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We consider a class of fuzzy linear systemof equations and demonstrate some of the existing challenges. Furthermore, we explain the
efficiency of this model when the coefficient matrix is an𝐻-matrix. Numerical experiments are illustrated to show the applicability
of the theoretical analysis.

1. Introduction

In the field of scientific and technical computation, vari-
ous equations which describe realistic problems like nat-
ural phenomena or engineering problems such as compu-
tational fluid dynamics, finite differences methods, finite
element methods, statistics, time/frequency domain cir-
cuit simulation, dynamic and static modeling of chemical
processes, cryptography, magnetohydrodynamics, electrical
power systems, differential equations, quantum mechanics,
structural mechanics (buildings, ships, aircraft, and human
body parts. . .), heat transfer, MRI reconstructions, vibroa-
coustics, linear and nonlinear optimization, financial port-
folios, semiconductor process simulation, economic model-
ing, oil reservoir modeling, astrophysics, crack propagation,
Google page rank, Gene page rank, 3D computer vision, cell
phone tower placement, tomography, model reduction, nan-
otechnology, acoustic radiation, density functional theory,
quadratic assignment, elastic properties of crystals, natural
language processing, DNA electrophoresis, and so forthmust
be solved numerically. These problems can lead to solving
a system of linear equations. There are many methods for
solving linear systems; see [1–7] and the references therein.

Nevertheless, when coefficients of a system are ambigu-
ous and there is some inexplicit information about the exact
amount of parameters, one can solve a linear equation system
by fuzzy logic. In 1965 [8], fuzzy logic was proposed by

Zadeh and, following his work, many papers and books
were published in fuzzy system theory. In particular, the
solutions of fuzzy linear systems have been considered by
many researchers, for example, [8–14]. Some investigations
on the numerical solution of the fuzzy linear systems have
also been reported; see [15–23] and references therein. Most
of these studies use the same expansion of [12], where the
coefficient matrix is crisp and the right-hand side is an
arbitrary fuzzy number vector. Friedman et al. [12], using the
embedding method, presented a general model for solving
an 𝑛 × 𝑛 fuzzy linear system and replaced the fuzzy linear
system by 2𝑛 × 2𝑛 crisp linear system. They studied also the
uniqueness of the fuzzy solution for this model [12].

Dehghan and Hashemi [16] investigated the existence
of a solution for this model under the condition that the
coefficient matrix is a strictly diagonally dominant matrix
with positive diagonal entries. Hashemi et al. [17], using
the Schur complement, studied existence of the solution to
this model when the coefficient matrix is 𝑀-matrix and all
diagonal entries are positive.

In this paper we establish the existence of the solution to
Friedman et al.’s model under general class of the coefficient
matrix called 𝐻-matrix. It is well known that every strictly
diagonally dominant matrix is an 𝑀-matrix and every 𝑀-
matrix is an 𝐻-matrix [2]. We demonstrate effectiveness of
some conditions in our theorems (Section 3) relative to fuzzy
linear systems.
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2. Preliminaries

2.1. Fuzzy Numbers. An arbitrary fuzzy number is repre-
sented, in parametric form, by an ordered pair of functions
(𝑢(𝑟), 𝑢(𝑟)), 0 ≤ 𝑟 ≤ 1, which satisfy the following conditions
(see [24]):

(i) 𝑢(𝑟) is a bounded monotonic increasing left continu-
ous function over [0, 1];

(ii) 𝑢(𝑟) is a bounded monotonic decreasing left continu-
ous function over [0, 1];

(iii) 𝑢(𝑟) ≤ 𝑢(𝑟), 0 ≤ 𝑟 ≤ 1.

A crisp number 𝛼 can be simply expressed as 𝑢(𝑟) = 𝑢(𝑟) =
𝛼, 0 ≤ 𝑟 ≤ 1. The addition and scalar multiplication of
fuzzy numbers 𝑥 = (𝑥(𝑟), 𝑥(𝑟)) and 𝑦 = (𝑦(𝑟), 𝑦(𝑟)) can be
described as follows:

(i) 𝑥 = 𝑦 if and only if 𝑥(𝑟) = 𝑦(𝑟) and 𝑥(𝑟) = 𝑦(𝑟),

(ii) 𝑥 + 𝑦 = (𝑥(𝑟) + 𝑦(𝑟), 𝑥(𝑟) + 𝑦(𝑟)),

(iii) ∀𝐾 ∈ 𝑅,

𝐾𝑥 = {

(𝐾𝑥,𝐾𝑥) , 𝐾 ≥ 0,

(𝐾𝑥,𝐾𝑥) , 𝐾 < 0.

