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This paper is devoted to the derivation of field equations in space with the geometric structure generated by metric and torsion
tensors. We also study the geometry of the space generated jointly and agreed on by the metric tensor and the torsion tensor.
We showed that in such space the structure of the curvature tensor has special features and for this tensor we obtained analog
Ricci-Jacobi identity and evaluated the gap that occurs at the transition from the original to the image and vice versa, in the case of
infinitely small contours.We have researched the geodesic lines equation.We introduce the tensor𝜋

𝛼𝛽
which is similar to the second

fundamental tensor of hypersurfaces 𝑌𝑛−1, but the structure of this tensor is substantially different from the case of Riemannian
spaces with zero torsion. Then we obtained formulas which characterize the change of vectors in accompanying basis relative to
this basis itself. Taking into considerations our results about the structure of such space we derived from the variation principle the
general field equations (electromagnetic and gravitational).

1. Introduction

In this paper we study the properties of the geometry of the
space generated jointly and agreed on by the metric tensor
and the torsion tensor, so we investigate the spaces with
connection in the presence of the metric tensor. We obtained
some results on the structure of the curvature tensor and
considered the construction of geodesic lines and an estimate
of the gap that occurs when traversing the contour of a
parallelogram in these spaces.

The investigation of properties of metric spaces and affine
connection spaces began approximately at the beginning of
the 20th century [1, 2] and continued to develop so far [2–16].

The importance of this kind of research is on the one
hand due to the internal logic of mathematical science bases
itself [1, 2, 9, 13] and on the other hand to applications to
problems in physics, analytical and theoretical mechanics
[3, 12], the theory of relativity [7, 14–16], and continuum
mechanics and cosmology [10]. Fairly well studied Riemann
spaces [9], because of the wealth of geometric properties
and less explored space with affine connection [5], are not
sufficiently considered the most interesting geometry, which

is obtained by combining geometry and affine connection
generated by the metric tensor, and this is the subject of
this work. From the theory of spaces with affine connection
it is known that parallel displacement vector depends on
pathways; that is, if the vector is parallel transported at the
given contour with it return to the starting point, we obtain
the other vector than the original (the gap appears). In the
spaces, which are studied in this work, not only do they hold
a similar statement, but also there are new properties of this
gap.

The principle of least action (more correctly, the principle
of stationary action) is the basic variational principle of
particle and continuum systems. Let the starting point be the
action, denoted as 𝑆, of a physical system. It is defined as the
integral of the Lagrangian 𝐿 between two instants of time, a
functional of the 𝑛 generalized coordinates 𝑞which define the
configuration of the system:

𝑆 (𝑞 (𝑡)) = ∫

𝑡
2

𝑡
1

𝐿 (𝑞 (𝑡) , ̇𝑞 (𝑡)) 𝑑𝑡, (1)

where the dot denotes the time derivative and 𝑡 is time.Math-
ematically the principle is 𝛿𝑆 = 0, where 𝛿means a variation.
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In applications the statement and definition of action are
taken together:

𝛿∫

𝑡
2

𝑡
1

𝐿 (𝑞 (𝑡) , ̇𝑞 (𝑡)) 𝑑𝑡 = 0. (2)

The action and Lagrangian both contain the dynamics of
the system for all times. The term “path” simply refers to a
curve traced out by the system in terms of the coordinates in
the configuration space, that is, the curve 𝑞(𝑡), parameterized
by time. On the other hand, a Finsler manifold is a differ-
entiable manifold together with the structure of an intrinsic
quasimetric space in which the length of any rectifiable curve
𝜏 : [𝑎, 𝑏] → 𝑀 is given by the length functional

𝑆 (𝜏 (𝑡)) = ∫

𝑡
2

𝑡
1

𝐹 (𝜏 (𝑡) , ̇𝜏 (𝑡)) 𝑑𝑡, (3)

where 𝐹(𝑥, ⋅) is a Minkowski norm on each tangent space. It
is obvious from these definitions that there is a connection
between these two concepts, which can be realized by
Hamiltonian formalism. Thus any Riemannian space can be
regarded as Finsler manifold with the length functional: 𝐹2 =
𝑔
𝑖𝑗
(𝑥)𝑑𝑥

𝑖

𝑑𝑥
𝑗 and so the geodesics of a Finsler manifold are

geodesics of Riemannian space.
The geodesics of the space that are being studied in

our work (with the geometric structure generated by metric
𝑔
𝑖𝑗
(𝑥) and torsion 𝑆𝑘

𝑖𝑗
(𝑥) tensors) are different from geodesics

of corresponding Riemann space (with 𝑔
𝑖𝑗
(𝑥)) and so of

geodesics Finsler manifold (with 𝐹2 = 𝑔
𝑖𝑗
(𝑥)𝑑𝑥

𝑖

𝑑𝑥
𝑗).

