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An acceptance sampling plan for Gompertz distribution under a truncated life test is developed. For different acceptance numbers,
consumer’s confidence levels and values of the ratio of the experimental time to the specified mean lifetime, the minimum sample
sizes required to ensure the specified mean lifetime are obtained. The operating characteristic function values and the associated
producer’s risks are also presented. An example is provided to illustrate the acceptance sampling plan.

1. Introduction

Gompertz [1] introduced the Gompertz distribution to
describe human mortality and establish actuarial tables. It is
a well-known lifetime model and has many applications such
as biology [2], gerontology [3], and marketing science [4].

Recently, Gompertz distribution has attracted much
attention. Some characteristics of this distribution are
obtained by Pollard and Valkovics [5], Wu and Lee [6],
Read [7], and Kunimura [8]. Saraçoǧlu et al. [9] investigated
the statistical inference for reliability and stress strength for
Gompertz distribution. Jaheen [10] conducted a Bayesian
analysis of record statistics from the Gompertz model. Lenart
[11] derived exact formulas for its moment-generating func-
tion and central moments using the generalised integroexpo-
nential function.

The probability density function of the Gompertz distri-
bution is given by

𝑓 (𝑡; 𝜃, 𝜎) =
𝜃

𝜎
𝑒𝑡/𝜎 exp [−𝜃 (𝑒𝑡/𝜎 − 1)] , 𝑡 > 0, (1)

where 𝜃 > 0 is the shape parameter, 𝜎 > 0 is the scale
parameter, and 𝑡 is the life time. We denote it by writing
𝑇 ∼ Gompertz(𝜃, 𝜎). If 0 < 𝜃 < 1, the density function is
increasing and then decreasing with mode −𝜎 ln 𝜃. If 𝜃 ≥ 1,
then the density function is decreasing with mode 0.

The corresponding cumulative distribution function of 𝑇
is

𝐹 (𝑡; 𝜃, 𝜎) = 1 − exp [−𝜃 (𝑒𝑡/𝜎 − 1)] , 𝑡 > 0. (2)

Gompertz distribution has an exponentially increasing fail-
ure rate function and it is given by 𝜃𝑒𝑡/𝜎/𝜎.

The mean of the Gompertz distribution is given by

𝜇 = 𝐸 (𝑇) = 𝑒𝜃Γ (0, 𝜃) 𝜎, (3)

where Γ(𝑠, 𝑥) = ∫
∞

𝑥
𝑡𝑠−1𝑒−𝑡𝑑𝑡 is known as the upper incom-

plete gamma function. Its mean is positively proportional to
the scale parameter 𝜎 when the shape parameter 𝜃 is fixed.
The mean acts as quality level for the lifetime distribution
under consideration.

On the other hand, acceptance sampling plan is an impor-
tant tool for ensuring quality in the field of statistical quality
control. It is widely used when the testing is destructive and
the cost of complete and thorough inspection is very high
and/or it takes too long. A random sample is selected from
the lot and on the basis of information yielded by the sample
a decision ismade regarding the accepting or rejecting the lot.

Since the lifetime of a product is expected to be very high
and it might be time consuming to wait until all the products
fail, it is usual to terminate a life test by a preassigned time 𝑡
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for savingmoney and time. One object of these tests is to set a
confidence limit on the mean life and to establish a specified
mean life, 𝜇

0
, with a probability of at least 𝑃∗ which is the

consumer’s confidence level.
The decision is to accept the lot if and only if the observed

number of failures does not exceed a given acceptance
number 𝑐. If the number of failures exceeds this number,
one can stop the test at the time 𝑡

0
and reject the lot. The

problem considered is that of finding the minimum sample
size 𝑛 necessary to ensure a certain mean lifetime based on
the truncated life test. A lot is considered good if the true
mean life of items, 𝜇, is not less than the specified value 𝜇

0
.

A lot is considered bad if 𝜇 < 𝜇
0
. For a given acceptance

sampling plan, the consumer’s risk and the producer’s risk are
the probabilities that a bad lot is accepted and a good lot is
rejected, respectively.

