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Two special classes of symmetric coefficient matrices were defined based on characteristics matrix; meanwhile, the expressions of
the solution to inverse problems are given and the conditions for the solvability of these problems are studied relying on researching.
Finally, the optimal approximation solution of these problems is provided.

1. Introduction

In recent years, a lot of matrix problems have been used
widely in the fields of structural design, automatic control,
physical, electrical, nonlinear programming and numerical
calculation, for example, a matrix Eigen value problem was
applied for mixed convection stability analysis in the Darcy
media by Serebriiskii et al. [1] and some of the problems based
on the nonskew symmetric orthogonal matrices were studied
by Hamed and Bennacer in 2008 [2], but some of the matrix
inverse problems still need further research in order to
make it easier to discuss relevant issues. Therefore, in this
paper, we studied the inverse problems of two kinds of special
matrix equations based on the existing research achieve-
ments, moreover, the expressions and conditions of the mat-
rix solutions are given by relatedmatrix-calculationmethods.
Some definitions and assumptions of the inverse problem
for two forms of special matrices are given in Section 2. In
Sections 3 and 5 we discuss the existence and expressions of
general solution based on the two classes of matrices, and in
Sections 4 and 6 we prove the uniqueness of matrices for
researching related inverse problems.

2. Definitions and Assumptions of Inverse
Problems for Two Forms of Special Matrices

In order to research some inverse problems of related matri-
ces, we give the following definitions and assumptions.

Definition 1. When 𝑃 ∈ 𝑅
𝑛×𝑛, 𝑃 = 𝑃

𝑇

= 𝑃
−1, 𝐴 = (𝑎

𝑖𝑗
) ∈

𝑅
𝑛×𝑛, 𝑖, 𝑗 = 1, 2, 3, . . . , 𝑛, (𝑃𝐴)𝑇 = −𝑃𝐴, and 𝑎

𝑖𝑗
= −𝑎
𝑗𝑖
, 𝐴

will be called the first-class special symmetric matrix and the
set of these special symmetric matrices is denoted by𝐴1𝑅𝑛×𝑛.
The corresponding problems are as follows.

Problem 1.When 𝑋, 𝐵 ∈ 𝑅
𝑛×𝑚, 𝐴 ∈ 𝐴1𝑅

𝑛×𝑛 can be obtained,
so that 𝐴𝑋 = 𝐵.

Problem 2. When �̇� ∈ 𝑅
𝑛×𝑛, 𝐴 ∈ 𝑆

𝐸
can be obtained, so that

‖�̇�−𝐴‖ = min
𝐴∈𝑆𝐸

‖�̇�−𝐴‖, where 𝑆
𝐸
is the solution set of the

first problem.

Definition 2. When 𝐴 = (𝑎
𝑖𝑗
) ∈ 𝑅
𝑛×𝑛, 𝑖, 𝑗 = 1, 2, 3, . . . , 𝑛 and

𝑎
𝑖𝑗
= −𝑎
𝑛+1−𝑖,𝑛+1−𝑗

, 𝐴 will be called the second-class special
symmetric matrix and the set of these special symmetric
matrices is denoted by 𝐴2𝑅𝑛×𝑛. The corresponding problems
are as follows.

Problem 1.When 𝑋, 𝐵 ∈ 𝑅
𝑛×𝑚, 𝐴 ∈ 𝐴2𝑅

𝑛×𝑛 can be found, so
that 𝐴𝑋 = 𝐵.

Problem 2. When �̇� ∈ 𝑅
𝑛×𝑛, 𝐴 ∈ 𝑆

𝐸
can be found, so that

‖�̇�−𝐴‖ = min
𝐴∈
̃
𝑆𝐸

‖�̇�−𝐴‖, where 𝑆
𝐸
is the solution set of the

first problem.
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3. Existence and Expression of General
Solutions Based on the First-Class Special
Symmetric Matrix for Problem 1

To research the structure and properties of the special sym-
metric matrix 𝐴 ∈ 𝐴1𝑅

𝑛×𝑛, first of all, we have the following
conclusion from Definition 1.

Conclusion 1. Consider 𝐴 = (𝑎
𝑖𝑗
) ∈ 𝑅

𝑛×𝑛, and the sufficient
and necessary conditions for 𝐴 ∈ 𝐴1𝑅

𝑛×𝑛 are

𝐴
𝑇

= −𝐴, 𝐴
𝑇

𝑃 + 𝑃𝐴 = 0. (1)

Theorem 3. Consider 𝐴 = (𝑎
𝑖𝑗
) ∈ 𝑅
𝑛×𝑛, and the sufficient and

necessary conditions for 𝐴 ∈ 𝐴1𝑅
𝑛×𝑛 are

𝐴 = 𝑈[
𝐴
11

0

0 𝐴
22

]𝑈
𝑇

, (2)

where𝐴
11
∈ 𝐴1𝑅

𝑘×𝑘,𝐴
22
∈ 𝐴1𝑅

(𝑛−𝑘)×(𝑛−𝑘), and𝑈 is an ortho-
gonal matrix. Consider 𝑈 ∈ 𝑅

𝑛×𝑛 and 𝑈𝑈𝑇 = 𝐼
𝑛
.