These spaces retain all the properties of geometry of
an affine space but important features associated with the
presence of the metric appear; the structure of the curvature
tensor has a specific characteristics, as well as an opportunity
to assess the gap that occurs at the transportation from the
original to the image and conversely in the case of infinitely
small contours.

The main objective of this work-the study of the geomet-
ric properties of the space that is generated by metric 𝑔

𝑖𝑗
(𝑥)

and torsion 𝑆
𝑘

𝑖𝑗
(𝑥) tensors; obtain the field equations from

variation principle in such spaces.
We remind that according to Albert Einstein proposal:

the free falling gravitating massive bodies follow geodesic line.
If we postulate this proposal, we can obtain some results of
Newton theory as a consequence.We have another important
assumption of Albert Einstein that the geodesic equation of
motion can be derived from the field equations for empty
space.

Since we believe that gravitational and electromagnetic
fields are determined geometric structure of empty space
(torsion and curvature), it is interesting to have example
about geometric sense of torsion.

Now, we discuss one example about geometric sense of
torsion.We consider the surface 𝑆. At point𝐴 on 𝑆 construct a
tangent plane 𝑃. We choose an arbitrary infinitesimal square
𝐴𝐵𝐶𝐷 in the plane 𝑃 with vertex 𝐴. From point 𝐴 on the
surface 𝑆 will draw the geodesic in the direction of 𝐴𝐵. We
pass along the distance corresponding parameter equal to the

length of𝐴𝐵 and get to point 𝐵. Similarly, from𝐴 on 𝑆, draw
geodesic towards 𝐴𝐷 and get into 𝐷. We perform a parallel
transportation of vector 𝐴𝐷 to point 𝐵 along the geodesic
𝐴𝐵
 and draw geodesic 𝐵 along the transportation of this

vector; we reach the point 𝐶. Similarly, the vector 𝐴𝐵 will
move parallel along the𝐴𝐷 and along the transported vector
from 𝐷

 draw a geodesic to get to 𝐶. If torsion is zero, then
𝐶


= 𝐶
, and geodesic square up to small higher order will

be closed, otherwise not. In our case, due to the presence of the
metric can calculate the length of the gap, more precisely we can
estimate the length of this gap.

These considerations are true only up to the second order
relative to the length of square side. If we want more strict
result we must consider the component of curvature tensor.
Next this example is true only when length of square side
tends to zero that is, remains very small in other words in
general it is a local property.

We go to the discussion of physical interpretation of this
example.The physical properties of the space-time (more just
space) are defined by the presence of matter (electromagnetic
fields and mass) in this space and from the viewpoint of
mathematics are described by the geometrical structure of
space (torsion andmetric tensors).The empty space (without
matter) corresponds to the geometric structure of Euclidean
space (torsion tensor and curvature tensor are identically
equal to zero). Similarly gravitation (mass and without elec-
tromagnetic fields) corresponds to the geometric structure of
Riemannian space (torsion tensor is identically equal to zero).
And similarly the electromagnetism (electromagnetic fields
and without mass) corresponds to the geometric structure of
affine connection space (curvature tensor is identically equal
to zero). In the last two cases the result is conditional (not
strict) because the matter division by the mass and field is
conditional.

To describe the internal geometry of the subspace is
sufficient to define two tensors, the metric tensor 𝑔

𝑖𝑘
and the

torsion tensor 𝑆𝑚
𝑖𝑘
; using these tensors one can build connec-

tion of the space and all the geometry of the space.
If we consider the space of hypersurface 𝑌𝑛−1 as a sub-

space then for a complete description of the geometry it
is necessary and sufficient to define the tensors 𝑎

𝛼𝛽
and

𝑇
𝛾

𝛼𝛽
. If we consider the hypersurface 𝑌

𝑛−1 as a subspace
that embedded in a space 𝑌

𝑛 then it is not sufficient to
know tensors 𝑎

𝛼𝛽
and 𝑇

𝛾

𝛼𝛽
for identifying the space 𝑌𝑛 (for

obtaining the metric tensor 𝑔
𝑖𝑘
and the torsion tensor 𝑆𝑚

𝑖𝑘
);

to describe the geometry of the ambient space it is necessary
and sufficient to specify exactly how the hypersurface 𝑌𝑛−1 is
embedded in it that is, specify the embedment; it can be done
in various ways. We assume that Jacobi matrix is known, so
the way of embedment hypersurface𝑌𝑛−1 in𝑌𝑛 is determined
(also the space can be recovered by determination of normal
for the hypersurface 𝑌𝑛−1).

We consider the followingmethod of constructing space-
time: the space is constructed on the basis of manifolds
by determining these manifolds metric tensor and torsion
tensor.Metric and torsion tensors are calculated from the dif-
ferential equations of the field. Hence torsion as the curvature
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arises from the physical features of the distribution of matter
in space-time. Roughly, the same way as the masses leads to
curvature space-time, electromagnetism leads to appearance
of torsion. But on the other hand from the mathematical
point of view if we assume that the space-time embedded
in Euclidean space of higher dimension then the appearance
of torsion can be explained by violation of the smoothness
embedding. Therefore, we can conditionally determine the
torsion and curvature by violation of smoothness regardless
of the dimension and embedment.

