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We study a finite buffer N-policy GI/M(n)/1 queue with Bernoulli-schedule vacation interruption. The server works with a slower
rate during vacation period. At a service completion epoch during working vacation, if there are at least N customers present in
the queue, the server interrupts vacation and otherwise continues the vacation. Using the supplementary variable technique and
recursive method, we obtain the steady state system length distributions at prearrival and arbitrary epochs. Some special cases of
the model, various performance measures, and cost analysis are discussed. Finally, parameter effect on the performance measures
of the model is presented through numerical computations.

1. Introduction

In many real world queueing systems, the server may be
unavailable for a random period of time when there is no
customer in the waiting line at a service completion instant.
This random period of server absence is often called server
vacation; see Doshi [1] and Tian and Zhang [2]. The classical
vacation scheme with Bernoulli-schedule (BS) discipline was
introduced and studied by Keilson and Servi [3]. Various
aspects of Bernoulli-schedule vacation models for single
server queueing systems have been studied by Servi [4] and
Ramaswamy and Servi [5].

Servi and Finn [6] introduced a class of semivacation
policies known as working vacation (WV) wherein a cus-
tomer is served at a slower rate rather than keeping com-
pletely inactive during a vacation. At a service completion
epoch during a regular busy period if the queue length
is empty, the server may take multiple working vacations
(MWV).The analysis of𝐺𝐼/𝑀/1 queue withMWV is carried
out by Baba [7] using thematrix-analyticmethod. Analysis of
finite buffer𝐺𝐼/𝑀/1 queuewithMWVcan be found in Banik
et al. [8]. In order to utilize the server effectively, vacation
interruption (VI) has become an important aspect, where the
server interrupts the vacation and resumes regular service

if at least one customer is present in the queue at a service
completion epoch during a vacation. Li and Tian [9] studied
a Markovian queue with vacation interruption. The 𝐺𝐼/𝑀/1

queue with Bernoulli-schedule vacation interruption (BS-VI)
has been analyzed by Tao et al. [10]. Using thematrix-analytic
method, they have obtained the steady state distributions for
the queue length, waiting time, and sojourn times.

For some controllable queueing systems with vacations, it
is usually assumed that the server is available or unavailable
completely depending upon the number of customers present
in the system. Whenever the system is empty, the server goes
on vacation. In the instant at which the server returns back
from a vacation and finds at least𝑁 customers in the system,
it begins serving immediately and exhaustively. This type of
control policy is also called𝑁-policy for the queueing systems
with vacations. A brief analysis on finite buffer 𝐺𝐼/𝑀/1

queue with 𝑁-policy has been given by Ke and Wang [11]
and Ke [12]. Tadj et al. [13] investigated a quorum queueing
system with a random setup time under 𝑁-policy and with
BS vacations. An infinite bufferMarkovian queue withMWV
and𝑁-policy is generalized by Zhang and Xu [14].

State dependent queues are dependent on the queue
size, arrivals, and their service times. This is applicable
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in many areas like cellular manufacturing cells, routers,
and switches that regulate the transmission of information
packages having finite buffer capacity. In many of these
applications, the arrival and service rates depend on the state
of the queue. These queues have applications on arrivals and
service rates which yield less waiting time in the system. Chao
and Rahman [15] have analyzed an 𝑁-policy 𝐺/𝑀(𝑛)/1/𝐾

queue with state dependent vacations. An efficient algorithm
for the state dependent services and state dependent MWV
for 𝐺𝐼/𝑀(𝑛)/1/𝑁 has been presented by Goswami et al.
[16]. Recently, a computational algorithm for the steady state
probabilities in a 𝐺𝐼/𝑀(𝑛)/1/𝑁/SWV-VI queue has been
presented by Laxmi et al. [17].

The present paper is an extension of the work of [10, 16]
wherein our aim is to include 𝑁-policy and BS-VI in a finite
buffer𝐺𝐼/𝑀(𝑛)/1queue.The analysis of such state dependent
service models has not been carried out so far to the best of
our knowledge. Further, the inclusion of 𝑁-policy with BS-
VI utilizes the server more and decreases the waiting lines
effectively in order to economize operating cost and energy
consumption.

Motivated by the above observations, this paper aims
to contribute to the theory of BS-VI models with 𝑁-policy.
The service times during service period, vacation period,
and vacation times are exponentially distributed. We pro-
vide a recursive method using the supplementary variable
technique and treating the remaining interarrival time as the
supplementary variable, to develop the steady state system
length distributions at prearrival and arbitrary epochs. The
recursive method is powerful and easy to implement. Some
performance measures such as blocking probability, the
expected queue length, and the expected waiting time have
been evaluated. Numerical results have been illustrated in the
form of tables and graphs. A cost optimization problem is
considered with a special case.

The paper is structured as follows. Next section presents
the description and analysis of the model. Some special cases
are derived in Section 3. Various performance measures and
cost model are discussed in Section 4. Section 5 contains
some numerical results to show the effectiveness of themodel
parameters followed by conclusions in Section 6.