Proof. Rely on the decomposition theorem of symmetric
orthogonal matrix [3, 4]. When 𝑃 is a symmetric orthogonal
matrix, 𝑃 ∈ 𝑅

𝑛×𝑛, the 𝑃 can be represented as the following
equation by an orthogonal matrix 𝑈, 𝑈 ∈ 𝑅

𝑛×𝑛:

𝑃 = 𝑈[
𝐼
𝑘

0

0 −𝐼
𝑛−𝑘

]𝑈
𝑇

, (3)

where 𝐼 is identity matrix [5].
When 𝐴 ∈ 𝐴1𝑅

𝑛×𝑛, we can derive from (1) and (3) the
following:

𝑈
𝑇

𝐴
𝑇

𝑈[
𝐼
𝑘

0

0 −𝐼
𝑛−𝑘

] + [
𝐼
𝑘

0

0 −𝐼
𝑛−𝑘

]𝑈
𝑇

𝐴𝑈 = 0. (4)

Based on 𝐴
𝑇

= −𝐴 and 𝑈𝑇𝐴𝑈 ∈ 𝐴1𝑅
𝑛×𝑛, there will be

𝑈
𝑇

𝐴𝑈 = [

[

𝐴
11

𝐴
12

−𝐴
𝑇

12
𝐴
22

]

]

(5)

and 𝐴 = 𝑈[
𝐴11 𝐴12

−𝐴
𝑇

12
𝐴22

]𝑈
𝑇 can be derived from (4) and (5).

Conversely, when

𝐴 = 𝑈[

[

𝐴
11

𝐴
12

−𝐴
𝑇

12
𝐴
22

]

]

𝑈
𝑇

, (6)

𝐴
𝑇

= −𝐴, 𝐴𝑇𝑃 + 𝑃𝐴 = 0 can be obtained, and, relying on
Conclusion 1, 𝐴 ∈ 𝐴1𝑅

𝑛×𝑛 can be obtained.

Theorem 4. When 𝑋, 𝐵 ∈ 𝑅
𝑛×𝑚 and the 𝑋 singular value

decomposition is

𝑋 = 𝑈
1
[
Σ
1
0

0 0
]𝑉
𝑇

1
, (7)

where 𝑈
1

= [𝑈
(1)

𝑈
(2)
] ∈ 𝑂𝑅

𝑛×𝑛, 𝑉
1

= [𝑉
(1)

𝑉
(2)
] ∈

𝑂𝑅
𝑚×𝑚, and Σ

1
= diag(𝛿

1
, . . . , 𝛿

𝑟
) > 0, 𝑟 = rank(𝑋), 𝑈(1) ∈

𝑅
𝑛×𝑟, 𝑈(2) ∈ 𝑅

𝑛×(𝑛−𝑟), 𝑉(1) ∈ 𝑅
𝑚×𝑟, 𝑉(2) ∈ 𝑅

𝑚×(𝑚−𝑟), 𝑂𝑅𝑛×𝑛 is
the set of orthogonal matrix, and 𝑋+ is Moore-Penrose gener-
alized inverse matrix [6–8].

The sufficient and necessary conditions for the existence of
solution 𝐴𝑋 = 𝐵 are

𝐵
𝑇

𝑋 = −𝑋
𝑇

𝐵, 𝐵𝑋
+

𝑋 = 𝐵. (8)

And the general solution is as follows:

𝐴 = 𝐵𝑋
+

− (𝐵𝑋
+

)
𝑇

(𝐼
𝑛
− 𝑋𝑋

+

) + 𝑈
(2)

𝐺(𝑈
(2)

)
𝑇

, (9)

where 𝐺 ∈ 𝐴1𝑅
(𝑛−𝑟)×(𝑛−𝑟).

Proof. Define

𝑈
𝑇

1
𝐴𝑈
1
= [

𝐴
11

𝐴
12

𝐴
21

𝐴
22

] ,

𝑈
𝑇

1
𝐵𝑉
1
= [

𝐵
11

𝐵
12

𝐵
21

𝐵
22

] ,

(10)

where 𝐴
11
∈ 𝑅
𝑟×𝑟 and 𝐵

𝑖𝑗
= (𝑈
(1)

)
𝑇

𝐵𝑉
(1), 𝑖, 𝑗 = 1, 2.

The equation𝐴𝑋 = 𝐵 can be represented as the following
equation by (7) and (10):

[
𝐴
11

𝐴
12

𝐴
21

𝐴
22

] [
Σ
1
0

0 0
] = [

𝐵
11

𝐵
12

𝐵
21

𝐵
22

] . (11)

According to (7) and (8), there will be

𝐵
𝑇

11
Σ
1
= −Σ
1
𝐵
11
, 𝐵

12
= 0, 𝐵

22
= 0. (12)

Then (11) is equivalent to the following equation:

𝐴
11
Σ
1
= 𝐵
11
,

𝐴
21
Σ
1
= 𝐵
21
,

(13)

and 𝐴
11

= 𝐵
11
Σ
−1

1
∈ 𝐴1𝑅

𝑟×𝑟 and 𝐴
21

= 𝐵
21
Σ
−1

1
can be obta-

ined from (12) and (13), so the equation𝐴𝑋 = 𝐵has solutions,
𝐴 ∈ 𝐴1𝑅

𝑛×𝑛. And the general solution can be represented as
the following equation:

𝐴 = 𝑈
1

[

[

𝐵
11
Σ
−1

1
−Σ
−1

1
𝐵
𝑇

21

𝐵
21
Σ
−1

1
𝐴
22

]

]

𝑈
𝑇

1

= 𝐵𝑋
+

− (𝐵𝑋
+

)
𝑇

(𝐼
𝑛
− 𝑋𝑋

+

) + 𝑈
(2)

𝐺(𝑈
(2)

)
𝑇

,

(14)

where 𝐺 ∈ 𝐴1𝑅
(𝑛−𝑟)×(𝑛−𝑟).

Conversely, when the equation𝐴𝑋 = 𝐵 has solutions and
𝐴 ∈ 𝐴1𝑅

𝑛×𝑛, 𝐵𝑋+𝑋 = 𝐵 and 𝑋𝑇𝐵 = 𝑋
𝑇

𝐴𝑋 can be obtained
relying on the Penrose theorem [9, 10].