The aim of our paper is to study the property of metric
space with torsion and obtain analog of Einstein-Hilbert
equation at such space.

This paper is organized as follows. In Section 2 some
general properties of structure of a metric space with torsion
are discussed. In Section 3 we present the study of geodesics
in the space with torsion. These results can be used in
“geodesic principle.” In Section 4 the theory of hypersurfaces
in the space with torsion is dedicated. In Section 5 we
obtained some interesting relationships which is used in
Section 6. In Section 6 we derive analog of Einstein-Hilbert
(for electromagnetic and gravitational fields) in case of a
metric space with torsion.

The main natural assumption that is used below that a
scalar product of two any vectors that is transporting parallel
along an arbitrary path does not change of the 20th century
[2, 8, 11–13], and continues to develop so far [3–7, 14–22].

2. Structure of a Metric Space with Torsion

There are many ways to represent the physical four-
dimensional space, where events of our reality are occurring.
From a mathematical point of view there are two possible
conceptions of space geometry, which might be identified
with the physical space.

The first scheme is a generalization of Euclidean geom-
etry, the geometry of the Riemannian metric, that is, 𝑛-
dimensional manifold equipped with a field twice covariant
symmetric metric tensor which is non-degenerate 𝑔

𝑖𝑘
(𝑀),

where Det|𝑔
𝑖𝑘
| ̸= 0 and 𝑔

𝑖𝑘
= 𝑔
𝑘𝑖
. Note that the metric tensor

is chosen arbitrarily, but in addition to conditions laid above
we demand that the manifold was sufficiently smooth.

This definition can be rewritten as follows: invariant
differential quadratic form 𝑔

𝑖𝑘
𝑑𝑥
𝑖

𝑑𝑥
𝑘 determined on the

manifold and satisfying the conditions Det|𝑔
𝑖𝑘
| ̸= 0; 𝑔

𝑖𝑘
= 𝑔
𝑘𝑖

defines the geometry of Riemann.
As a consequence of the invariance of the form

𝑑𝑠
2

= 𝑔
𝑖𝑘
𝑑𝑥
𝑖

𝑑𝑥
𝑘

, (4)

we find that the coefficients 𝑔
𝑖𝑘
are forming a tensor field.

In this model for the arc length of the curve 𝑥𝑖 = 𝑥
𝑖

(𝑡),
𝑡 ∈ [𝑎, 𝑏] ⊂ 𝑅, is given by integral

𝑠 = ∫

𝑏

𝑎

√𝑔
𝑖𝑘
𝑑𝑥
𝑖
𝑑𝑥
𝑘

= ∫

𝑏

𝑎

√
𝑔
𝑖𝑘
(𝑥
1
(𝑡) , . . . , 𝑥

𝑛
(𝑡))

𝑑𝑥
𝑖

(𝑡)

𝑑𝑡

𝑑𝑥
𝑘

(𝑡)

𝑑𝑡

𝑑𝑡.

(5)

The second scheme is a generalization of affine geometry,
the geometry of affine connection Γ𝑖

𝑗𝑘
(𝑀) that is based on 𝑛-

dimensional manifold.
The connection Γ

𝑖

𝑗𝑘
(𝑀) is a geometric object on a man-

ifold and is subjected to the law of the transformation from
one coordinate system 𝑥

𝑖 to another 𝑥𝑖


in the form of

Γ
𝑖


𝑗

𝑘
 = Γ
𝑖

𝑗𝑘

𝜕𝑥
𝑖


𝜕𝑥
𝑖

𝜕𝑥
𝑗

𝜕𝑥
𝑗


𝜕𝑥
𝑘

𝜕𝑥
𝑘

+

𝜕
2

𝑥
𝑖

𝜕𝑥
𝑗


𝜕𝑥
𝑘


𝜕𝑥
𝑖


𝜕𝑥
𝑖
, (6)

where the functions Γ𝑖
𝑗𝑘
are sufficiently smooth.

Let along the curve 𝑥𝑖 = 𝑥
𝑖

(𝑡), 𝑡 ∈ [𝑎, 𝑏] ⊂ 𝑅 is given
tensor field 𝐴𝑖 = 𝐴

𝑖

(𝑡), if for each infinitesimal displacement
tensor 𝑑𝐴𝑖(𝑡) coordinates is changing the law:

𝑑𝐴
𝑖

= −Γ
𝑖

𝑗𝑘
𝐴
𝑗

𝑑𝑥
𝑘

, (7)

then we say that the tensor 𝐴𝑖 is transported parallel to the
curve 𝑡.