Truncated life tests of this type have been developed by
many authors. Sobel and Tischendrof [12] studied acceptance
sampling plans for exponential distribution. These results
are extended for the Weibull distribution by Goode and
Kao [13]. Gupta and Groll [14] and Gupta [15] studied the
sampling plans for the lifetime under the gamma and log-
normal distributions, respectively. More recently, Aslam et
al. [16], Balakrishnan et al. [17], Tsai and Wu [18], Rosaiah
and Kantam [19], Kantam et al. [20], and Al-Nasser and
Al-Omari [21] developed the acceptance sampling plans for
generalized exponential distribution, generalized Birnbaum-
Saunders distribution, generalized Rayleigh distribution,
inverse Rayleigh distribution, log-logistic distribution, and
exponentiated Fréchet distribution, respectively.

The acceptance sampling plans based on truncated life
tests for the well-known Gom-pertz distribution have not
been studied. This problem will be discussed in the paper.
The rest of this paper is organized as follows. in Section 2,
the proposed acceptance sampling plans are developed and
the operating characteristic values and the producer’s risk are
analyzed. The numerical results and illustrative examples are
presented in Section 3. The work is concluded in Section 4.

2. Design of the Sampling Plan

Suppose that life time of products follows a Gompertz
distribution defined by (1). The life test terminates at a
preassigned time 𝑡

0
and the number of failures during this

time interval [0, 𝑡] is recorded. The decision to accept the lot
occurs if and only if the recorded number of failures at the
end of the time point 𝑡

0
is less than or equal to the acceptance

number 𝑐.
The lot size is assumed to be infinitely large so that the the-

ory of binomial distribution can be applied.The acceptance or
rejection of the lot is equivalent to the acceptance or rejection
of the hypothesis 𝐻

0
: 𝜇 ≥ 𝜇

0
. From (3), it is clear that, for

fixed 𝜃, 𝜇 ≥ 𝜇
0
⇔ 𝜎 ≥ 𝜎

0
, where

𝜎
0
=

𝜇
0

𝑒𝜃Γ (0, 𝜃)
. (4)

Note that 𝜎
0
also depends on the shape parameter 𝜃. We

assume that 𝜃 is known in this paper.

For the sake of convenience, set the termination time
as a multiple of the specified mean lifetime; that is, 𝑡

0
=

𝑎𝜇
0
, where 𝑎 is a positive constant. The proposed acceptance

sampling plan is characterized by (𝑛, 𝑐, 𝑎), which consists of

(1) the number of items 𝑛 to be drawn from the lot,
(2) the acceptance number 𝑐,
(3) the ratio 𝑎 = 𝑡

0
/𝜇
0
, where 𝜇

0
corresponds to the

specified mean lifetime and 𝑡
0
is the preassigned

testing time.

Let𝑃∗ be the consumer’s confidence level in the sense that
the chance of rejecting a bad lot (havingmean lifetime𝜇 < 𝜇

0
)

is at least𝑃∗.The consumer’s risk, the probability of accepting
a bad lot, is fixed not to exceed 1 − 𝑃∗.

The probability of accepting a lot is obtained by
∑
𝑐

𝑖=0
( 𝑛𝑖 ) 𝑝
𝑖(1 − 𝑝)𝑛−𝑖, where 𝑝 = 𝐹(𝑡

0
; 𝜃, 𝜎) = probability of

a failure before time 𝑡
0
and is given by

𝑝 = 1 − exp [−𝜃 (𝑒𝑡0/𝜎 − 1)]

= 1 − exp [−𝜃 (𝑒𝑎𝑒
𝜃
Γ(0,𝜃)/(𝜇/𝜇0) − 1)] .

(5)

Onewants to find theminimum sample size (𝑛) satisfying
the inequality

𝑐

∑
𝑖=0

(
𝑛
𝑖
) 𝑝𝑖
0
(1 − 𝑝

0
)
𝑛−𝑖

≤ 1 − 𝑃∗, (6)

where 𝑝
0
= 𝐹(𝑡
0
; 𝜃, 𝜎
0
) = probability of a failure in time 𝑡

0
if

true mean life is equal to 𝜇
0
and is given by

𝑝
0
= 1 − exp [−𝜃 (𝑒𝑎𝑒

𝜃
Γ(0,𝜃) − 1)] . (7)

It depends only on the ratio 𝑎 = 𝑡
0
/𝜇
0
and is a

monotonically increasing function of the ratio. Hence, the
experiment needs to specify only this ratio.