There will be

𝐵
𝑇

𝑋 = (𝑋
𝑇

𝐵)
𝑇

= (𝑋
𝑇

𝐴𝑋)
𝑇

= −𝑋
𝑇

𝐴𝑋 = −𝑋
𝑇

𝐵. (15)

The equations 𝐵𝑇𝑋 = −𝑋
𝑇

𝐵 and 𝐵𝑋+𝑋 = 𝐵 are provided.
Finally the proof of Theorems 3 and 4 is completed.
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FromTheorems 3 and 4 we have a corollary as follows.

Corollary 5. Consider that 𝑋, 𝐵 ∈ 𝑅
𝑛×𝑚,𝑋

𝑖
and 𝐵

𝑖
(𝑖 = 1, 2),

𝑋
2
, 𝐵
2
∈ 𝑅
(𝑛−𝑘)×𝑚, and 𝑋

1
, 𝐵
1
∈ 𝑅
𝑘×𝑚 are given by these

equations:

𝑈
𝑇

𝑋 = [
𝑋
1

𝑋
2

] , 𝑈
𝑇

𝐵 = [
𝐵
1

𝐵
2

] . (16)

The 𝑋
𝑖
singular value decompositions are

𝑋
1
= 𝑈
1
[
Σ
1
0

0 0
]𝑉
𝑇

1
, 𝑋

2
= 𝑈
2
[
Σ
2
0

0 0
]𝑉
𝑇

2
, (17)

where𝑈
1
= [𝑈
(1)

1
𝑈
(2)

1
] ∈ 𝑂𝑅

𝑘×𝑘,𝑉
1
= [𝑉
(1)

1
𝑉
(2)

1
] ∈ 𝑂𝑅

𝑚×𝑚,
𝑈
2

= [𝑈
(1)

2
𝑈
(2)

2
] ∈ 𝑂𝑅

(𝑛−𝑘)×(𝑛−𝑘), 𝑉
2

= [𝑉
(1)

2
𝑉
(2)

2
] ∈

𝑂𝑅
𝑚×𝑚, Σ

1
= diag(𝛿1

1
, . . . , 𝛿

1

𝑟1

) > 0, Σ
2
= diag(𝛿2

1
, . . . , 𝛿

2

𝑟2

) >

0, 𝑟
1
= rank(𝑋

1
), 𝑟
2
= rank(𝑋

2
), 𝑉(1)
1

∈ 𝑅
𝑚×𝑟1 , 𝑈(1)

2
∈

𝑅
(𝑛−𝑘)×𝑟2 , 𝑈

1

(1)

∈ 𝑅
𝑘×𝑟1 , 𝑉

2

(1)

∈ 𝑅
𝑚×𝑟2 .

The sufficient and necessary conditions for the existence of
solution 𝐴𝑋 = 𝐵 are

𝐵
𝑇

𝑖
𝑋
𝑖
= −𝑋
𝑇

𝑖
𝐵
𝑖
, 𝐵

𝑖
𝑋
+

𝑖
𝑋
𝑖
= 𝐵
𝑖
. (18)

And the general solution is as follows:

𝐴 = 𝑈[

𝐴
11

0

0 𝐴
22

]𝑈
𝑇

+ 𝑈[

[

𝑈
(2)

1
𝐺
1
(𝑈
(2)

1
)
𝑇

0

0 𝑈
(2)

2
𝐺
2
(𝑈
(2)

2
)
𝑇

]

]

𝑈
𝑇

,

𝐴
11
= 𝐵
1
𝑋
+

1
− (𝐵
1
𝑋
+

1
)
𝑇

(𝐼
𝑘
− 𝑋
1
𝑋
+

1
)

𝐴
22
= 𝐵
2
𝑋
+

2
− (𝐵
2
𝑋
+

2
)
𝑇

(𝐼
𝑛−𝑘

− 𝑋
2
𝑋
+

2
) ,

(19)

where 𝐺
1
∈ 𝐴1𝑅

(𝑘−𝑟1)×(𝑘−𝑟1) and 𝐺
2
∈ 𝐴1𝑅

(𝑛−𝑘−𝑟2)×(𝑛−𝑘−𝑟2).

The proof is completed.

4. The Unique Solutions on the First-Class
Special Symmetric Matrix for Problem 2

Consider the following theorem.

Theorem6. When𝑋, 𝐵 ∈ 𝑅
𝑛×𝑚,𝐴 ∈ 𝑅

𝑛×𝑛, and𝑋
𝑖
and𝐵

𝑖
(𝑖 =

1, 2) are given by (16) and obey (18), Problem 2 has the unique
solution 𝐴 ∈ 𝑆

𝐸
.

Define

𝑈
𝑇

�̇�𝑈 = [

�̇�
11

�̇�
12

�̇�
21

�̇�
22

] , �̇�
11
∈ 𝑅
𝑘×𝑘

. (20)

Then the unique solution 𝐴 can be represented as follows:

𝐴 = 𝑈[

�̇�
11

0

0 �̇�
22

]𝑈
𝑇

, (21)

where
𝐴
11
= 𝐴
0

11
+ 0.5

⋅ (𝐼
𝑘
− 𝑋
1
𝑋
+

1
) (�̇�
11
− �̇�
𝑇

11
) (𝐼
𝑘
− 𝑋
1
𝑋
+

1
) ,

𝐴
22
= 𝐴
0

22
+ 0.5

⋅ (𝐼
𝑛−𝑘

− 𝑋
2
𝑋
+

2
) (�̇�
22
− �̇�
𝑇

22
) (𝐼
𝑛−𝑘

− 𝑋
2
𝑋
+

2
) .