2. Model Description

In this paper, we consider a 𝐺𝐼/𝑀(𝑛)/1/𝐾 queue with
working vacations and BS-VI under 𝑁-policy, where 𝐾

is the finite buffer space. We assume that the interarrival
times of successive arrivals are independent and identically
distributed (i.i.d.) random variables with cumulative distri-
bution function 𝐴(𝑥), probability density function 𝑎(𝑥), 𝑥 ≥

0, and Laplace-Stieltjes transform (L.-S. T) 𝐴∗(𝜃) with mean
interarrival time 1/𝜆 = −𝐴

∗(1)

(0), where ℎ
(1)

(0) is the first
derivative of ℎ(𝜃) evaluated at 𝜃 = 0. The customers are
served by a single server by first come first served rule.
Whenever the system becomes empty, the server takes a WV.
During a WV, a customer is served at a rate generally lower
than the regular service rate. At a service completion epoch
during WV, if there are at least 𝑁 customers present in the

queue, the server interrupts the vacation with probability
𝑞 = 1 − 𝑞 and switches to regular service and otherwise
continues the vacation with probability 𝑞. The service times
during regular busy period and during WV period are
exponentially distributed with rates 𝜇

𝑛
and 𝜂

𝑛
, 1 ≤ 𝑛 ≤ 𝐾,

respectively, if there are 𝑛 customers present in the system
before the beginning of a service. The vacation times also
follow exponential distribution with rate 𝛾

𝑛
, 1 ≤ 𝑛 ≤ 𝐾, when

there are 𝑛 customers in the system. Let 𝜇, 𝜂, and 𝛾 be the
mean service rates during a regular busy period, during WV
period and mean vacation rate respectively. They are given
by 𝜇 = ∑

𝐾

𝑛=1
𝜇
𝑛
/𝐾, 𝜂 = ∑

𝐾

𝑛=1
𝜂
𝑛
/𝐾, and 𝛾 = ∑

𝐾

𝑛=1
𝛾
𝑛
/𝐾.

The traffic intensity is given by 𝜌 = 𝜆/𝜇. Let us define the
state of the system at time 𝑡 as 𝑁

𝑠
(𝑡) denoting the number of

customers present in the system including the one in service,
𝑈(𝑡) is the remaining interarrival time for the next arrival,
and

𝜁 (𝑡) =
{

{

{

0, if the server is in WV period,

1, if the server is in regular busy period.
(1)

The joint probabilities denoted by 𝜋
𝑖,0
(𝑥, 𝑡) and 𝜋

𝑖,1
(𝑥, 𝑡) are

defined as

𝜋
𝑛,𝑗

(𝑥, 𝑡) 𝑑𝑥

= lim
𝑡→∞

𝑃 (𝑁
𝑠
(𝑡) ≤ 𝑛, 𝑥 ≤ 𝑈 (𝑡) ≤ 𝑥 + 𝑑𝑥, 𝜁 (𝑡) = 𝑗) ,

𝑥 ≥ 0, 𝑗 ≤ 𝑛 ≤ 𝐾, 𝑗 = 0, 1.

(2)

The above probabilities at steady state are denoted by 𝜋
𝑛,𝑗

(𝑥).

2.1. Analysis of the Model. The system length distributions
at prearrival epoch are obtained by developing differential-
difference equations at steady state. Treating the remaining
interarrival time as supplementary variable, we write the
equations as

−𝜋
(1)

0,0
(𝑥) = 𝜇

1
𝜋
1,1

(𝑥) + 𝜂
1
𝜋
1,0

(𝑥) ,

−𝜋
(1)

𝑛,0
(𝑥) = − 𝜂

𝑛
𝜋
𝑛,0

(𝑥) + 𝑎 (𝑥) 𝜋
𝑛−1,0

(0)

+ 𝜂
𝑛+1

𝜋
𝑛+1,0

(𝑥) , 1 ≤ 𝑛 ≤ 𝑁 − 1,

−𝜋
(1)

𝑛,0
(𝑥) = − 𝛼

𝑛
𝜋
𝑛,0

(𝑥) + 𝑎 (𝑥) 𝜋
𝑛−1,0

(0)

+ 𝑞𝜂
𝑛+1

𝜋
𝑛+1,0

(𝑥) , 𝑁 ≤ 𝑛 ≤ 𝐾 − 1,

−𝜋
(1)

𝐾,0
(𝑥) = −𝛼

𝐾
𝜋
𝐾,0

(𝑥) + 𝑎 (𝑥) (𝜋
𝐾−1,0

(0) + 𝜋
𝐾,0

(0)) ,

−𝜋
(1)

1,1
(𝑥) = −𝜇

1
𝜋
1,1

(𝑥) + 𝜇
2
𝜋
2,1

(𝑥) ,

−𝜋
(1)

𝑛,1
(𝑥) = − 𝜇

𝑛
𝜋
𝑛,1

(𝑥) + 𝜇
𝑛+1

𝜋
𝑛+1,1

(𝑥)

+ 𝑎 (𝑥) 𝜋
𝑛−1,1

(0) , 2 ≤ 𝑛 ≤ 𝑁 − 1,
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−𝜋
(1)