(1)

By appropriate definitions the fuzzy number space {(𝑢(𝑟),
𝑢(𝑟))} becomes a convex cone 𝐸1 which is then embedded
isomorphically and isometrically into a Banach space [12].
An alternative definition which yields the same 𝐸1 is given
by [10].

2.2. Fuzzy Linear System (FLS)

Definition 1. Consider the 𝑛 × 𝑛 linear system of equations:
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where the coefficient matrix 𝐴 = (𝑎
𝑖𝑗
), 1 ≤ 𝑖, 𝑗 ≤ 𝑛, is a crisp

matrix and 𝑏
𝑖
∈ 𝐸
1, 1 ≤ 𝑖 ≤ 𝑛, is called a fuzzy linear system

(FLS).

Definition 2. A fuzzy number vector 𝑋 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇,

given by parametric form 𝑥
𝑖
= (𝑥
𝑖
(𝑟), 𝑥
𝑖
(𝑟)), 1 ≤ 𝑖 ≤ 𝑛, 0 ≤

𝑟 ≤ 1, is called a solution of the fuzzy linear system (2) if
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(3)

In order to solve the system given by (3), Friedman et al. [12]
have solved a 2𝑛 × 2𝑛 crisp linear system as

𝑆𝑋 = 𝐵, (4)

where 𝑆 = (𝑠
𝑖𝑗
) are determined as follows:

𝑎
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(5)

and any (𝑠
𝑖𝑗
) which is not determined by (5) is zero. Then

referring to Friedman et al. [12], we have
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or
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where 𝑠
1
, 𝑠
2
∈ R𝑛×𝑛, 𝐴 = 𝑠

1
− 𝑠
2
.

Theorem 3 (see [12]). Matrix 𝑆 is nonsingular if and only if
matrices 𝐴 and 𝑠

1
+ 𝑠
2
are both nonsingular.

Theorem 4 (see [12]). Let 𝑆 be nonsingular. Then the unique
solution𝑋 is always a fuzzy vector for arbitrary vector 𝐵 if and
only if 𝑆−1 is nonnegative.

Beside Theorem 3, the following theorem is also appro-
priate for proving the nonsingularity of matrix 𝑆.

Theorem 5. Let 𝑠
1
be nonsingular. Then matrix 𝑆 in (6) is

nonsingular if and only if Schur complement of 𝐴, that is,
(𝑇
𝐴
= 𝑠
1
− 𝑠
2
𝑠
−1

1
𝑠
2
), is nonsingular.

Proof. After some manipulations, the proof is obtained.
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2.3.𝐻-Matrices andTheir Subclasses. Let𝐴 be an 𝑛×𝑛matrix,
𝑁 = {1, 2, . . . , 𝑛}; and for each nonempty subset 𝑄 of indices
𝑁, we denote

𝑟
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(8)

Definition 6. For any matrix 𝐴 the comparison matrix
𝑀(𝐴) = (𝑚

𝑖𝑗
) ∈ R𝑛×𝑛 is defined by

𝑚
𝑖𝑖
=
󵄨󵄨󵄨󵄨𝑎𝑖𝑖
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󵄨󵄨󵄨󵄨󵄨
, 𝑖 ̸= 𝑗, 𝑖, 𝑗 ∈ 𝑁. (9)

A real square matrix whose off-diagonal elements are all
nonpositive is called an 𝐿-matrix. Let 𝐴 be an 𝐿-matrix; if
𝐴
−1
≥ 0 then 𝐴 is said to be an𝑀-matrix.
A complex matrix 𝐴 is an 𝐻-matrix if and only if𝑀(𝐴)

is an𝑀-matrix.

Definition 7. Matrix𝐴 is called an SDDM (strictly diagonally
dominant matrix) if

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 > 𝑟𝑖 (𝐴) , 𝑖 = 1 : 𝑛. (10)

Definition 8. Matrix 𝐴 is called a GDDM (generalized diag-
onally dominant matrix) if there exists a positive diagonal
matrix𝑊 such that 𝐴𝑊 is an SDDMmatrix [3].