Depending on the physical investigated problem one or
another geometricmodel is choosing, but as the internal logic
and common sense requires that in the physical world, these
two models coexist together and complement each other.
There is well-known result that in an arbitrary Riemannian
space can always construct a connection Γ

𝑖

𝑗𝑘
(𝑀). An inter-

esting question is the uniqueness of such a construction. In
general, such a construction Γ𝑖

𝑗𝑘
is not unique, but completely

natural (in terms of mathematics and physics to a greater
extent), there is the requirement that whenever two vectors𝐴𝑖
and 𝐵𝑖 simultaneous parallel transported along a path (due to
the presence of the connection the transportation is defined),
their scalar product does not change (the scalar product is
defined by metric). Mathematically, this can be written as the
vanishing differential:

𝑑 (𝑔
𝑖𝑘
𝐴
𝑖

𝐵
𝑘

) = 0. (8)

If the requested coefficients Γ𝑖
𝑗𝑘

are symmetric, namely,
Γ
𝑖

𝑗𝑘
= Γ
𝑖

𝑘𝑗
, then the connectivity is uniquely defined using a

metric.
Always below we would not require the symmetry of

connection. And so if the metric 𝑔
𝑖𝑘

is defined, then a
geometric object Γ𝑖

𝑗𝑘
subject to certain requirements, but still

there is some arbitrariness in the choice of connectedness of
the space; namely, we need to define a torsion tensor

𝑆
𝑖

𝑗𝑘
≡ Γ
𝑖

𝑗𝑘
− Γ
𝑖

𝑘𝑗
; (9)

then the geometric object Γ𝑖
𝑗𝑘
that generated the connection

is uniquely determined.

Theorem 1. Suppose that a Riemannian space with the metric
𝑔
𝑖𝑘
and in this space is given torsion tensor 𝑆𝑖

𝑗𝑘
-antisymmetric.

If demand 𝑑(𝑔
𝑖𝑘
𝐴
𝑖

𝐵
𝑘

) = 0 for arbitrary 𝐴𝑖 and 𝐵
𝑘 then the

connection (geometric object that defines it) Γ𝑖
𝑗𝑘

is uniquely
defined.
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Proof. It is pretty easy to see the truth of this statement itself,
but for further more importantly those symbols and values
that relate to the nature of the entered values.

We rewrite 𝑑(𝑔
𝑖𝑘
𝐴
𝑖

𝐵
𝑘

) = 0, as (𝑔
𝑖𝑘,𝑙

− 𝑔
𝑚𝑘
Γ
𝑚

𝑖𝑙
−

𝑔
𝑖𝑚
Γ
𝑚

𝑘𝑙
)𝐴
𝑖

𝐵
𝑘

𝑑𝑥
𝑙

= 0 due to the fact that 𝑑𝐴𝑖 = −Γ
𝑖

𝑝𝑙
𝐴
𝑝

𝑑𝑥
𝑙,

where Γ𝑚
𝑖𝑙
, unknown coefficients of connection are a geomet-

ric object and 𝑑𝑥
𝑙 are the differentials of coordinates of a

point under infinitesimal displacement along the path; 𝑔
𝑖𝑘,𝑙

≡

(𝜕/𝜕𝑥
𝑙

)𝑔
𝑖𝑘
. Since,𝐴𝑖, 𝐵𝑘, 𝑑𝑥𝑙 are arbitrary, the equalities must

be identity relative to 𝐴𝑖, 𝐵𝑘, 𝑑𝑥𝑙. By circular permutation we
obtain the system of equations:

𝑔
𝑖𝑘,𝑙

= 𝑔
𝑚𝑘
Γ
𝑚

𝑖𝑙
+ 𝑔
𝑖𝑚
Γ
𝑚

𝑘𝑙
,

𝑔
𝑙𝑖,𝑘

= 𝑔
𝑚𝑖
Γ
𝑚

𝑙𝑘
+ 𝑔
𝑙𝑚
Γ
𝑚

𝑖𝑘
,

𝑔
𝑘𝑙,𝑖

= 𝑔
𝑚𝑙
Γ
𝑚

𝑘𝑖
+ 𝑔
𝑘𝑚
Γ
𝑚

𝑙𝑖
.

(10)

Since the technique is similar to the classical one, then we
give formulas without justification:

𝑔
𝑖𝑘,𝑙

+ 𝑔
𝑙𝑖,𝑘

− 𝑔
𝑘𝑙,𝑖

= 𝑔
𝑚𝑘
𝑆
𝑚

𝑖𝑙
+ 𝑔
𝑚𝑙
𝑆
𝑚

𝑖𝑘
+ 𝑔
𝑖𝑚
Γ
𝑚

𝑘𝑙
+ 𝑔
𝑚𝑖
Γ
𝑚

𝑙𝑘
, (11)

where 𝑆𝑚
𝑖𝑙
= Γ
𝑚

𝑖𝑙
− Γ
𝑚

𝑙𝑖
is torsion tensor, and we have

𝑔
𝑖𝑚
(Γ
𝑚

𝑘𝑙
+ Γ
𝑚

𝑙𝑘
)