𝑛,1
(𝑥) = − 𝜇

𝑛
𝜋
𝑛,1

(𝑥) + 𝜇
𝑛+1

𝜋
𝑛+1,1

(𝑥)

+ 𝑞𝜂
𝑛+1

𝜋
𝑛+1,0

(𝑥) + 𝛾
𝑛
𝜋
𝑛,0

(𝑥)

+ 𝑎 (𝑥) 𝜋
𝑛−1,1

(0) , 𝑁 ≤ 𝑛 ≤ 𝐾 − 1,

−𝜋
(1)

𝐾,1
(𝑥) = − 𝜇

𝐾
𝜋
𝐾,1

(𝑥) + 𝛾
𝐾
𝜋
𝐾,0

(𝑥)

+ 𝑎 (𝑥) (𝜋
𝐾−1,1

(0) + 𝜋
𝐾,1

(0)) ,

(3)

where 𝛼
𝑛
= 𝛾
𝑛
+𝜂
𝑛
, 𝜋
𝑛,𝑗

(0), 𝑗 = 0, 1, are the respective rates of
arrivals; that is, an arrival is about to occur. Let us define the
Laplace transforms of 𝜋

𝑛,𝑗
(𝑥) as 𝜋∗

𝑛,𝑗
(𝜃) = ∫

∞

0

𝑒
−𝜃𝑥

𝜋
𝑛,𝑗

(𝑥)𝑑𝑥,
Re 𝜃 ≥ 0. Hence, 𝜋

𝑛,𝑗
≡ 𝜋
∗

𝑛,𝑗
(0) are the joint probabilities that

there are 𝑛 customers in the system and the server is in state
𝑗, 𝑗 = 0, 1. Multiplying the above set of equations by 𝑒

−𝜃𝑥 and
integrating with respect to 𝑥 from 0 to∞ yield

−𝜃𝜋
∗

0,0
(𝜃) = 𝜇

1
𝜋
∗

1,1
(𝜃) + 𝜂

1
𝜋
∗

1,0
(𝜃) − 𝜋

0,0
(0) , (4)

(𝜂
𝑛
− 𝜃) 𝜋

∗

𝑛,0
(𝜃) = 𝜂

𝑛+1
𝜋
∗

𝑛+1,0
(𝜃) + 𝐴

∗

(𝜃) 𝜋
𝑛−1,0

(0)

− 𝜋
𝑛,0

(0) , 1 ≤ 𝑛 ≤ 𝑁 − 1,

(5)

(𝛼
𝑛
− 𝜃) 𝜋

∗

𝑛,0
(𝜃) = 𝑞𝜂

𝑛+1
𝜋
∗

𝑛+1,0
(𝜃) + 𝐴

∗

(𝜃) 𝜋
𝑛−1,0

(0)

− 𝜋
𝑛,0

(0) , 𝑁 ≤ 𝑛 ≤ 𝐾 − 1,

(6)

(𝛼
𝐾
− 𝜃) 𝜋

∗

𝐾,0
(𝜃) = 𝐴

∗

(𝜃) (𝜋
𝐾−1,0

(0) + 𝜋
𝐾,0

(0)) − 𝜋
𝐾,0

(0) ,

(7)

(𝜇
1
− 𝜃) 𝜋

∗

1,1
(𝜃) = 𝜇

2
𝜋
∗

2,1
(𝜃) − 𝜋

1,1
(0) , (8)

(𝜇
𝑛
− 𝜃) 𝜋

∗

𝑛,1
(𝜃) = 𝜇

𝑛+1
𝜋
∗

𝑛+1,1
(𝜃) + 𝐴

∗

(𝜃) 𝜋
𝑛−1,1

(0)

− 𝜋
𝑛,1

(0) , 2 ≤ 𝑛 ≤ 𝑁 − 1,

(9)

(𝜇
𝑛
− 𝜃) 𝜋

∗

𝑛,1
(𝜃) = 𝜇

𝑛+1
𝜋
∗

𝑛+1,1
(𝜃) + 𝑞𝜂

𝑛+1
𝜋
∗

𝑛+1,0
(𝜃)

+ 𝛾
𝑛
𝜋
∗

𝑛,0
(𝜃) + 𝐴

∗

(𝜃) 𝜋
𝑛−1,1

(0)

− 𝜋
𝑛,1

(0) , 𝑁 ≤ 𝑛 ≤ 𝐾 − 1,

(10)

(𝜇
𝐾
− 𝜃) 𝜋

∗

𝐾,1
(𝜃) = 𝛾

𝐾
𝜋
∗

𝐾,0
(𝜃)

+ 𝐴
∗

(𝜃) (𝜋
𝐾,1

(0) + 𝜋
𝐾−1,1

(0))

− 𝜋
𝐾,1

(0) .

(11)

Further, adding (4) to (11) and taking limit as 𝜃 → 0, we
obtain the following result:

𝐾

∑

𝑛=0

𝜋
𝑛,0

(0) +

𝐾

∑

𝑛=1

𝜋
𝑛,1

(0) = 𝜆. (12)

The left hand side denotes themean number of entrances into
the system per unit time and is equal to the mean arrival rate
𝜆.