Theorem 9 (see [3]). Matrix 𝐴 is a GDDM if and only if 𝐴 is
an𝐻-matrix.

Definition 10 (see [25]). Matrix 𝐴 is called a DDDM (doubly
diagonally dominant matrix) if
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Definition 11 (see [25]). For a given nonempty proper subset
𝑄 of indices 𝑁 matrix 𝐴 is called 𝑄-SDDM (𝑄-strictly
diagonally dominant matrix) if
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Definition 12 (see [26]). 𝐿-matrix𝐴 is a Stieltjes matrix if𝐴 is
SPDM (symmetric and positive definite matrix).

The following are well known classes of nonsingular
matrices, introduced by Ostrowski.
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Figure 1: Relations between 𝐻-matrices and some of their sub-
classes.

Theorem 15 (see [27]). If a matrix 𝐴 is 𝛼
1
or 𝛼
2
matrix, then

it is nonsingular. Moreover it is an𝐻-matrix.

3. Some Theorems

In [12] the following points are dominant.
(1) “𝑆maybe singular even if the originalmatrix𝐴 is not.”
(2) “The solution vector is unique but may still not be an

appropriate fuzzy vector.”
In this part we provide some sufficient conditions to avoid
the above problems. We let the diagonal elements of 𝐴 be all
positive.

In Figure 1, we describe the relations between𝐻-matrices
and some of their subclasses. For more details please see [1,
25–27].These relations are very important for our discussions
and in Section 2.3 all items are completely defined.

The following theorems present the conditions that
matrix 𝑆 needs to be an𝐻-matrix.

Theorem16. Matrices 𝑆 in (6) and (7) are𝐻-matrixif and only
if 𝐴 in (2) is an𝐻-matrix.

Proof. Let 𝐴 be an 𝐻-matrix; then by Theorem 9, there
exists a positive diagonal matrix𝑊 such that 𝐴𝑊 is strictly
diagonally dominant matrix. Without loss of generality, let
𝐴𝑊 be row strictly diagonally dominant; that is,
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By considering the structure of 𝑆 and since, for all 𝑖 = 1, . . . , 𝑛,
𝑎
𝑖𝑖
≥ 0, we have
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𝑛 + 1 ≤ 𝑖 ≤ 2𝑛

󳨐⇒
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Then by choice of 𝑇 = (
𝑊 0

0 𝑊
)
2𝑛×2𝑛

, 𝑆𝑇 is row SDDM.
Therefore, by Theorem 9, 𝑆 is an 𝐻-matrix too. Conversely,
if 𝑆 is an 𝐻-matrix, then by reasoning similar to that above,
one can see that 𝐴 is an𝐻-matrix too.

Theorem 17. Matrices 𝑆 in (6) and (7) are 𝐻-matrix if and
only if 𝐴 in (2) is subclasses of𝐻-matrix.

Proof. By Section 2.3, Figure 1, and Theorem 16 proof is
completed.

Theorem 18. For any 𝐴 = [𝑎
𝑖𝑗
] ∈ 𝑅
𝑛×𝑛, 𝑛 ≥ 2, for which there

exists an index 𝑖 ∈ 𝑁such that

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 ⋅ (
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑗𝑗

󵄨󵄨󵄨󵄨󵄨
− 𝑟
𝑗
(𝐴) +

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑗𝑖

󵄨󵄨󵄨󵄨󵄨
) > 𝑟
𝑖
(𝐴) ⋅

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑗𝑖

󵄨󵄨󵄨󵄨󵄨
, ∀𝑗 ̸= 𝑖, 𝑗 ∈ 𝑁.

(18)

It follows that 𝑆 in (6) and (7) is an𝐻-matrix.

Proof. Based onTheorem 16 and applying Dashnic-Zusman-
ovich’s result [27, Theorem 5], the proof is completed.

Corollary 19. The unique solution𝑋 = 𝑆−1𝐵 is always a fuzzy
vector for arbitrary vector 𝑌, if 𝐴 is𝑀-matrix or subclasses of
it.

Proof. By Definition 6, Theorem 4, Figure 1, and Theorems
16-17 proof is completed.

4. Numerical Example

In this section, we give some examples of FLS to illustrate the
results obtained in the previous sections.