= 𝑔
𝑖𝑘,𝑙

+ 𝑔
𝑙𝑖,𝑘

− 𝑔
𝑘𝑙,𝑖

+ 𝑔
𝑘𝑚
𝑆
𝑚

𝑙𝑖
+ 𝑔
𝑙𝑚
𝑆
𝑚

𝑘𝑖
,

Γ
𝑝

𝑘𝑙
+ Γ
𝑝

𝑙𝑘

= 𝑔
𝑝𝑖

(𝑔
𝑖𝑘,𝑙

+ 𝑔
𝑙𝑖,𝑘

− 𝑔
𝑘𝑙,𝑖

+ 𝑔
𝑘𝑚
𝑆
𝑚

𝑙𝑖
+ 𝑔
𝑙𝑚
𝑆
𝑚

𝑘𝑖
) ,

(12)

and complementing the obvious equation-definition Γ
𝑝

𝑘𝑙
−

Γ
𝑝

𝑙𝑘
= 𝑆
𝑝

𝑘𝑙
, then we obtain:

Γ
𝑝

𝑘𝑙
=

1

2

𝑔
𝑝𝑖

(𝑔
𝑖𝑘,𝑙

+ 𝑔
𝑙𝑖,𝑘

− 𝑔
𝑘𝑙,𝑖

+ 𝑔
𝑘𝑚
𝑆
𝑚

𝑙𝑖
+ 𝑔
𝑙𝑚
𝑆
𝑚

𝑘𝑖
)

+

1

2

𝑆
𝑝

𝑘𝑙
.

(13)

Thenwe introduce the notation and from the last formula
we see that

𝑃
𝑝

𝑘𝑙
=

1

2

𝑔
𝑝𝑖

(𝑔
𝑖𝑘,𝑙

+ 𝑔
𝑙𝑖,𝑘

− 𝑔
𝑘𝑙,𝑖
) (14)

is geometric object and

𝐿
𝑝

𝑘𝑙
≡

1

2

𝑆
𝑝

𝑘𝑙
+

1

2

𝑔
𝑝𝑖

(𝑔
𝑘𝑚
𝑆
𝑚

𝑙𝑖
+ 𝑔
𝑙𝑚
𝑆
𝑚

𝑘𝑖
) (15)

is tensor.
The geometric object Γ

𝑝

𝑘𝑙
, which generate connection

space, is completely determined by the tensors 𝑔
𝑖𝑘
and 𝑆

𝑚

𝑖𝑘
.

Therefore the connection Γ𝑝
𝑘𝑙
is the sum of a geometric object

𝑃
𝑝

𝑘𝑙
which is composed of derivatives of the metric tensor 𝑔

𝑖𝑘

and tensor 𝐿𝑝
𝑘𝑙
is compiled of 𝑔

𝑖𝑘
and the tensor 𝑆𝑚

𝑘𝑙
, namely,

Γ
𝑝

𝑘𝑙
= 𝑃
𝑝

𝑘𝑙
+ 𝐿
𝑝

𝑘𝑙
. (16)

Remark 2. Tensor 𝐿
𝑝

𝑘𝑙
represents the sum of two tensors:

symmetric (1/2)𝑔𝑝𝑖(𝑔
𝑘𝑚
𝑆
𝑚

𝑙𝑖
+ 𝑔
𝑙𝑚
𝑆
𝑚

𝑘𝑖
) and torsion (1/2)𝑆𝑝

𝑘𝑙
.

Remark 3. It is not difficult to prove the relation:

Γ
𝑝

𝑝𝑙
=

1

2

𝑔
𝑖𝑝,𝑙
𝑔
𝑖𝑝

=

1

√𝑔

𝜕√𝑔

𝜕𝑥
𝑙

, where 𝑔 = det 

𝑔
𝑖𝑘





. (17)

The next step in building a geometric theory is the con-
sideration of the parallel transport tensor-vector 𝐴𝑖, which is
given by

𝑑𝐴
𝑖

= −Γ
𝑖

𝑝𝑙
𝐴
𝑝

𝑑𝑥
𝑙

, (18)

where the coefficients Γ𝑖
𝑝𝑙
are the connection of space.

As further arguments are similar to the classic and often
repeated them, the presentation of intermediate results will
wear schematic character.

By a covariant derivative of 𝑢
𝑖
with respect to 𝑙 we mean

𝑢
𝑖;𝑙
≡ 𝑢
𝑖,𝑙
− Γ
𝑘

𝑖𝑙
𝑢
𝑘
,

𝑢
𝑖

;𝑙
≡ 𝑢
𝑖

,𝑙
+ Γ
𝑖

𝑘𝑙
𝑢
𝑘

.