Solving the set of equations from (5) to (11) in a backward
recursion we get the following expressions.

Substituting 𝜃 = 𝛼
𝑛
in (7) to (6) and 𝜃 = 𝜂

𝑛
in (5), we get

𝜋
𝐾−1,0

(0) = (
1 − 𝐴
∗

(𝛼
𝐾
)

𝐴∗ (𝛼
𝐾
)

)𝜋
𝐾,0

(0) ,

𝜋
𝑛−1,0

(0) =
𝜋
𝑛,0

(0) − 𝑞𝜂
𝑛+1

𝜋
∗

𝑛+1,0
(𝛼
𝑛
)

𝐴∗ (𝛼
𝑛
)

, 𝑛 = 𝐾 − 1, . . . , 𝑁,

𝜋
𝑛−1,0

(0) =
𝜋
𝑛,0

(0) − 𝜂
𝑛+1

𝜋
∗

𝑛+1,0
(𝜂
𝑛
)

𝐴∗ (𝜂
𝑛
)

, 𝑛 = 𝑁 − 1, . . . , 1,

(13)

where, for 𝜃 ̸= 𝛼
𝑛
and 𝜃 ̸= 𝜂

𝑛
, the unknowns 𝜋

∗

𝑛,0
(𝜃) are

obtained from (7) to (5) as

𝜋
∗

𝐾,0
(𝜃) =

𝐴
∗

(𝜃) − (𝐴
∗

(𝛼
𝐾
))

(𝛼
𝐾
− 𝜃)𝐴∗ (𝛼

𝐾
)

𝜋
𝐾,0

(0) ,

𝜋
∗

𝑛,0
(𝜃) =

𝑞𝜂
𝑛+1

𝜋
∗

𝑛+1,0
(𝜃) + 𝐴

∗

(𝜃) 𝜋
𝑛−1,0

(0) − 𝜋
𝑛,0

(0)

(𝛼
𝑛
− 𝜃)

,

𝑛 = 𝐾 − 1, . . . , 𝑁,

𝜋
∗

𝑛,0
(𝜃) =

𝜂
𝑛+1

𝜋
∗

𝑛+1,0
(𝜃) + 𝐴

∗

(𝜃) 𝜋
𝑛−1,0

(0) − 𝜋
𝑛,0

(0)

(𝜂
𝑛
− 𝜃)

,

𝑛 = 𝑁 − 1, . . . , 2.

(14)

Substituting 𝜃 = 𝜇
𝑛
in (11) to (9) we get

𝜋
𝐾−1,1

(0) =
1 − 𝐴
∗

(𝜇
𝐾
)

𝐴∗ (𝜇
𝐾
)

𝜋
𝐾,1

(0) −
𝛾
𝐾

𝐴∗ (𝜇
𝐾
)
𝜋
∗

𝐾,0
(𝜇
𝐾
) ,

𝜋
𝑛−1,1

(0) =
𝜋
𝑛,1

(0)

𝐴∗ (𝜇
𝑛
)
−

𝜇
𝑛+1

𝜋
∗

𝑛+1,1
(𝜇
𝑛
)

𝐴∗ (𝜇
𝑛
)

−
𝑞𝜂
𝑛+1

𝜋
∗

𝑛+1,1
(𝜇
𝑛
)

𝐴∗ (𝜇
𝑛
)

−
𝛾
𝑛
𝜋
∗

𝑛,0
(𝜇
𝑛
)

𝐴∗ (𝜇
𝑛
)

, 𝑛 = 𝐾 − 1, . . . , 𝑁,

𝜋
𝑛−1,1

(0) =
𝜋
𝑛,1

(0)

𝐴∗ (𝜇
𝑛
)
−

𝜇
𝑛+1

𝜋
∗

𝑛+1,1
(𝜇
𝑛
)

𝐴∗ (𝜇
𝑛
)

, 𝑛 = 𝑁 − 1, . . . , 2.

(15)

For 𝜃 ̸= 𝜇
𝑛
, 𝜋∗
𝑛,1

(𝜃) are given by the following:

𝜋
∗

𝐾,1
(𝜃)

=
𝛾
𝐾
𝜋
∗

𝐾,0
(𝜃) + 𝐴

∗

(𝜃) (𝜋
𝐾−1,1

(0) + 𝜋
𝐾,1

(0)) − 𝜋
𝐾,1

(0)

(𝜇
𝐾
− 𝜃)

,
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𝜋
∗

𝑛,1
(𝜃) =

𝛾
𝑛
𝜋
∗

𝑛,0
(𝜃) + 𝑞𝜂

𝑛+1
𝜋
∗

𝑛+1,0
(𝜃) + 𝜇

𝑛+1
𝜋
∗

𝑛+1,1
(𝜃)

(𝜇
𝑛
− 𝜃)

+
𝐴
∗

(𝜃) 𝜋
𝑛−1,1

(0) − 𝜋
𝑛,1

(0)

(𝜇
𝑛
− 𝜃)

, 𝑛 = 𝐾 − 1, . . . , 𝑁,

𝜋
∗

𝑛,1
(𝜃) =

𝜇
𝑛+1

𝜋
∗

𝑛+1,1
(𝜃) + 𝐴

∗

(𝜃) 𝜋
𝑛−1,1

(0) − 𝜋
𝑛,1

(0)

(𝜇
𝑛
− 𝜃)

,

𝑛 = 𝑁 − 1, . . . , 2,

𝜋
∗

1,1
(𝜃) =

𝜇
2
𝜋
∗

2,1
(𝜃) − 𝜋

1,1
(0)

(𝜇
1
− 𝜃)

.