If the number of observed failures is at most 𝑐, from (6),
we can establish that 𝐹(𝑡; 𝜃, 𝜎) ≤ 𝐹(𝑡; 𝜃, 𝜎

0
) with probability

𝑃∗, which implies 𝜎 ≥ 𝜎
0
(or 𝜇 ≥ 𝜇

0
). Thus, the mean

lifetime of the items can be assured to be at least equal to their
specified value with probability 𝑃∗.

The minimum values of 𝑛 satisfying inequality (6) have
been obtained for 𝑃∗ = 0.75, 0.90, 0.95, 0.99 and 𝑎 =
𝑡
0
/𝜇
0
= 0.4, 0.6, 0.8, 1.0, 1.5, 2.0, 2.5, 3.0. These are presented

in Tables 1 and 2 for 𝜃 = 1, 2, respectively. This choice of 𝑎 is
consistent with the corresponding tables of Tsai andWu [18],
Gupta andGroll [14], Kantam et al. [20], Aslam et al. [16], and
Al-Nasser and Al-Omari [21].

The operating characteristic function is associated with
acceptance sampling plans. It measures the efficiency of a
statistical hypothesis test designed to accept or reject a lot.The
operating characteristic function of the proposed sampling
plan (𝑛, 𝑐, 𝑎 = 𝑡

0
/𝜇
0
) provides the probability of accepting the

lot and is given by

𝐿 (𝑝) =
𝑐

∑
𝑖=0

(
𝑛
𝑖
) 𝑝𝑖(1 − 𝑝)

𝑛−𝑖

, (8)
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Table 1:Minimum sample sizes 𝑛 to be tested for a time 𝑡
0
necessary

to assert the mean life 𝜇 to exceed a given value, 𝜇
0
, with probability

𝑃∗ and the corresponding acceptance number, 𝑐, using binomial
probabilities (𝜃 = 1).

𝑃∗ 𝑐
𝑎 = 𝑡
0
/𝑚
0

0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0

0.75

0 6 4 3 2 1 1 1 1
1 11 7 5 4 3 2 2 2
2 16 11 8 6 4 4 3 3
3 21 14 11 8 6 5 4 4
4 26 17 13 10 7 6 5 5
5 31 20 15 12 9 7 6 6
6 35 24 18 14 10 8 7 7
7 40 27 20 16 11 9 8 8
8 45 30 23 18 13 11 10 9
9 49 33 25 20 14 12 11 10
10 54 36 27 22 16 13 12 11

0.90

0 9 6 4 3 2 2 1 1
1 15 10 7 6 4 3 2 2
2 21 14 10 8 5 4 3 3
3 27 18 13 10 7 5 5 4
4 32 21 16 13 8 7 6 5
5 38 25 18 15 10 8 7 6
6 43 28 21 17 11 9 8 7
7 48 32 24 19 13 10 9 8
8 53 35 26 21 14 11 10 9
9 58 38 29 23 16 13 11 10
10 63 42 31 25 17 14 12 11

0.95

0 12 7 5 4 3 2 1 1
1 19 12 9 7 4 3 3 2
2 25 16 12 9 6 5 4 3
3 31 20 15 12 8 6 5 4
4 37 24 18 14 9 7 6 5
5 42 28 20 16 11 8 7 6
6 48 31 23 18 12 10 8 7
7 53 35 26 21 14 11 9 9
8 58 38 28 23 15 12 10 10
9 63 42 31 25 17 13 11 11
10 69 45 34 27 18 14 13 12

0.99

0 18 11 8 6 4 3 2 1
1 26 16 12 9 6 4 3 3
2 33 21 15 12 7 5 4 4
3 39 25 19 14 9 7 5 5
4 46 30 22 17 11 8 7 6
5 52 34 25 19 13 9 8 7
6 58 38 28 22 14 11 9 8
7 64 41 30 24 16 12 10 9
8 69 45 33 26 17 13 11 10
9 75 49 36 29 19 14 12 11
10 80 53 39 31 20 16 13 12

where 𝑝 = 𝐹(𝑡
0
; 𝜃, 𝜎). Notice that 𝐿(𝑝) is a decreasing

function of 𝑝 and 𝑝 is a decreasing function of 𝜎 (or themean

Table 2:Minimum sample sizes 𝑛 to be tested for a time 𝑡
0
necessary

to assert the mean life 𝜇 to exceed a given value, 𝜇
0
, with probability

𝑃∗ and the corresponding acceptance number, 𝑐, using binomial
probabilities (𝜃 = 2).