(19)

Then we consider the difference

𝑢
𝑖;𝑙
− 𝑢
𝑙;𝑖
= 𝑢
𝑖,𝑙
− 𝑢
𝑙;𝑖
− 𝑆
𝑘

𝑖𝑙
𝑢
𝑘
. (20)

During the transition along a parallelogram in the image
to the original polygon the gap 𝑍

𝑘 is formed (breaking the
circuit), which can be estimated as follows, up to the 2nd
order of smallness relative to sides of a parallelogram:

𝑍
𝑘

= 𝑆
𝑘

𝑖𝑗
𝐴
𝑖

𝐵
𝑗

𝜏
2

. (21)

It is the result of coagulation at the torsion tensor with vector
parties 𝐴𝑖𝜏 and 𝐵

𝑗

𝜏 that express geodetic displacement. The
basic geometric meaning of the torsion tensor is an estimate
of the gap (up to 2nd order) at which the open loop shrinks, if
the torsion is zero, then the gap will not infinitesimal second
but higher order smallness.

Next, we consider the difference of the second order
derivatives:

𝑢
𝑖;𝑙;𝑘

− 𝑢
𝑖;𝑘;𝑙

= 𝑅
𝑝

𝑘𝑙𝑖
𝑢
𝑝
+ 𝑆
𝑞

𝑘𝑙
𝑢
𝑖;𝑞
, (22)

where we identified

𝑅
𝑝

𝑘𝑙𝑖
≡ Γ
𝑝

𝑖𝑘,𝑙
− Γ
𝑝

𝑖𝑙,𝑘
+ Γ
𝑝

𝑞𝑙
Γ
𝑞

𝑖𝑘
− Γ
𝑝

𝑞𝑘
Γ
𝑞

𝑖𝑙
. (23)

𝑅
𝑝

𝑘𝑙𝑖
is curvature tensor.
Similarly, we have

𝑢
𝑖

;𝑙;𝑘
− 𝑢
𝑖

;𝑘;𝑙
= −𝑅
𝑖

𝑘𝑙𝑝
𝑢
𝑝

+ 𝑆
𝑞

𝑘𝑙
𝑢
𝑖

;𝑞
. (24)

Remark 4. Also possible and slightly different way of defini-
tion a covariant derivative, namely, the absolute differential
𝐷𝐴
𝑖, is first determined using the formula

𝐷𝐴
𝑖

≡∼ 𝑑𝐴
𝑖

+ Γ
𝑖

𝑗𝑘
𝐴
𝑗

𝑑𝑥
𝑘

= (𝐴
𝑖

,𝑘
+ Γ
𝑖

𝑗𝑘
𝐴
𝑗

) 𝑑𝑥
𝑘

. (25)
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Absolute differential can be defined as derivative coeffi-
cients, all the results obtained with this approach to the con-
struction is identical with the analysis, which has been made
above. Then more clearly we can assert that for any space to
possess absolute parallelism it is a necessary and sufficient
condition that curvature tensor be identity vanishing (recall
that the space is called with absolute parallelism if the result
of the parallel transport of an arbitrary tensor-vector does
not depend on the choice of path for all points of space). The
proof of this theorem is generally known, we note only that it
follows from the formula:

𝐷𝐷𝐴
𝑖

− 𝐷𝐷𝐴
𝑖

= −𝑅
𝑖

𝑘𝑙𝑝
𝐴
𝑝 ̃
𝑑𝑥
𝑘

𝑑𝑥
𝑙

, (26)

which we could get by folding (24) with ̃
𝑑𝑥
𝑘

𝑑𝑥
𝑙.

All the constructions outlined above are general in nature
without specifying space; further we will investigate the
structure of the tensor 𝑅𝑝

𝑖𝑘𝑙
. So, by definition of (23) we have

𝑅
𝑝

𝑖𝑘𝑙
= Γ
𝑝

𝑙𝑖,𝑘
− Γ
𝑝

𝑙𝑘,𝑖
+ Γ
𝑝

𝑞𝑘
Γ
𝑞

𝑙𝑖
− Γ
𝑝

𝑞𝑖
Γ
𝑞

𝑙𝑘
. (27)

Then we use (16) and obtain

𝑅
𝑝

𝑖𝑘𝑙
= 𝑃
𝑝

𝑙𝑖,𝑘
+ 𝐿
𝑝

𝑙𝑖,𝑘
− 𝑃
𝑝

𝑙𝑘,𝑖
+ 𝐿
𝑝

𝑙𝑘,𝑖
+ (𝑃
𝑝

𝑞𝑘
+ 𝐿
𝑝

𝑞𝑘
) (𝑃
𝑝

𝑙𝑖
+ 𝐿
𝑞

𝑙𝑖
)

− (𝑃
𝑝

𝑞𝑖
+ 𝐿
𝑝

𝑞𝑖
) (𝑃
𝑝

𝑙𝑘
+ 𝐿
𝑞

𝑙𝑘
)