(16)

Differentiating (5) to (7) and setting 𝜃 = 𝛼
𝐾
in (7), 𝜃 = 𝛼

𝑛
in

(6), and 𝜃 = 𝜂
𝑛
in (5), we obtain, respectively,

𝜋
∗

𝐾,0
(𝛼
𝐾
) = −𝐴

∗(1)

(𝛼
𝐾
) (𝜋
𝐾−1,0

(0) + 𝜋
𝐾,0

(0)) , (17)

𝜋
∗

𝑛,0
(𝛼
𝑛
) = − (𝑞𝜂

𝑛+1
𝜋
∗(1)

𝑛+1,0
(𝛼
𝑛
) + 𝐴
∗(1)

(𝛼
𝑛
) 𝜋
𝑛−1,0

(0)) ,

𝑛 = 𝐾 − 1, . . . , 𝑁,

(18)

𝜋
∗

𝑛,0
(𝜂
𝑛
) = − (𝜂

𝑛+1
𝜋
∗(1)

𝑛+1,0
(𝜂
𝑛
) + 𝐴
∗(1)

(𝜂
𝑛
) 𝜋
𝑛−1,0

(0)) . (19)

Similarly, differentiating (11) to (8) and setting 𝜃 = 𝜇
𝑛
(1 ≤

𝑛 ≤ 𝐾), the expressions are given by

𝜋
∗

𝐾,1
(𝜇
𝐾
)

= − (𝛾
𝐾
𝜋
∗(1)

𝐾,0
(𝜇
𝐾
) + 𝐴
∗(1)

(𝜇
𝐾
) (𝜋
𝐾−1,1

(0) + 𝜋
𝐾,1

(0))) ,

𝜋
∗

𝑛,1
(𝜇
𝑛
) = − (𝛾

𝑛
𝜋
∗(1)

𝑛,0
(𝜇
𝑛
) + 𝑞𝜂

𝑛+1
𝜋
∗(1)

𝑛+1,0
(𝜇
𝑛
)

+ 𝜇
𝑛+1

𝜋
∗(1)

𝑛+1,0
(𝜇
𝑛
) + 𝐴
∗(1)

(𝜇
𝑛
) 𝜋
𝑛−1,1

(0)) ,

𝑛 = 𝐾 − 1, . . . , 𝑁,

𝜋
∗

𝑛,1
(𝜇
𝑛
) = − (𝜇

𝑛+1
𝜋
∗(1)

𝑛+1,0
(𝜇
𝑛
) + 𝐴
∗(1)

(𝜇
𝑛
) 𝜋
𝑛−1,1

(0)) ,

𝑛 = 𝑁 − 1, . . . , 2,

𝜋
∗

1,1
(𝜇
1
) = −𝜇

2
𝜋
∗(1)

2,1
(𝜇
1
) .

(20)

Using the above expressions one can evaluate𝜋
𝑛,𝑗

(0), (𝑗 ≤ 𝑛 ≤

𝐾).

2.2. Relation between Steady State Distributions at Prearrival
and Arbitrary Epochs. Let 𝜋

𝑛,𝑗
≡ 𝜋
∗

𝑛,𝑗
(0), 𝑗 ≤ 𝑛 ≤ 𝐾,

𝑗 = 0, 1, be the arbitrary and joint probabilities that there
are 𝑛 customers in the system and the server is in state 𝑗,
𝑗 = 0, 1, and let 𝜋−

𝑛,𝑗
denote the prearrival epoch probabilities.

Applying Bayes’ theory and the result (12), we have

𝜋
−

𝑛,𝑗
=

𝜋
𝑛,𝑗

(0)

𝜆
, 𝑗 ≤ 𝑛 ≤ 𝐾, 𝑗 = 0, 1. (21)

To obtain the arbitrary epoch probabilities, we develop rela-
tions between prearrival and arbitrary epoch probabilities.