(22)

𝐴
0
is defined by the following equation:

𝐴
0
= 𝑈[

𝐴
0

11
0

0 𝐴
0

22

]𝑈
𝑇

, (23)

𝐴
0

11
= 𝐵
1
𝑋
+

1
− (𝐵
1
𝑋
+

1
)
𝑇

(𝐼
𝑘
− 𝑋
1
𝑋
+

1
) ,

𝐴
0

22
= 𝐵
2
𝑋
+

2
− (𝐵
2
𝑋
+

2
)
𝑇

(𝐼
𝑛−𝑘

− 𝑋
2
𝑋
+

2
) .

(24)

Finally 𝑆
𝐸
can represent the following set by Theorem 4:

𝑆
𝐸
= 𝐴
0

+ 𝑈[

[

𝑈
(2)

1
𝐺
2
(𝑈
(2)

1
)
𝑇

0

0 𝑈
(2)

2
𝐺
2
(𝑈
(2)

2
)
𝑇

]

]

𝑈
𝑇

.
(25)

Consider 𝐺
1
∈ 𝐴1𝑅

(𝑘−𝑟1)×(𝑘−𝑟1) and 𝐺
2
∈ 𝐴1𝑅

(𝑛−𝑘−𝑟2)×(𝑛−𝑘−𝑟2).

Proof. Define these following equations:

𝑈
𝑇

1
(�̇�
11
− 𝐴
0

11
)𝑈
1
= [

�̇�
1

11
�̇�
1

12

�̇�
1

21
�̇�
1

22

] ,

𝑈
𝑇

2
(�̇�
22
− 𝐴
0

22
)𝑈
2
= [

�̇�
2

11
�̇�
2

12

�̇�
2

21
�̇�
2

22

] ,

(26)

where �̇�1
11
∈ 𝑅
𝑟1×𝑟1 and �̇�1

22
∈ 𝑅
𝑟2×𝑟2 .

Because of 𝐴 ∈ 𝑆
𝐸
we can obtain

𝐴 = 𝐴
0
+ 𝑈[

[

𝑈
(2)

1
𝐺
1
(𝑈
(2)

1
)
𝑇

0

0 𝑈
(2)

2
𝐺
2
(𝑈
(2)

2
)
𝑇

]

]

𝑈
𝑇

= 𝐴
0
+ 𝑈

[
[
[

[

𝑈
1
[
0 0

0 𝐺
1

]𝑈
𝑇

1
0

0 𝑈
2
[
0 0

0 𝐺
2

]𝑈
𝑇

2

]
]
]

]

𝑈
𝑇

,

(27)


�̇� − 𝐴



2

=



[
[

[

𝑈
(2)

1
𝐺
2
(𝑈
(2)

1
)
𝑇

0

0 𝑈
(2)

2
𝐺
2
(𝑈
(2)

2
)
𝑇

]
]

]

−𝑈
𝑇

(�̇� − 𝐴
0
)𝑈



2

=



[
[

[

𝑈
(2)

1
𝐺
2
(𝑈
(2)

1
)
𝑇

0

0 𝑈
(2)

2
𝐺
2
(𝑈
(2)

2
)
𝑇

]
]

]

−[
�̇�
11
− 𝐴
0

11
�̇�
12

�̇�
21

�̇�
22
− 𝐴
0

22

]



2



4 Algebra

=

�̇�
12



2

+

�̇�
21



2

+



[
0 0

0 𝐺
1

] − 𝑈
𝑇

1
(�̇�
11
− 𝐴
0

11
)𝑈
1



2

+



[
0 0

0 𝐺
2

] − 𝑈
𝑇

2
(�̇�
22
− 𝐴
0

22
)𝑈
2



2

.

(28)

Finally,


�̇� − 𝐴



2

=

�̇�
12



2

+

�̇�
21



2

+

�̇�
1

11



2

+

�̇�
1

12



2

+

�̇�
1

21



2

+

�̇�
2

11



2

+

�̇�
2

12



2

+

�̇�
2

21



2

+

𝐺
1
− �̇�
1

22



2

+

𝐺
2
− �̇�
2

22



2

.

(29)

When𝐻 = −𝐻
𝑇, 𝐻 ∈ 𝑅

𝑛×𝑚 and𝐸 ∈ 𝑅
𝑛×𝑚, we can obtain:



𝐸 −
𝐸 − 𝐸

𝑇

2



≤ ‖𝐸 − 𝐻‖ . (30)

When𝐺
1
= 0.5 ⋅ (�̇�

1

22
−(�̇�
1

22
)
𝑇

) and𝐺
2
= 0.5 ⋅ (�̇�

2

22
−(�̇�
2

22
)
𝑇

),
so that ‖�̇� − 𝐴‖ = min

𝐴∈𝑆𝐸
,

𝐺
1
= 0.5 ⋅ (𝑈

(2)

1
)
𝑇

(�̇�
11
− �̇�
𝑇

11
− 2𝐴
0

11
)𝑈
(2)

1
,

𝐺
2
= 0.5 ⋅ (𝑈

(2)

2
)
𝑇

(�̇�
22
− �̇�
𝑇

22
− 2𝐴
0

22
)𝑈
(2)

2

(31)

can be derived from (26) and

(𝑈
(2)

1
)
𝑇

𝐴
0

11
𝑈
(2)

1
= 0, (𝑈

(2)

2
)
𝑇

𝐴
0

22
𝑈
(2)

2
= 0 (32)

can be obtained according to (17), (18), and (24).
Therefore,

𝐺
1
= 0.5 ⋅ (𝑈

(2)

1
)
𝑇

(�̇�
11
− �̇�
𝑇

11
)𝑈
(2)

1
,

𝐺
2
= 0.5 ⋅ (𝑈

(2)

2
)
𝑇

(�̇�
22
− �̇�
𝑇

22
)𝑈
(2)

2
.