= 𝑃
𝑝

𝑙𝑖,𝑘
− 𝑃
𝑝

𝑙𝑘,𝑖
+ 𝑃
𝑝

𝑞𝑘
𝑃
𝑞

𝑙𝑖
− 𝑃
𝑝

𝑞𝑖
𝑃
𝑞

𝑙𝑘
+ 𝐿
𝑝

𝑙𝑖,𝑘
− 𝐿
𝑝

𝑙𝑘,𝑖

+ 𝑃
𝑝

𝑞𝑘
𝐿
𝑞

𝑙𝑖
+ 𝑃
𝑞

𝑙𝑖
𝐿
𝑝

𝑞𝑘
− 𝑃
𝑝

𝑞𝑖
𝐿
𝑞

𝑙𝑘
− 𝑃
𝑞

𝑙𝑘
𝐿
𝑝

𝑞𝑖

+ 𝐿
𝑝

𝑞𝑘
𝐿
𝑞

𝑙𝑖
− 𝐿
𝑝

𝑞𝑖
𝐿
𝑞

𝑙𝑘
.

(28)

Next we introduce the notation:

𝑃
𝑝

𝑖𝑘𝑙
≡ 𝑃
𝑝

𝑙𝑖,𝑘
− 𝑃
𝑝

𝑙𝑘,𝑖
+ 𝑃
𝑝

𝑞𝑘
𝑃
𝑞

𝑙𝑖
+ 𝑃
𝑝

𝑞𝑖
𝑃
𝑞

𝑙𝑘
(29)

is a tensor like the Riemann curvature tensor, composed of
the metric tensor and its derivatives. Consider the following:

𝑍
𝑝

𝑖𝑘𝑙
≡ 𝐿
𝑝

𝑞𝑘
𝐿
𝑞

𝑙𝑖
− 𝐿
𝑝

𝑞𝑖
𝐿
𝑞

𝑙𝑘
(30)

is tensor and

𝑇
𝑝

𝑖𝑘𝑙
≡ 𝐿
𝑝

𝑙𝑖,𝑘
− 𝐿
𝑝

𝑙𝑘,𝑖
+ 𝑃
𝑝

𝑞𝑘
𝐿
𝑞

𝑙𝑖
+ 𝑃
𝑞

𝑙𝑖
𝐿
𝑝

𝑞𝑘
− 𝑃
𝑝

𝑞𝑖
𝐿
𝑞

𝑙𝑘
− 𝑃
𝑞

𝑙𝑘
𝐿
𝑝

𝑞𝑖
(31)

is tensor.
If we take into account that𝑅𝑝

𝑖𝑘𝑙
is tensor, the last assertion

is obvious. It is interesting to obtain this important result in
another way; namely,

𝑇
𝑝

𝑖𝑘𝑙
= 𝐿
𝑝

𝑙𝑖;𝑘
− 𝐿
𝑝

𝑙𝑘;𝑖
− 𝐿
𝑞

𝑙𝑖
Γ
𝑝

𝑞𝑘
+ 𝐿
𝑝

𝑞𝑖
Γ
𝑞

𝑙𝑘
+ 𝐿
𝑝

𝑙𝑞
Γ
𝑞

𝑖𝑘
+ 𝐿
𝑞

𝑙𝑘
Γ
𝑝

𝑞𝑖

− 𝐿
𝑝

𝑞𝑘
Γ
𝑞

𝑙𝑖
− 𝐿
𝑝

𝑙𝑞
Γ
𝑞

𝑘𝑖
+ 𝑃
𝑝

𝑞𝑘
𝐿
𝑞

𝑙𝑖
+ 𝑃
𝑞

𝑙𝑖
𝐿
𝑞

𝑞𝑘

− 𝑃
𝑝

𝑞𝑖
𝐿
𝑞

𝑙𝑘
− 𝑃
𝑞

𝑙𝑘
𝐿
𝑝

𝑞𝑖

= 𝐿
𝑝

𝑙𝑖;𝑘
− 𝐿
𝑝

𝑙𝑘;𝑖
− 𝐿
𝑞

𝑙𝑖
𝐿
𝑝

𝑞𝑘
+ 𝐿
𝑝

𝑞𝑖
𝐿
𝑞

𝑙𝑘
+ 𝐿
𝑞

𝑙𝑘
𝐿
𝑝

𝑞𝑖

− 𝐿
𝑝

𝑞𝑘
𝐿
𝑞

𝑙𝑖
+ 𝐿
𝑝

𝑙𝑞
𝑆
𝑞

𝑖𝑘

(32)

is obviously the tensor because the absolute derivatives have
tensor character.