Setting 𝜃 = 0 in (7) to (5) and (11) to (9) and using (21),
we obtain

𝜋
𝐾,0

= (
𝜆

𝛼
𝐾

)𝜋
−

𝐾−1,0
,

𝜋
𝑛,0

=
𝜆

𝛼
𝑛

[

[

𝜋
−

𝑛−1,0
+ (

𝑞𝜂
𝑛+1

− 𝛾
𝑛+1

𝛼
𝑛+1

)𝜋
−

𝑛,0

+

𝐾−1

∑

𝑗=𝑛+1

(
𝑞𝜂
𝑗+1

− 𝛾
𝑗+1

𝛼
𝑗+1

) ×

𝑗

∏

𝑠=𝑛+1

(
𝑞𝜂
𝑠

𝛼
𝑠

)𝜋
−

𝑠,0

]

]

,

𝑛 = 𝐾 − 1, 𝐾 − 2, . . . , 𝑁,

𝜋
𝑛,0

=
𝜆

𝜂
𝑛

[

[

𝜋
−

𝑛−1,0
+ (

𝛾
𝑁

𝛼
𝑁

)𝜋
−

𝑁−1,0
+ (

𝑞𝜂
𝑁+1

− 𝛾
𝑁+1

𝛼
𝑁+1

)𝜋
−

𝑁,0

+

𝐾−1

∑

𝑗=𝑁+1

(
𝑞𝜂
𝑗+1

− 𝛾
𝑗+1

𝛼
𝑗+1

)

𝑗

∏

𝑠=𝑁+1

(
𝑞𝜂
𝑠

𝛼
𝑠

)𝜋
−

𝑠,0

]

]

,

𝑛 = 𝑁 − 1, . . . , 1,

𝜋
𝐾,1

=
𝜆

𝜇
𝐾

[(
𝛾
𝐾

𝛼
𝐾

)𝜋
−

𝐾−1,0
+ 𝜋
−

𝐾−1,1
] ,

𝜋
𝑛,1

=
𝜆

𝜇
𝑛

[

[

𝜋
−

𝑛−1,1
+ (

𝛾
𝑛

𝛼
𝑛

)𝜋
−

𝑛−1,0
−

𝐾−1

∑

𝑗=𝑛

(
𝑞𝜂
𝑗+1

− 𝛾
𝑗+1

𝛼
𝑗+1

)

×

𝑗

∏

𝑠=𝑛

(
𝑞
(𝑠−𝑛)

𝜂
𝑠

𝛼
𝑠

)𝜋
−

𝑠,0

]

]

,

𝑛 = 𝐾 − 1, 𝐾 − 2, . . . , 𝑁,

𝜋
𝑛,1

=
𝜆

𝜇
𝑛

[

[

𝜋
−

𝑛−1,1
+ (

𝛾
𝑁

𝛼
𝑁

)𝜋
−

𝑁−1,0
−

𝐾−1

∑

𝑗=𝑁

(
𝑞𝜂
𝑗+1

− 𝛾
𝑗+1

𝛼
𝑗+1

)

×

𝑗

∏

𝑠=𝑁

(
𝑞
(𝑠−𝑖)

𝜂
𝑠

𝛼
𝑠

)𝜋
−

𝑠,0

]

]

,

𝑛 = 𝑁 − 1, 𝑁 − 2, . . . , 2,

𝜋
1,1

=
𝜆

𝜇
1

[

[

(
𝛾
𝑁

𝛼
𝑁

)𝜋
−

𝑁−1,0
−

𝐾−1

∑

𝑗=𝑁

(
𝑞𝜂
𝑗+1

− 𝛾
𝑗+1

𝛼
𝑗+1

)

×

𝑗

∏

𝑠=𝑁

(
𝑞
(𝑠−𝑖)

𝜂
𝑠

𝛼
𝑠

)𝜋
−

𝑠,0

]

]

.

(22)

Using the normalization condition, the only unknown 𝜋
0,0

is
obtained as

𝜋
0,0

= 1 −

𝐾

∑

𝑛=1

(𝜋
𝑛,0

+ 𝜋
𝑛,1

) . (23)
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3. Special Cases

Somemodels available in the literature are deduced as special
cases of our model by taking specific values of the parameters
𝑁, 𝑞, 𝜂

𝑛
, 𝜇
𝑛
, and 𝛾

𝑛
.

Case 1. If 𝑞 = 𝑁 = 1, our model reduces to finite buffer
𝐺𝐼/𝑀(𝑛)/1 queue with MWV. In this case (5) and (9) do not
exist. Our results are found tomatch with the results available
in Goswami et al. [16].

Case 2. If 𝜂
𝑛

→ 0, the model becomes 𝐺𝐼/𝑀(𝑛)/1/𝐾

with 𝑁-policy; our results are in accordance with Chao and
Rahman [15].

Case 3. If ∀𝑛, 𝜇
𝑛
= 𝜇, 𝛾

𝑛
→ ∞, 𝜂

𝑛
→ 0, 𝑞 = 1, the model

reduces to 𝐺𝐼/𝑀/1/𝐾 queue and the results match with the
results available in Ke and Wang [11].