(33)

Relying on (27) the solution𝐴 can be provided as follows:

𝐴 = 𝐴
0
+
1

2
𝑈𝐶𝑈
𝑇

, (34)

where

𝐶 = [

[

𝑈
(2)

1
(𝑈
(2)

1
)
𝑇

(�̇�
11
− �̇�
𝑇

11
)𝑈
(2)

1
(𝑈
(2)

1
)
𝑇

0

0 𝑈
(2)

2
(𝑈
(2)

2
)
𝑇

(�̇�
22
− �̇�
𝑇

22
)𝑈
(2)

2
(𝑈
(2)

2
)
𝑇

]

]

(35)

and 𝐴 = 𝑈[
̇
𝐴11 0

0
̇
𝐴22

]𝑈
𝑇 can be obtained because of

𝑈
(2)

1
(𝑈
(2)

1
)
𝑇

= 𝐼
𝑛−𝑘

− 𝑋
1
𝑋
+

1
and 𝑈(2)

2
(𝑈
(2)

2
)
𝑇

= 𝐼
𝑘
− 𝑋
2
𝑋
+

2
.

Finally, rely on the optimal approximation [11, 12], and 𝑆
𝐸

is a closed convex set; Problem 2 has the unique solution 𝐴 ∈

𝑆
𝐸
, 𝑆
𝐸
∈ 𝑅
𝑛×𝑛, so that ‖�̇� − 𝐴‖ = min

𝐴∈
̃
𝑆𝐸

‖�̇� − 𝐴‖.
The proof is completed.

5. Conditions for the Existence and
Expression of General Solutions
Based on the Second-Class Special
Symmetric Matrix for Problem 1

Consider the following theorem.

Theorem 7. Consider that𝐴 = (𝑎
𝑖𝑗
) ∈ 𝑅
𝑛×𝑛, and the sufficient

and necessary conditions for 𝐴 ∈ 𝐴2𝑅
𝑛×𝑛 are

𝐴 = 𝑈[
0 𝐹
1

𝐹
2

0
]𝑈
𝑇

, (36)

where 𝑈 is an orthogonal matrix. 𝑈 ∈ 𝑅
𝑛×𝑛 and 𝑈𝑈𝑇 = 𝐼

𝑛
.

When 𝑛 = 2𝑘 + 1, define

𝑈 =
1

√2

[

[

𝐼
𝑘

0 𝐼
𝑘

0 √2 0

𝐻
𝑘

0 −𝐻
𝑘

]

]

. (37)

When 𝑛 = 2𝑘, define

𝑈 =
1

√2

[
𝐼
𝑘

𝐼
𝑘

𝐻
𝑘
−𝐻
𝑘

] ,

𝐻
𝑘
=

[
[
[

[

0 ⋅ ⋅ ⋅ 0 1

0 ⋅ ⋅ ⋅ 1 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

1 ⋅ ⋅ ⋅ 0 0

]
]
]

]

, 𝐻
𝑇

𝑘
𝐻
𝑘
= 𝐼
𝑘
, 𝐻

𝑇

𝑘
= 𝐻
𝑘
,

(38)

𝐹
1
∈ 𝐴2𝑅

(𝑛−𝑘)×𝑘, 𝐹
2
∈ 𝐴2𝑅

𝑘×(𝑛−𝑘).

Proof. First relying on the definition and property of the
matrix 𝐴 ∈ 𝐴2𝑅

𝑛×𝑛, 𝐴2𝑅𝑛×𝑛 can represent the following set.
When 𝑛 = 2𝑘 + 1,

𝐴 =
[
[

[

𝐶
1

𝑢 𝐶
2
𝐻
𝑘

−V𝑇 0 V𝑇𝐻
𝑘

−𝐻
𝑘
𝐶
2
−𝐻
𝑘
𝑢 −𝐻

𝑘
𝐶
1
𝐻
𝑘

]
]

]

, (39)

𝐶
1
, 𝐶
2
∈ 𝑅
𝑘×𝑘 and 𝑢, V ∈ 𝑅

𝑘.
When 𝑛 = 2𝑘,

𝐴 = [
𝐶
1

𝐶
2
𝐻
𝑘

−𝐻
𝑘
𝐶
2
−𝐻
𝑘
𝐶
1
𝐻
𝑘

] , (40)

𝐶
1
, 𝐶
2
∈ 𝑅
𝑘×𝑘.
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We first discuss the topic 𝑛 = 2𝑘 + 1.
From (37) and (39),

𝑈
𝑇

𝐴𝑈 =
1

2

[

[

𝐼
𝑘

0 𝐻
𝑘

0 √2 0

𝐼
𝑘

0 −𝐻
𝑘

]

]

𝐶[

[

𝐼
𝑘

0 𝐼
𝑘

0 √2 0

𝐻
𝑘

0 −𝐻
𝑘

]

]

,

𝐶 =

[
[
[
[

[

𝐶
1

𝑢 𝐶
2
𝐻
𝑘

−V𝑇 0 V𝑇𝐻
𝑘

−𝐻
𝑘
𝐶
2
−𝐻
𝑘
𝑢 −𝐻

𝑘
𝐶
1
𝐻
𝑘

]
]
]
]

]

,

(41)

𝑈
𝑇

𝐴𝑈 =

[
[
[
[

[

0 0 𝐶
1
− 𝐶
2

0 0 −√2V𝑇

𝐶
1
+ 𝐶
2
√2𝑢 0

]
]
]
]

]

. (42)

Define 𝐹
1
= [
𝐶1−𝐶2

−√2V𝑇 ], 𝐹2 = [𝐶
1
+ 𝐶
2
√2𝑢].