𝑃∗ 𝑐
𝑎 = 𝑡
0
/𝑚
0

0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0

0.75

0 5 3 3 2 1 1 1 1
1 10 7 5 4 3 2 2 2
2 14 10 7 6 4 4 3 3
3 19 13 10 8 6 5 4 4
4 23 16 12 10 7 6 5 5
5 27 19 14 12 9 7 7 6
6 31 21 17 14 10 8 8 7
7 35 24 19 16 12 10 9 8
8 39 27 21 17 13 11 10 9
9 44 30 23 19 14 12 11 10
10 48 33 25 21 16 13 12 11

0.90

0 8 5 4 3 2 2 1 1
1 14 9 7 6 4 3 3 2
2 19 13 10 8 5 4 4 3
3 24 16 12 10 7 6 5 4
4 28 19 15 12 8 7 6 5
5 33 22 17 14 10 8 7 7
6 38 25 20 16 11 9 8 8
7 42 29 22 18 13 11 9 9
8 46 32 24 20 14 12 10 10
9 51 35 27 22 16 13 12 11
10 55 38 29 24 17 14 13 12

0.95

0 10 7 5 4 3 2 2 1
1 16 11 8 7 4 3 3 2
2 22 15 11 9 6 5 4 4
3 27 18 14 11 8 6 5 5
4 32 22 16 13 9 7 6 6
5 37 25 19 15 11 9 7 7
6 42 28 21 17 12 10 9 8
7 46 31 24 20 14 11 10 9
8 51 35 26 22 15 12 11 10
9 56 38 29 24 17 14 12 11
10 60 41 31 26 18 15 13 12

0.99

0 15 10 7 6 4 3 2 2
1 22 15 11 9 6 4 3 3
2 29 19 14 11 8 6 5 4
3 34 23 17 14 9 7 6 5
4 40 27 20 16 11 8 7 6
5 45 30 23 18 13 10 8 7
6 50 34 25 21 14 11 9 9
7 56 37 28 23 16 12 11 10
8 61 41 31 25 17 14 12 11
9 66 44 33 27 19 15 13 12
10 70 47 36 29 20 16 14 13

𝜇); thus the operating characteristic function is an increasing
function of 𝜎 (or 𝜇). For given 𝑃∗, 𝑎 = 𝑡

0
/𝜇
0
, the choice of 𝑐
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Table 3: Operating characteristic values of the sampling plan
(𝑛, 𝑐, 𝑎) for a given 𝑃∗, under Gompertz distribution (𝜃 = 1).

𝑃∗ 𝑛 𝑐 𝑎 = 𝑡
0
/𝜇
0

𝜇/𝜇
0

2 4 6 8 10 12

0.75

16 2 0.4 0.705 0.934 0.976 0.989 0.994 0.996
11 2 0.6 0.690 0.932 0.976 0.989 0.994 0.996
8 2 0.8 0.713 0.941 0.979 0.991 0.995 0.997
6 2 1.0 0.756 0.954 0.984 0.993 0.996 0.998
4 2 1.5 0.783 0.964 0.988 0.995 0.997 0.998
4 2 2.0 0.597 0.921 0.974 0.988 0.994 0.996
3 2 2.5 0.700 0.952 0.985 0.994 0.997 0.998
3 2 3.0 0.553 0.920 0.975 0.989 0.994 0.997

0.90

21 2 0.4 0.536 0.873 0.951 0.976 0.987 0.992
14 2 0.6 0.534 0.877 0.953 0.978 0.988 0.992
10 2 0.8 0.567 0.893 0.961 0.981 0.990 0.994
8 2 1.0 0.568 0.897 0.963 0.983 0.991 0.994
5 2 1.5 0.628 0.924 0.974 0.988 0.994 0.996
4 2 2.0 0.597 0.921 0.974 0.988 0.994 0.996
3 2 2.5 0.700 0.952 0.985 0.994 0.997 0.998
3 2 3.0 0.553 0.920 0.975 0.989 0.994 0.997