4. Performance Measures

In this section, some operating characteristics such as the
average number of customers in the queue (𝐿

𝑞
) (system (𝐿

𝑠
)),

the average waiting time of a customer in the queue (𝑊
𝑞
)

(system (𝑊
𝑠
)), and the blocking probability of the server

(𝑃loss) are evaluated. They are, respectively, given by

𝐿
𝑞
=

𝐾

∑

𝑛=1

(𝑛 − 1) 𝜋
𝑛,0

+

𝐾

∑

𝑛=1

(𝑛 − 1) 𝜋
𝑛,1

,

𝐿
𝑠
=

𝐾

∑

𝑛=1

𝑛𝜋
𝑛,0

+

𝐾

∑

𝑛=1

𝑛𝜋
𝑛,1

,

𝑃loss = 𝜋
−

𝐾,0
+ 𝜋
−

𝐾,1
,

𝑊
𝑞
=

𝐿
𝑞

𝜆̂

, 𝑊
𝑠
=

𝐿
𝑠

𝜆̂

,

(24)

where 𝜆̂ = 𝜆(1 − 𝑃loss) is the effective arrival rate.

4.1. Cost Model. In this subsection, we formulate an expected
cost model, in which mean service rate during vacation 𝜂 is
the decision variable. Let us define the following:

𝐶
𝜇
≡ cost per unit time during regular busy period,

𝐶
𝜂

≡ cost per unit time during working vacation
period,
𝐶
𝑙𝑞

≡ cost per unit time for a customer waiting in the
queue,
𝐶ploss ≡ cost per unit time when a customer is lost due
to blocking.

The total expected cost function per unit time is given by
Minimize : 𝑓 (𝜂) = 𝐶

𝜇
𝜇 + 𝐶

𝜂
𝜂 + 𝐶
𝑙𝑞
𝐿
𝑞
+ 𝐶ploss𝑃loss. (25)

Our objective is to determine the optimal mean service rate
during vacation 𝜂

∗ to minimize the cost function 𝑓(𝜂). We
employ the QFSM to solve the above optimization problem,
as the computation of derivatives of the above expected cost
function is a nontrivial task.

Table 1: Performance characteristics of 𝐸
2
/𝑀(𝑛)/1/10 queue with

𝑁 = 5, 𝜆 = 0.808612.

𝑞 = 0 𝑞 = 0.3 𝑞 = 0.6 𝑞 = 1

𝐿
𝑞

1.222528 1.222661 1.222806 1.223020
𝐿
𝑠

2.156477 2.156633 2.156803 2.157055
𝑃loss 0.000027 0.000027 0.000027 0.000027
𝑊
𝑞

1.511926 1.512090 1.512269 1.512534
𝑊
𝑠

2.666959 2.667152 2.667362 2.667674
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Figure 1: Impact of 𝜂 on 𝐿
𝑞
.

4.2. Quadratic Fit Search Method. Given a 3-point pattern,
we can fit a quadratic function through corresponding
functional values that has a unique minimum, 𝑥𝑞, for the
given objective function 𝑓(𝑥). Quadratic fit uses this approx-
imation to improve the current 3-point pattern by replacing
one of its points with approximate optimum 𝑥

𝑞. The unique
optimum 𝑥

𝑞 of the quadratic function agreeing with 𝑓(𝑥) at
3-point operation (𝑥

𝑙

, 𝑥
𝑚

, 𝑥
ℎ

) occurs at

𝑥
𝑞

≅
1

2
[(𝑓 (𝑥

𝑙

) [(𝑥
𝑚

)
2

− (𝑥
ℎ

)
2

] + 𝑓 (𝑥
𝑚

)

× [(𝑥
ℎ

)
2

− (𝑥
𝑙

)
2

] + 𝑓 (𝑥
ℎ

) [(𝑥
𝑙

)
2

− (𝑥
𝑚

)
2

])

× (𝑓 (𝑥
𝑙

) [𝑥
𝑚

− 𝑥
ℎ

] + 𝑓 (𝑥
𝑚

) [𝑥
ℎ

− 𝑥
𝑙

]

+ 𝑓 (𝑥
ℎ

) [𝑥
𝑙

− 𝑥
𝑚

])

−1

] .

(26)

5. Numerical Results

To validate the results obtained earlier, some numerical com-
putations have been done and some of them are presented in
the form of tables and graphs. The parameters of the system
are taken as 𝐾 = 10, 𝑁 = 5, the traffic intensity 𝜌 = 0.5,
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𝜇
𝑛
= ln(𝑛 + 0.4), 𝜂

𝑛
= ln(𝑛 + 0.2), and 𝛾

𝑛
= ln(𝑛 + 0.3) with

mean values 𝜇 = 1.617224, 𝜂 = 1.566202, and 𝛾 = 1.592235,
respectively, unless otherwise mentioned separately in the
respective graphs and tables. The various cost parameters are
taken as 𝐶

𝜇
= 20, 𝐶

𝜂
= 18, 𝐶

𝑙𝑞
= 30, and 𝐶ploss = 10.

Table 1 presents the performance characteristics of the
𝐸
2
/𝑀(𝑛)/1/10model for different 𝑞 values. It can be observed

that as 𝑞 increases, the system characteristics increase and
model with VI (𝑞 = 0) performs better than the model
without VI (𝑞 = 1) as expected in practice.