According to 𝐶
1
, 𝐶
2
∈ 𝑅
𝑘×𝑘 and 𝑢, V ∈ 𝑅

𝑘, we have 𝐹
1
∈

𝑅
(𝑛−𝑘)×𝑘 and 𝐹

2
∈ 𝑅
𝑘×(𝑛−𝑘), and

𝐴 = 𝑈𝑈
𝑇

𝐴𝑈𝑈
𝑇

= 𝑈[
0 𝐹
1

𝐹
2

0
]𝑈
𝑇 (43)

can be obtained from (42).
Conversely, when 𝐴 = 𝑈 [

0 𝐹1

𝐹2 0
]𝑈
𝑇, 𝐹
1
∈ 𝑅
(𝑛−𝑘)×𝑘, 𝐹

2
∈

𝑅
𝑘×(𝑛−𝑘), 𝐴 = −𝐻

𝑛
𝐴𝐻
𝑛
can be obtained and 𝐴 ∈ 𝐴2𝑅

𝑛×𝑛 will
be provided.

When 𝑛 = 2𝑘, in the same way, we can prove the above
theorem.

The proof is completed.

Theorem 8. When 𝑋, 𝐵 ∈ 𝑅
𝑛×𝑚, 𝐴 ∈ 𝐴2𝑅

𝑛×𝑛, and 𝑋
𝑖
and

𝐵
𝑖
(𝑖 = 1, 2) are given by (16), the sufficient and necessary con-

ditions for the existence of solution 𝐴𝑋 = 𝐵 are

𝐵
𝑖
𝑋
+

𝑖
𝑋
𝑖
= 𝐵
𝑖
. (44)

And the general solution is as follows:

𝐴 = 𝑈[
0 𝐴

12

𝐴
21

0
]𝑈
𝑇

,

𝐴
12
= 𝐵
1
𝑋
+

2
+𝑀
1
(𝐼
𝑘
− 𝑋
2
𝑋
+

2
) ,

𝐴
21
= 𝐵
2
𝑋
+

1
+𝑀
2
(𝐼
𝑛−𝑘

− 𝑋
1
𝑋
+

1
) ,

(45)

where

𝑈 =
1

√2

[

[

𝐼
𝑘

0 𝐼
𝑘

0 √2 0

𝐻
𝑘

0 −𝐻
𝑘

]

]

, 𝑛 = 2𝑘 + 1,

𝑈 =
1

√2

[
𝐼
𝑘

𝐼
𝑘

𝐻
𝑘
−𝐻
𝑘

] , 𝑛 = 2𝑘.

(46)

Meanwhile 𝑀
1
∈ 𝑅
(𝑛−𝑘)×𝑘, 𝑀

2
∈ 𝑅
𝑘×(𝑛−𝑘), and according to

(17) we can obtain𝑋
𝑖
singular value decompositions:

𝑋
1
= 𝑈
1
[
Σ
1
0

0 0
]𝑉
𝑇

1
, 𝑋

2
= 𝑈
2
[
Σ
2
0

0 0
]𝑉
𝑇

2
. (47)

Proof. Relying on Theorem 7, if there is 𝐴 ∈ 𝐴2𝑅
𝑛×𝑛, it will

have

𝐴 = 𝑈[
0 𝐹
1

𝐹
2

0
]𝑈
𝑇

, 𝐹
1
∈ 𝐴2𝑅

(𝑛−𝑘)×𝑘

, 𝐹
2
∈ 𝐴2𝑅

𝑘×(𝑛−𝑘)

.

(48)

Because 𝑈 is an orthogonal matrix and 𝑈𝑈𝑇 = 𝐼
𝑛
,

‖𝐴𝑋 − 𝐵‖
2

=

𝑈
𝑇

𝐴𝑈𝑈
𝑇

𝑋 − 𝑈
𝑇

𝐵


2

. (49)

We can derive from (16), (48), and (49)

‖𝐴𝑋 − 𝐵‖
2

=



[
0 𝐹
1

𝐹
2

0
] [

𝑋
1

𝑋
2

] − [
𝐵
1

𝐵
2

]



2

=
𝐹1𝑋2 − 𝐵

1



2

+
𝐹2𝑋1 − 𝐵

2



2

.

(50)

It will be known that, when 𝑋 ∈ 𝑅
𝑛×𝑘, 𝐵 ∈ 𝑅

𝑛×𝑘, and
rank(𝑋) = 𝑟 [13], the sufficient and necessary conditions for
the existence of solution 𝐴𝑋 = 𝐵 are 𝐵𝑋+𝑋 = 𝐵 and the
general solution is

𝐴 = 𝐵𝑋
+

+𝑀(𝐼
𝑚
− 𝑋𝑋

+

) , 𝑀 ∈ 𝑅
𝑛×𝑚

. (51)

There will be

𝐹
1
= 𝐵
1
𝑋
+

2
+𝑀
1
(𝐼
𝑘
− 𝑋
2
𝑋
+

2
) , 𝑀

1
∈ 𝑅
(𝑛−𝑘)×𝑘

;

𝐹
2
= 𝐵
2
𝑋
+

1
+𝑀
2
(𝐼
𝑛−𝑘

− 𝑋
1
𝑋
+

1
) , 𝑀

2
∈ 𝑅
𝑘×(𝑛−𝑘)

.

(52)

The general solution can obtain

𝐴 = 𝑈[
0 𝐴

12

𝐴
21

0
]𝑈
𝑇

,

𝐴
12
= 𝐵
1
𝑋
+

2
+𝑀
1
(𝐼
𝑘
− 𝑋
2
𝑋
+

2
) ,

𝐴
21
= 𝐵
2
𝑋
+

1
+𝑀
2
(𝐼
𝑛−𝑘

− 𝑋
1
𝑋
+

1
) .

(53)

The sufficient and necessary conditions for the existence
of solution 𝐴𝑋 = 𝐵 are 𝐵

𝑖
𝑋
+

𝑖
𝑋
𝑖
= 𝐵
𝑖
.

The proof is completed.

6. The Unique Solutions on the Second-Class
Special Symmetric Matrix for Problem 2

Consider the following theorem.