0.95

25 2 0.4 0.415 0.815 0.925 0.963 0.979 0.987
16 2 0.6 0.439 0.833 0.934 0.968 0.982 0.989
12 2 0.8 0.435 0.836 0.936 0.969 0.983 0.989
9 2 1.0 0.480 0.862 0.948 0.975 0.986 0.992
6 2 1.5 0.480 0.873 0.954 0.979 0.988 0.993
5 2 2.0 0.393 0.845 0.944 0.974 0.986 0.992
4 2 2.5 0.402 0.860 0.952 0.978 0.988 0.993
3 2 3.0 0.553 0.920 0.975 0.989 0.994 0.997

0.99

33 2 0.4 0.231 0.686 0.858 0.925 0.956 0.973
21 2 0.6 0.251 0.712 0.873 0.935 0.962 0.976
15 2 0.8 0.276 0.739 0.889 0.944 0.968 0.980
12 2 1.0 0.269 0.741 0.891 0.945 0.969 0.981
7 2 1.5 0.354 0.813 0.928 0.966 0.981 0.988
5 2 2.0 0.393 0.845 0.944 0.974 0.986 0.992
4 2 2.5 0.402 0.860 0.952 0.978 0.988 0.993
4 2 3.0 0.237 0.783 0.921 0.964 0.980 0.988

and 𝑛 is made on the basis of operating characteristics. Values
of operating characteristics as a function of 𝜇/𝜇

0
for several

sampling plans are given in Tables 3 and 4 for 𝑐 = 2 and
𝜃 = 1, 2, respectively.

The producer’s risk is the probability of rejection of the
lot when it is good (𝜇 > 𝜇

0
, or equivalently 𝜎 > 𝜎

0
). For the

proposed sampling plan and a given value for the producer’s
risk 𝛾, one is interested in knowing the value of 𝜇/𝜇

0
that will

ensure the producer’s risk to be at most 𝛾. Notice that 𝑝 is a
function of 𝜇/𝜇

0
as shown in (5); then 𝜇/𝜇

0
is the smallest

positive number for which 𝑝 satisfies the inequality

𝑛

∑
𝑖=𝑐+1

(
𝑛
𝑖
)𝑝𝑖(1 − 𝑝)

𝑛−𝑖

≤ 𝛾. (9)

For a given acceptance sampling plan (𝑛, 𝑐, 𝑎), at a specified
confidence level 𝑃∗, the minimum values of 𝜇/𝜇

0
satisfying

Table 4: Operating characteristic values of the sampling plan
(𝑛, 𝑐, 𝑎) for a given 𝑃∗, under Gompertz distribution (𝜃 = 2).

𝑃∗ 𝑛 𝑐 𝑎 = 𝑡
0
/𝜇
0

𝜇/𝜇
0

2 4 6 8 10 12

0.75

14 2 0.4 0.692 0.928 0.974 0.988 0.993 0.996
10 2 0.6 0.664 0.920 0.971 0.986 0.992 0.995
7 2 0.8 0.720 0.939 0.978 0.990 0.995 0.997
6 2 1.0 0.693 0.932 0.976 0.989 0.994 0.996
4 2 1.5 0.740 0.948 0.982 0.992 0.996 0.997
4 2 2.0 0.557 0.894 0.962 0.982 0.990 0.994
3 2 2.5 0.685 0.937 0.979 0.990 0.995 0.997
3 2 3.0 0.556 0.9 0.965 0.984 0.991 0.995

0.90

19 2 0.4 0.495 0.852 0.941 0.971 0.984 0.990
13 2 0.6 0.485 0.850 0.940 0.971 0.984 0.990
10 2 0.8 0.474 0.847 0.940 0.971 0.984 0.990
8 2 1.0 0.484 0.854 0.943 0.973 0.985 0.991
5 2 1.5 0.568 0.894 0.961 0.982 0.990 0.994
4 2 2.0 0.557 0.894 0.962 0.982 0.990 0.994
4 2 2.5 0.382 0.824 0.932 0.968 0.982 0.989
3 2 3.0 0.556 0.9 0.965 0.984 0.991 0.995

0.95

22 2 0.4 0.392 0.798 0.915 0.957 0.976 0.985
15 2 0.6 0.381 0.795 0.914 0.957 0.976 0.985
11 2 0.8 0.403 0.811 0.923 0.962 0.978 0.987
9 2 1.0 0.393 0.808 0.922 0.962 0.978 0.987
6 2 1.5 0.415 0.828 0.932 0.967 0.982 0.989
5 2 2.0 0.350 0.799 0.920 0.961 0.978 0.987
4 2 2.5 0.382 0.824 0.932 0.968 0.982 0.989
4 2 3.0 0.240 0.740 0.894 0.948 0.971 0.982