Figure 1 depicts the effect of 𝜂 on the expected queue
length (𝐿

𝑞
) in models with and without VI for 𝐻𝐸

2
interar-

rival time distributionwith𝜆
1
= 0.381248,𝜆

2
= 3.2,𝜎

1
= 0.4,

and 𝜎
2
= 0.6. We observe that as 𝜂 increases, 𝐿

𝑞
decreases.
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Figure 4: Effect on 𝜂 on 𝑓(𝜂).

Further, in both models (MWV and MWV-VI) 𝐿
𝑞
converges

to the same value as 𝜂 approaches 𝜇.
Figure 2 shows the impact of threshold value 𝑁 on 𝑊

𝑞

when interarrival time is exponentially distributed. It is clear
from the figure that𝑊

𝑞
increases with the increase of𝑁. This

is because as 𝑁 increases more customers are required for
the service start-up that results in increase of waiting time.
Further, the average waiting time in case of queues without
VI is higher as compared to queues with VI particularly for
smaller𝑁 values.

A similar observation of above figure can be made from
Figure 3where the effect of𝜆 on𝐿

𝑞
for two different threshold

values of𝑁 is shown. It is clear that as𝑁 increases, difference
between twomodels for𝐿

𝑞
reduces.Moreoverwe can observe

that MWV-VI (𝑞 = 0) model gives us the better expected
queue lengths.

The effect of 𝜂 on the total expected cost function (𝑓(𝜂))

is shown in Figure 4, with constant service rates during
regular busy period and during working vacation period
and constant vacation rates. The state independent rates are
chosen as 𝜇 = 2.8, 𝛾 = 0.9, and 𝜆 = 1.5. With the
information of Figure 4, QFSM is applied by choosing the
stopping tolerance 𝜖 = 10

−5 and the initial 3-point pattern
as (𝜂
𝑙

, 𝜂
𝑚

, 𝜂
ℎ

) = (2.5, 2.6, 2.7). After six iterations, Table 2
shows that the minimum expected operating cost per unit
time converges to the solution 𝑓(𝜂) = 124.2712 for 𝜂

∗

=

2.583980.
Table 3 describes the sensitivity analysis of cost function

and the queue lengths between MWV and MWV-VI models
for different 𝜆 and𝑁 values.Theminimum expected cost and
the average queue lengths increase with 𝑁 and 𝜆 in both the
models and the model with VI has lower queue lengths when
the arrival rate is lower. The above observations highlight the
fact that the model with MWV-VI has better performance
than the MWV model for lower threshold value 𝑁 and for
𝜂 < 𝜇.
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Table 2: Search for optimum service rate during working vacation period (𝜂∗).

𝜂
𝑙

𝜂
𝑚

𝜂
ℎ

𝑓(𝜂
𝑙

) 𝑓(𝜂
𝑚

) 𝑓(𝜂
ℎ

) 𝜂
𝑞

𝑓(𝜂
𝑞

)

2.50000 2.60000 2.70000 124.3275 124.2732 124.3748 2.58482 124.2712
2.50000 2.58482 2.60000 124.3275 124.2712 124.2732 2.58409 124.2712
2.50000 2.58409 2.58482 124.3275 124.2712 124.2712 2.58394 124.2712
2.50000 2.58394 2.58409 124.3275 124.2712 124.2712 2.58398 124.2712
2.58394 2.58398 2.58409 124.2712 124.2712 124.2712 2.58398 124.2712
2.58394 2.58398 2.58398 124.2712 124.2712 124.2712 — —

Table 3: Sensitivity analysis of MWV and MWV-VI models.

𝑁 𝜆
MWV MWV-VI

𝜂
∗

𝑓(𝜂) 𝐿
𝑞

𝜂
∗

𝑓(𝜂) 𝐿
𝑞

1 1.1 0.138792 089.547341 1.034160 0.417693 086.290059 0.758794
1.3 0.391248 099.693814 1.043741 0.560349 099.666960 1.122521

3 1.1 1.165482 101.761264 0.827047 0.947490 098.967713 0.823598
1.3 1.455129 110.737740 0.951105 1.110389 107.311209 1.043741

5 1.1 1.843442 108.197096 0.633725 1.832134 107.507853 0.618745
1.3 2.242303 116.015649 0.654932 2.147315 115.435968 0.692579

6. Conclusions

In this paper, we have carried out an analysis of a renewal
input state dependent 𝑁-policy queue with Bernoulli-
schedule vacation interruption that has potential applica-
tions in production, manufacturing, traffic signals, telecom-
munication systems, and so forth. The Bernoulli-schedule
parameter 𝑞 enables combined study of the models with and
without VI. Using the supplementary variable technique we
have developed a recursive method to obtain the steady state
system length distributions at various epochs. The recursive
method used is powerful and easy to implement. Various
performance measures are evaluated and a cost optimization
problem is considered using quadratic fit search method.The
method and analysis used in this paper can be applied to
multiserver 𝐺𝐼/𝑀(𝑛)/𝐶 and 𝑀𝐴𝑃/𝑀(𝑛)/𝐶 queues. These
topics are left for future investigation.
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