Theorem 9. When , 𝐵 ∈ 𝑅
𝑛×𝑚, 𝐴 ∈ 𝑅

𝑛×𝑛, and 𝑋
𝑖
and 𝐵

𝑖
(𝑖 =

1, 2) are given by (16) and (17) and obey (18), Problem 2 has the
unique solution 𝐴 ∈ 𝑆

𝐸
.

The unique solution 𝐴 can be represented as follows:

𝐴 = 𝑈𝐶𝑈
𝑇

,

𝐶

= [
0 𝐵

1
𝑋
+

2
+ 𝐴
12
(𝐼
𝑘
− 𝑋
2
𝑋
+

2
)

𝐵
2
𝑋
+

1
+ 𝐴
21
(𝐼
𝑛−𝑘

− 𝑋
1
𝑋
+

1
) 0

] ,

(54)
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where

𝐴
0
= 𝑈[

0 𝐵
1
𝑋
+

2

𝐵
2
𝑋
+

1
0

]𝑈
𝑇

; (55)

𝑛 = 2𝑘 + 1, �̇�
2
∈ 𝐴2𝑅

𝑛×𝑛:

𝐴
12
= 0.5 ⋅ [

𝐼
𝑘

0 𝐻
𝑘

0 √2 0
] (�̇�
2
− 𝐴
0
)[

[

𝐼
𝑘

0

−𝐻
𝑘

]

]

, (56)

𝐴
21
= 0.5 ⋅ [𝐼

𝑘
0 −𝐻

𝑘
] (�̇�
2
− 𝐴
0
)[

[

𝐼
𝑘

0

0 √2

𝐻
𝑘

0

]

]

; (57)

𝑛 = 2𝑘, �̇�
2
∈ 𝐴2𝑅

𝑛×𝑛:

𝐴
12
= 0.5 ⋅ [𝐼

𝑘
𝐻
𝑘
] (�̇�
2
− 𝐴
0
) [

𝐼
𝑘

−𝐻
𝑘

] ,

𝐴
21
= 0.5 ⋅ [𝐼

𝑘
−𝐻
𝑘
] (�̇�
2
− 𝐴
0
) [

𝐼
𝑘

𝐻
𝑘

] .

(58)

FromTheorem 9 𝑆
𝐸
can be represented as follows:

𝑆
𝐸
= 𝐴
0
+ 𝑈[

0 𝑀
1
(𝐼
𝑘
− 𝑋
2
𝑋
+

2
)

𝑀
2
(𝐼
𝑛−𝑘

− 𝑋
1
𝑋
+

1
) 0

]𝑈
𝑇

𝑀
1
∈ 𝑅
(𝑛−𝑘)×𝑘

, 𝑀
2
∈ 𝑅
𝑘×(𝑛−𝑘)

.

(59)

Proof. Defining this following equation:

𝑈
𝑇

(�̇�
2
− 𝐴
0
)𝑈 = [

𝐴
11

𝐴
12

𝐴
21

𝐴
22

] , (60)

where 𝑛 = 2𝑘 + 1, �̇�
2
∈ 𝐴2𝑅

𝑛×𝑛,

𝐴
11
= 0.5 ⋅ [

𝐼
𝑘

0 𝐻
𝑘

0 √2 0
] (�̇�
2
− 𝐴
0
) ,

𝐴
12
= 0.5 ⋅ [

𝐼
𝑘

0 𝐻
𝑘

0 √2 0
] (�̇�
2
− 𝐴
0
)[

[

𝐼
𝑘

0

−𝐻
𝑘

]

]

,

𝐴
21
= 0.5 ⋅ [𝐼

𝑘
0 −𝐻

𝑘
] (�̇�
2
− 𝐴
0
)[

[

𝐼
𝑘

0

0 √2

𝐻
𝑘

0

]

]

,

𝐴
22
= 0.5 ⋅ [𝐼

𝑘
0 −𝐻

𝑘
] (�̇�
2
− 𝐴
0
)[

[

𝐼
𝑘

0

−𝐻
𝑘

]

]

;

(61)

𝑛 = 2𝑘, �̇�
2
∈ 𝐴2𝑅

𝑛×𝑛:

𝐴
11
= 0.5 ⋅ [𝐼

𝑘
𝐻
𝑘
] (�̇�
2
− 𝐴
0
) [

𝐼
𝑘

𝐻
𝑘

] ,

𝐴
12
= 0.5 ⋅ [𝐼

𝑘
𝐻
𝑘
] (�̇�
2
− 𝐴
0
) [

𝐼
𝑘

−𝐻
𝑘

] ,

𝐴
21
= 0.5 ⋅ [𝐼

𝑘
−𝐻
𝑘
] (�̇�
2
− 𝐴
0
) [

𝐼
𝑘

𝐻
𝑘

] ,

𝐴
22
= 0.5 ⋅ [𝐼

𝑘
−𝐻
𝑘
] (�̇�
2
− 𝐴
0
) [

𝐼
𝑘

−𝐻
𝑘

] .

(62)

For 𝐴 ∈ 𝑆
𝐸
the following equation can be obtained:

𝐴 = 𝐴
0
+ 𝑈𝐶𝑈

𝑇

,

𝐶 = [
0 𝑀

1
(𝐼
𝑘
− 𝑋
2
𝑋
+

2
)

𝑀
2
(𝐼
𝑛−𝑘

− 𝑋
1
𝑋
+

1
) 0

] .