0.99

29 2 0.4 0.211 0.661 0.842 0.916 0.950 0.968
19 2 0.6 0.222 0.676 0.852 0.922 0.954 0.971
14 2 0.8 0.234 0.692 0.862 0.928 0.958 0.974
11 2 1.0 0.248 0.709 0.872 0.934 0.962 0.976
8 2 1.5 0.198 0.674 0.854 0.925 0.956 0.973
6 2 2.0 0.206 0.693 0.867 0.932 0.961 0.976
5 2 2.5 0.189 0.687 0.865 0.932 0.961 0.976
4 2 3.0 0.240 0.740 0.894 0.948 0.971 0.982

(9) are presented in Tables 5 and 6 for 𝜃 = 1, 2, respectively.
The tables can be generated for any other values of the shape
parameter 𝜃 > 0.

Figures 1 and 2 are the plots of the required minimum
sample size versus 𝑎 = 𝑡

0
/𝜇
0
for some selected values of the

confidence level 𝑃∗ and the shape parameter 𝜃, respectively.
Figure 1 shows that the required minimum sample size
decreases as 𝑎 increases, and the required minimum sample
sizes get close for all selected confidence levels when 𝑎 is
large. Figure 2 shows that the required minimum sample size
increases as the value of 𝜃 decreases when the value of 𝑎 is
small, and the required minimum sample sizes for different
values of 𝜃 get close when the value of 𝑎 is large.

3. Illustration of the Tables

Assume that the lifetime distribution of the test items follows
Gompertz distribution with shape parameter 𝜃 = 1 and we
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Table 5: Minimum ratio of 𝜇/𝜇
0
for the acceptability of a lot with

producer’s risk of 𝛾 = 0.05 (𝜃 = 1).

𝑃∗ 𝑐
𝑎 = 𝑡
0
/𝜇
0

0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0

0.75

0 28.03 28.09 28.15 23.55 17.89 23.85 29.81 35.77
1 7.16 6.71 6.24 6.10 6.59 5.29 6.61 7.93
2 4.49 4.54 4.29 3.88 3.56 4.75 3.95 4.74
3 3.52 3.44 3.53 3.08 3.26 3.41 3.02 3.62
4 3.02 2.89 2.87 2.66 2.57 2.76 2.55 3.06
5 2.72 2.56 2.49 2.41 2.54 2.38 2.27 2.72
6 2.44 2.45 2.39 2.24 2.21 2.13 2.07 2.49
7 2.30 2.28 2.18 2.12 1.98 1.95 1.94 2.32
8 2.20 2.15 2.14 2.02 2.02 2.13 2.27 2.20
9 2.07 2.04 2.01 1.95 1.87 1.99 2.14 2.10
10 2.01 1.96 1.91 1.89 1.91 1.88 2.04 2.02

0.90

0 41.98 42.04 37.45 35.18 35.33 47.10 29.81 35.77
1 9.85 9.73 8.94 9.49 9.15 8.79 6.61 7.93
2 5.95 5.86 5.46 5.36 4.70 4.75 3.95 4.74
3 4.57 4.49 4.23 3.96 3.94 3.41 4.26 3.62
4 3.75 3.62 3.61 3.59 3.05 3.42 3.45 3.06
5 3.36 3.25 3.04 3.11 2.90 2.89 2.97 2.72
6 3.02 2.89 2.83 2.80 2.50 2.55 2.66 2.49
7 2.78 2.73 2.67 2.58 2.47 2.31 2.44 2.32
8 2.61 2.53 2.45 2.41 2.23 2.13 2.27 2.20
9 2.47 2.38 2.37 2.29 2.23 2.24 2.14 2.10
10 2.36 2.31 2.22 2.19 2.06 2.11 2.04 2.02

