393 380 344 382 377 324

090 5 336 325 304 311 290 289 297 272 090 5 344 333 332 331 327 318 320 3.84
6 3.02 289 283 280 250 255 266 249 6 315 3 311 299 279 277 283 340
7 278 273 267 258 247 231 244 232 7 287 287 280 277 274 288 257 3.08
8§ 261 253 245 241 223 213 227 220 8 266 268 258 260 246 261 237 284
9 247 238 237 229 223 224 214 210 9 255 253 251 246 245 240 262 2.66
10 236 231 222 219 206 211 204 2.02 10 241 241 237 236 226 224 246 251
0 5593 49.01 46.75 46.81 52.77 4710 29.81 35.77 0 56.43 59.29 56.50 56.54 63.67 56.72 70.90 42.81
1 1254 1175 1163 1117 915 879 10.98 793 1 1268 1291 1232 1336 10.83 10.30 12.87 9.10
2 712 673 6.64 610 582 627 594 474 2 749 752 719 721 679 725 6.77 812
3 527 502 493 485 461 434 426 3.62 3 547 533 541 516 533 492 475 570
4 436 417 4.09 389 352 342 345 3.06 4 447 450 423 417 4.01 382 377 453

095 5 372 366 341 334 326 289 297 272 0955 389 383 377 359 370 377 320 3.84
6 339 322 312 298 279 295 266 249 6 350 340 329 322 313 324 346 340
7 3.08 3 291 288 270 264 244 292 7 316 3.09 310 314 3.03 288 3.09 3.08
8§ 286 276 265 267 243 242 227 272 8§ 296 296 283 291 270 261 283 284
9 269 264 255 251 240 224 214 257 9 281 277 273 274 266 270 262 2.66
10 259 249 246 238 222 211 234 244 10 265 263 256 260 244 250 246 251
0 8383 76.92 74.65 70.06 70.21 70.36 58.88 35.77 0 84.61 84.65 79.05 84.72 84.81 84.90 70.90 85.08
1 1724 1578 15.66 14.54 14.23 12.20 10.98 13.18 1 1756 1779 1721 1744 16.97 14.44 12.87 1545
2 946 893 839 830 693 627 594 712 2 997 965 932 899 948 9.06 9.06 812
3 667 633 634 573 528 525 426 511 3 695 692 669 676 614 6.02 615 570
4 545 526 507 481 446 4.07 428 414 4 565 560 541 528 514 459 477 453

099 5 464 449 433 403 396 339 361 357 099 5 477 466 4.66 443 455 435 397 384
6 411 398 38 372 336 334 318 319 6 421 419 4 411 381 371 346 415
7 374 354 340 334 317 297 288 292 7 388 375 3.68 369 359 327 360 371
8 342 330 317 3.06 283 270 266 272 8§ 358 352 345 338 318 327 326 339
9 322 311 299 296 275 249 248 257 9 335 326 316 314 3.08 298 3 3.14
10 3.02 296 285 278 253 254 234 244 10 312 3.05 303 29 281 276 280 295

Table 1 shows the minimum sample size n required to
want to establish that the mean lifetime is at least 71, = 1000 ascertain that the mean life y exceeds g, with probability at
hours with probability P* = 0.90. The life test is terminated  least P*, the corresponding acceptance number c. When P* =
at t = 400 hours. 0.90, a = t,/u, = 400/1000 = 0.4, ¢ = 2, the corresponding
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FIGURE 2: The minimum sample size versus a = t,/y, with P* =
0.90, c = 2.

entry in Table 1 is 21. That is, out of 21 items, if no more than 2
items fail during 400 hours, then the experimenter can assert
that the true mean lifetime y of the items is at least 1000 hours
with a confidence level of 0.90.

Table 3 displays operating characteristic function values
for the time truncated acceptance sampling plan adopted
from Table 1, for various values of P* and for different values
of u/p, when ¢ = 2. For example, when P* = 0.90, a =
to/thy = 0.4,¢c = 2,u/u, = 6, the corresponding entry
in Table 3 is 0.951. It implies that if we accept the above
acceptance sampling plan, that is, the lot is accepted if, out
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of 21 items, less than or equal to 2 items fail before time point
t, = 400 hours, then if 4 > 6 x £,/0.4 or 4 > 15t, = 6000
hours, then the lot will be accepted with probability at least
0.951.

Table 5 shows the minimum ratio of the true mean
lifetime to the specified one for the acceptance of a lot with the
producer’s risk y = 0.05. For example, when the consumer’s
risk is 010 or P* = 0.90, ¢ = 2,anda = ty/y, = 0.4,
the table entry is y/y, = 5.95, which indicates that if y >
5.95 x t,/0.4 = 14.875t, = 5950 hours, then, with sample
size n = 21 and ¢ = 2, the lot will be rejected with probability
less than or equal to 0.05.

4. Concluding Remarks

In this paper, a time truncated acceptance sampling plan is
developed when the lifetime follows the Gompertz distri-
bution. The table for the minimum sample size required to
guarantee a certain mean lifetime of the test items is pre-
sented. The operating characteristic function values and the
associated producer’s risks are also discussed. The proposed
plans can be used conveniently.
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