(63)

When �̇� ∈ 𝑅
𝑛×𝑛 is known and relies on the definition of

𝐴 ∈ 𝐴2𝑅
𝑛×𝑛, there will be the unique set �̇�

1
= (𝑎
𝑖𝑗
) ∈

𝑅
𝑛×𝑛

(𝑎
𝑖𝑗
= 𝑎
(𝑛+1−𝑖),(𝑛+1−𝑗)

) and �̇�
2
∈ 𝐴2𝑅

𝑛×𝑛 to make the fol-
lowing equations true:

�̇� = �̇�
1
+ �̇�
2
, (�̇�

1
, �̇�
2
) = 0,

�̇�
2
= 0.5 ⋅ (�̇� + 𝐻

𝑛
�̇�𝐻
𝑛
) , �̇�

1
= 0.5 ⋅ (�̇� − 𝐻

𝑛
�̇�𝐻
𝑛
) ,

(64)


�̇� − 𝐴



2

=

�̇�
1
+ �̇�
2
− 𝐴



2

=

�̇�
1



2

+

�̇�
2
− 𝐴



2

. (65)

From (60), (63), and (65) we obtain


�̇� − 𝐴



2

=

�̇�
1



2

+



𝑈 [
𝐴
11

𝐴
12

𝐴
21

𝐴
22

]𝑈
𝑇

−𝑈𝐶𝑈
𝑇



2

=

�̇�
1



2

+



[
𝐴
11

𝐴
12

𝐴
21

𝐴
22

]

−𝐶



2

,

𝐶 = [
0 𝑀

1
(𝐼
𝑘
− 𝑋
2
𝑋
+

2
)

𝑀
2
(𝐼
𝑛−𝑘

− 𝑋
1
𝑋
+

1
) 0

] .

(66)

Equation (67) can be known from (17) and (64) as follows:

𝑈
(2)

2
(𝑈
(2)

2
)
𝑇

= 𝐼
𝑘
− 𝑋
2
𝑋
+

2
,

𝑈
(2)

1
(𝑈
(2)

1
)
𝑇

= 𝐼
𝑛−𝑘

− 𝑋
1
𝑋
+

1
,

(𝑈
(2)

2
)
𝑇

𝑈
(2)

2
= 𝐼
𝑘−𝑟2

,
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(𝑈
(2)

1
)
𝑇

𝑈
(2)

1
= 𝐼
𝑛−𝑘−𝑟1

,

(𝑈
(2)

2
)
𝑇

𝑈
(1)

2
= 0,

(𝑈
(2)

1
)
𝑇

𝑈
(1)

1
= 0,

(67)


�̇� − 𝐴



2

=

�̇�
1



2

+
𝐴11



2

+
𝐴22



2

+

𝐴
12
−𝑀
1
𝑈
(2)

2
(𝑈
(2)

2
)
𝑇


2

+

𝐴
12
−𝑀
2
𝑈
(2)

1
(𝑈
(2)

1
)
𝑇


2

=

�̇�
1



2

+
𝐴11



2

+
𝐴22



2

+

𝐴
12
𝑈
(1)

2



2

+

𝐴
21
𝑈
(1)

1



2

+

𝐴
12
𝑈
(2)

2
−𝑀
1
𝑈
(2)

2



2

+

𝐴
21
𝑈
(2)

1
−𝑀
2
𝑈
(2)

1



2

.

(68)

Therefore, ‖�̇� − 𝐴‖ = min
𝐴∈
̃
𝑆𝐸

is equivalent to

{{

{{

{


𝐴
12
𝑈
(2)

2
−𝑀
1
𝑈
(2)

2


= min
𝑀1∈𝑅

(𝑛−𝑘)×𝑘


𝐴
12
𝑈
(2)

1
−𝑀
2
𝑈
(2)

1


= min
𝑀2∈𝑅

𝑘×(𝑛−𝑘)

⇒

{

{

{

𝐴
12
𝑈
(2)

2
−𝑀
1
𝑈
(2)

2
= 0

𝐴
12
𝑈
(2)

1
−𝑀
2
𝑈
(2)

1
= 0

⇒

{

{

{

𝐴
12
𝑈
(2)

2
= 𝑀
1
𝑈
(2)

2

𝐴
12
𝑈
(2)

1
= 𝑀
2
𝑈
(2)

1
,

(69)

and 𝐴
12
(𝐼
𝑘
− 𝑋
2
𝑋
+

2
) = 𝑀

1
(𝐼
𝑘
− 𝑋
2
𝑋
+

2
), 𝐴
21
(𝐼
𝑛−𝑘

− 𝑋
1
𝑋
+

1
) =

𝑀
2
(𝐼
𝑛−𝑘

− 𝑋
1
𝑋
+

1
) can be obtained.

From the above results and (63), the solution 𝐴 (𝐴 ∈ 𝑆
𝐸
)

can be represented as follows:

𝐴 = 𝑈𝐶𝑈
𝑇

,

𝐶

= [
0 𝐵

1
𝑋
+

2
+ 𝐴
12
(𝐼
𝑘
− 𝑋
2
𝑋
+

2
)

𝐵
2
𝑋
+

1
+ 𝐴
21
(𝐼
𝑛−𝑘

− 𝑋
1
𝑋
+

1
) 0

] .

(70)

Finally, because 𝑆
𝐸
is a closed convex set, Problem 2 has

the unique solution 𝐴 ∈ 𝑆
𝐸
, 𝑆
𝐸
∈ 𝑅
𝑛×𝑛, so that ‖�̇� − 𝐴‖ =

min
𝐴∈
̃
𝑆𝐸

‖�̇� − 𝐴‖.
The proof is completed.
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[1] I. Serebriiskii, R. Castelló-Cros, A. Lamb, E. A. Golemis, and E.
Cukierman, “Fibroblast-derived 3D matrix differentially reg-
ulates the growth and drug-responsiveness of human cancer
cells,”Matrix Biology, vol. 27, no. 6, pp. 573–585, 2008.

[2] H. B. Hamed and R. Bennacer, “Analytical development of dis-
turbed matrix eigenvalue problem applied to mixed convection
stability analysis in Darcy media,” Comptes Rendus Mécanique,
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