0.95

0 55.93 49.01 46.75 46.81 52.77 47.10 29.81 35.77
1 12.54 11.75 11.63 11.17 9.15 8.79 10.98 7.93
2 7.12 6.73 6.64 6.10 5.82 6.27 5.94 4.74
3 5.27 5.02 4.93 4.85 4.61 4.34 4.26 3.62
4 4.36 4.17 4.09 3.89 3.52 3.42 3.45 3.06
5 3.72 3.66 3.41 3.34 3.26 2.89 2.97 2.72
6 3.39 3.22 3.12 2.98 2.79 2.95 2.66 2.49
7 3.08 3 2.91 2.88 2.70 2.64 2.44 2.92
8 2.86 2.76 2.65 2.67 2.43 2.42 2.27 2.72
9 2.69 2.64 2.55 2.51 2.40 2.24 2.14 2.57
10 2.59 2.49 2.46 2.38 2.22 2.11 2.34 2.44

0.99

0 83.83 76.92 74.65 70.06 70.21 70.36 58.88 35.77
1 17.24 15.78 15.66 14.54 14.23 12.20 10.98 13.18
2 9.46 8.93 8.39 8.30 6.93 6.27 5.94 7.12
3 6.67 6.33 6.34 5.73 5.28 5.25 4.26 5.11
4 5.45 5.26 5.07 4.81 4.46 4.07 4.28 4.14
5 4.64 4.49 4.33 4.03 3.96 3.39 3.61 3.57
6 4.11 3.98 3.85 3.72 3.36 3.34 3.18 3.19
7 3.74 3.54 3.40 3.34 3.17 2.97 2.88 2.92
8 3.42 3.30 3.17 3.06 2.83 2.70 2.66 2.72
9 3.22 3.11 2.99 2.96 2.75 2.49 2.48 2.57
10 3.02 2.96 2.85 2.78 2.53 2.54 2.34 2.44

want to establish that the mean lifetime is at least𝑚
0
= 1000

hours with probability 𝑃∗ = 0.90. The life test is terminated
at 𝑡 = 400 hours.

Table 6: Minimum ratio of 𝜇/𝜇
0
for the acceptability of a lot with

producer’s risk of 𝛾 = 0.05 (𝜃 = 2).

𝑃∗ 𝑐
𝑎 = 𝑡
0
/𝜇
0

0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0

0.75

0 28.25 25.47 33.96 28.36 21.41 28.54 35.68 42.81
1 7.79 8.02 7.42 7.22 7.73 6.07 7.59 9.10
2 4.66 4.86 4.34 4.53 4.06 5.41 4.37 5.25
3 3.77 3.74 3.70 3.55 3.69 3.80 3.26 3.91
4 3.15 3.17 3.04 3.05 2.86 3.02 2.70 3.24
5 2.78 2.83 2.65 2.75 2.83 2.56 3.20 2.83
6 2.53 2.47 2.57 2.54 2.43 2.27 2.83 2.56
7 2.36 2.32 2.36 2.39 2.45 2.48 2.57 2.37
8 2.22 2.22 2.20 2.12 2.21 2.26 2.37 2.22
9 2.17 2.13 2.08 2.05 2.02 2.10 2.22 2.10
10 2.08 2.06 1.98 2 2.07 1.97 2.09 2.01

0.90

0 45.16 42.38 45.23 42.45 42.54 56.72 35.68 42.81
1 11.05 10.46 10.69 11.32 10.83 10.30 12.87 9.10
2 6.43 6.46 6.48 6.32 5.44 5.41 6.77 5.25
3 4.83 4.70 4.56 4.63 4.52 4.92 4.75 3.91
4 3.88 3.84 3.93 3.80 3.44 3.82 3.77 3.24
5 3.44 3.33 3.32 3.31 3.27 3.18 3.20 3.84
6 3.15 3 3.11 2.99 2.79 2.77 2.83 3.40
7 2.87 2.87 2.80 2.77 2.74 2.88 2.57 3.08
8 2.66 2.68 2.58 2.60 2.46 2.61 2.37 2.84
9 2.55 2.53 2.51 2.46 2.45 2.40 2.62 2.66
10 2.41 2.41 2.37 2.36 2.26 2.24 2.46 2.51