Example 1. Consider the 2 × 2 fuzzy system

3𝑥
1
− 𝑥
2
= (3𝑟, 5 − 2𝑟) ,

−𝑥
1
+ 2𝑥
2
= (1 + 𝑟, 7 − 5𝑟) .

(19)

Since 𝐴 is an𝑀-matrix, by Theorem 17, 𝑆 is𝑀-matrix too.
Therefore, by Theorem 4 and Corollary 19, we can solve the
above FLS by Friedman et al.’s model. Now we solve this FLS:

𝐴 = [
3 −1

−1 2
]

󳨀→ 𝐴
−1
= [
0.4 0.2

0.2 0.6
]

(5)

󳨀󳨀→ 𝑆 =

[
[
[

[

3 0 0 −1

0 2 −1 0

0 −1 3 0

−1 0 0 2

]
]
]

]

󳨐⇒ 𝑆
−1
=

[
[
[

[

0.4 0 0 0.2

0 0.6 0.2 0

0 0.2 0.4 0

0.2 0 0 0.6

]
]
]

]

.

(20)

Therefore

𝑋 =

[
[
[

[

𝑥
1
(𝑟)

𝑥
2
(𝑟)

𝑥
1
(𝑟)

𝑥
2
(𝑟)

]
]
]

]

= 𝑆
−1
𝐵 =

[
[
[

[

1.4 + 0.2𝑟

1.6 + 0.2𝑟

2.2 − 0.6𝑟

4.2 − 2.4𝑟

]
]
]

]

. (21)

The exact solution is
𝑥
1
= (𝑥
1
(𝑟) , 𝑥
1
) = (1.4 + 0.2𝑟, 2.2 − 0.6𝑟) ,

𝑥
2
= (𝑥
2
(𝑟) , 𝑥
2
) = (1.6 + 0.2𝑟, 4.2 − 2.4𝑟) .

(22)

Example 2. Consider the 𝑛 × 𝑛 fuzzy system

3𝑥
1
− 𝑥
3
= (2 + 𝑟, 4 − 𝑟) ,

𝑥
2
+ 3𝑥
3
− 𝑥
4
= (2 + 𝑟, 4 − 𝑟) ,

𝑥
3
+ 3𝑥
4
− 𝑥
5
= (2 + 𝑟, 4 − 𝑟) ,

.

.

.

𝑥
𝑛−3
+ 3𝑥
𝑛−2
= (2 + 𝑟, 4 − 𝑟) ,

𝑥
𝑛−2
+ 3𝑥
𝑛−1
= (2 + 𝑟, 4 − 𝑟) ,

𝑥
𝑛−1
+ 3𝑥
𝑛
− 𝑥
1
= (2 + 𝑟, 4 − 𝑟) .

(23)
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The extended 2𝑛 × 2𝑛matrix is

𝑆 = [
𝑠
1
−𝑠
2

−𝑠
2
𝑠
1

] , (24)

where

𝑠
1
=

[
[
[
[
[
[
[
[
[
[

[

3 0 ⋅ ⋅ ⋅ 0 0 0 0

1 3 ⋅ ⋅ ⋅ 0 0 0 0

.

.

. d d ⋅ ⋅ ⋅ d d
.
.
.

0 ⋅ ⋅ ⋅ 1 3 0 ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ 0 1 3 0 0

0 ⋅ ⋅ ⋅ d 0 1 3 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 1 3

]
]
]
]
]
]
]
]
]
]

]

,

𝑠
2
=

[
[
[
[
[
[
[
[
[
[
[

[

0 0 0 −1 0 ⋅ ⋅ ⋅ 0

0 0 0 0 −1 d
.
.
.

.

.

.
.
.
. d d d d 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 d −1

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 0 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 0 0

−1 0 ⋅ ⋅ ⋅ 0 0 0 0

]
]
]
]
]
]
]
]
]
]
]

]

.

(25)

Evidently,𝐴 is an𝐻-matrix and then, byTheorem 16, 𝑆 is also
an 𝐻-matrix. Therefore, we can solve this FLS by Friedman
et al.’s model.

5. Conclusion

In this paper, we have studied a class of fuzzy linear system
of equations, called Friedman et al.’s model. Furthermore,
we proposed some theorems and effectiveness of some
conditions in our theorems relative to fuzzy linear systems.
Finally, from numerical experiment, we can see that our
theorems are applicable and true.
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