0.95

0 56.43 59.29 56.50 56.54 63.67 56.72 70.90 42.81
1 12.68 12.91 12.32 13.36 10.83 10.30 12.87 9.10
2 7.49 7.52 7.19 7.21 6.79 7.25 6.77 8.12
3 5.47 5.33 5.41 5.16 5.33 4.92 4.75 5.70
4 4.47 4.50 4.23 4.17 4.01 3.82 3.77 4.53
5 3.89 3.83 3.77 3.59 3.70 3.77 3.20 3.84
6 3.50 3.40 3.29 3.22 3.13 3.24 3.46 3.40
7 3.16 3.09 3.10 3.14 3.03 2.88 3.09 3.08
8 2.96 2.96 2.83 2.91 2.70 2.61 2.83 2.84
9 2.81 2.77 2.73 2.74 2.66 2.70 2.62 2.66
10 2.65 2.63 2.56 2.60 2.44 2.50 2.46 2.51

0.99

0 84.61 84.65 79.05 84.72 84.81 84.90 70.90 85.08
1 17.56 17.79 17.21 17.44 16.97 14.44 12.87 15.45
2 9.97 9.65 9.32 8.99 9.48 9.06 9.06 8.12
3 6.95 6.92 6.69 6.76 6.14 6.02 6.15 5.70
4 5.65 5.60 5.41 5.28 5.14 4.59 4.77 4.53
5 4.77 4.66 4.66 4.43 4.55 4.35 3.97 3.84
6 4.21 4.19 4 4.11 3.81 3.71 3.46 4.15
7 3.88 3.75 3.68 3.69 3.59 3.27 3.60 3.71
8 3.58 3.52 3.45 3.38 3.18 3.27 3.26 3.39
9 3.35 3.26 3.16 3.14 3.08 2.98 3 3.14
10 3.12 3.05 3.03 2.96 2.81 2.76 2.80 2.95

Table 1 shows the minimum sample size 𝑛 required to
ascertain that the mean life 𝜇 exceeds 𝜇

0
with probability at

least𝑃∗, the corresponding acceptance number 𝑐.When𝑃∗ =
0.90, 𝑎 = 𝑡

0
/𝜇
0
= 400/1000 = 0.4, 𝑐 = 2, the corresponding
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Figure 1:Theminimum sample size versus 𝑎 = 𝑡
0
/𝜇
0
with 𝜃 = 2, 𝑐 =

2.
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Figure 2: The minimum sample size versus 𝑎 = 𝑡
0
/𝜇
0
with 𝑃∗ =

0.90, 𝑐 = 2.

entry in Table 1 is 21.That is, out of 21 items, if nomore than 2
items fail during 400 hours, then the experimenter can assert
that the truemean lifetime 𝜇 of the items is at least 1000 hours
with a confidence level of 0.90.

Table 3 displays operating characteristic function values
for the time truncated acceptance sampling plan adopted
from Table 1, for various values of 𝑃∗ and for different values
of 𝜇/𝜇

0
when 𝑐 = 2. For example, when 𝑃∗ = 0.90, 𝑎 =

𝑡
0
/𝜇
0

= 0.4, 𝑐 = 2, 𝜇/𝜇
0

= 6, the corresponding entry
in Table 3 is 0.951. It implies that if we accept the above
acceptance sampling plan, that is, the lot is accepted if, out

of 21 items, less than or equal to 2 items fail before time point
𝑡
0
= 400 hours, then if 𝜇 ≥ 6 × 𝑡

0
/0.4 or 𝜇 ≥ 15𝑡

0
= 6000

hours, then the lot will be accepted with probability at least
0.951.

Table 5 shows the minimum ratio of the true mean
lifetime to the specified one for the acceptance of a lotwith the
producer’s risk 𝛾 = 0.05. For example, when the consumer’s
risk is 0.10 or 𝑃∗ = 0.90, 𝑐 = 2, and 𝑎 = 𝑡

0
/𝜇
0

= 0.4,
the table entry is 𝜇/𝜇

0
= 5.95, which indicates that if 𝜇 ≥

5.95 × 𝑡
0
/0.4 = 14.875𝑡

0
= 5950 hours, then, with sample

size 𝑛 = 21 and 𝑐 = 2, the lot will be rejected with probability
less than or equal to 0.05.

4. Concluding Remarks

In this paper, a time truncated acceptance sampling plan is
developed when the lifetime follows the Gompertz distri-
bution. The table for the minimum sample size required to
guarantee a certain mean lifetime of the test items is pre-
sented. The operating characteristic function values and the
associated producer’s risks are also discussed. The proposed
plans can be used conveniently.
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