We introduce the notation

𝑀
𝑝

𝑖𝑘𝑙
≡ 𝑇
𝑝

𝑖𝑘𝑙
+ 𝑍
𝑝

𝑖𝑘𝑙
; (33)

then we obtain

𝑀
𝑝

𝑖𝑘𝑙
= 𝐿
𝑝

𝑙𝑖;𝑘
− 𝐿
𝑝

𝑙𝑘;𝑖
+ 𝐿
𝑝

𝑙𝑞
𝑆
𝑞

𝑖𝑘
+ 𝐿
𝑝

𝑞𝑖
𝐿
𝑞

𝑙𝑘
− 𝐿
𝑝

𝑞𝑘
𝐿
𝑞

𝑙𝑖
, (34)

and in the new notation

𝑅
𝑝

𝑖𝑘𝑙
= 𝑃
𝑝

𝑖𝑘𝑙
+𝑀
𝑝

𝑖𝑘𝑙
. (35)

Formula (35) shows that the curvature tensor, in general,
cases can be represented as the sum of two tensors (such
representation is not accidental, it is associatedwith a physical
description of the field; roughly speaking, in the absence of
gravitational fields tensor,𝑀𝑝

𝑖𝑘𝑙
is not equal to zero). Although

the formula (34) gives a qualitative representation of the
geometric structure, it is a little convenient, since it reenters
the values of Γ𝑖

𝑗𝑘
.

Further, we establish the equation, which is similar to
equation of Ricci-Jacobi

𝑅
𝑝

𝑖𝑘𝑙
+ 𝑅
𝑝

𝑘𝑙𝑖
+ 𝑅
𝑝

𝑙𝑖𝑘
= 𝑆
𝑝

𝑖𝑘,𝑙
+ 𝑆
𝑝

𝑘𝑙,𝑖
+ 𝑆
𝑝

𝑙𝑖,𝑘
+ Γ
𝑝

𝑞𝑘
𝑆
𝑞

𝑙𝑖
+ Γ
𝑝

𝑞𝑘
𝑆
𝑞

𝑖𝑘
+ Γ
𝑝

𝑞𝑖
𝑆
𝑞

𝑘𝑙

= 𝑆
𝑝

𝑖𝑘;𝑙
+ Γ
𝑞

𝑖𝑙
𝑆
𝑝

𝑞𝑘
+ Γ
𝑞

𝑘𝑙
𝑆
𝑝

𝑖𝑞
+ 𝑆
𝑝

𝑘𝑙;𝑖
+ Γ
𝑞

𝑘𝑖
𝑆
𝑝

𝑞𝑙
+ Γ
𝑞

𝑙𝑖
𝑆
𝑝

𝑘𝑞

+ 𝑆
𝑝

𝑙𝑖;𝑘
+ Γ
𝑞

𝑙𝑘
𝑆
𝑝

𝑞𝑖
+ Γ
𝑞

𝑖𝑘
𝑆
𝑝

𝑙𝑞

= 𝑆
𝑝

𝑖𝑘;𝑙
+ 𝑆
𝑝

𝑘𝑙;𝑖
+ 𝑆
𝑝

𝑙𝑖;𝑘

+ 𝑆
𝑝

𝑙𝑞
𝑆
𝑞

𝑖𝑘
+ 𝑆
𝑝

𝑘𝑞
𝑆
𝑞

𝑙𝑖
+ 𝑆
𝑝

𝑖𝑞
𝑆
𝑞

𝑘𝑙
.

(36)

It is easy to prove the equations

𝑆
𝑖

𝑗𝑝
𝑆
𝑝

𝑘𝑖
+ 𝑆
𝑖

𝑘𝑝
𝑆
𝑝

𝑖𝑗
= 0,

𝑆
𝑖

𝑖𝑝
𝑆
𝑝

𝑗𝑘
= 0;

(37)

and as a consequence, we obtain the equation

𝑆
𝑖

𝑗𝑝
𝑆
𝑝

𝑘𝑖
+ 𝑆
𝑖

𝑘𝑝
𝑆
𝑝

𝑖𝑗
+ 𝑆
𝑖

𝑖𝑝
𝑆
𝑝

𝑗𝑘
= 0. (38)

3. The Study of Geodesics in
the Space with Torsion

Formula (13) consists of three summand of various kinds.
The sum (14) is a geometric object second valence; its

components are converted by a formula similar to the one that
takes place for the connection:

𝑃
𝑝


𝑘

𝑙

= 𝑃
𝑝

𝑘𝑙

𝜕𝑥
𝑝


𝜕𝑥
𝑝

𝜕𝑥
𝑘

𝜕𝑥
𝑘


𝜕𝑥
𝑙

𝜕𝑥
𝑙

+

𝜕
2

𝑥
𝑝

𝜕𝑥
𝑘


𝜕𝑥
𝑙


𝜕𝑥
𝑝


𝜕𝑥
𝑝
, (39)

but note that in this space, this “connection” does not satisfy
the “torsion condition” (𝑆𝑖

𝑗𝑘
≡ Γ
𝑖

𝑗𝑘
− Γ
𝑖

𝑘𝑗
).
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Value (1/2)𝑆𝑝
𝑘𝑙
: this tensor can be to be used as a “con-

nection,” but then this “connection” is not used to satisfy the
compatibility condition.

Value

𝑀
𝑝

𝑘𝑙
≡

1

2

𝑔
𝑝𝑖

(𝑔
𝑘𝑚
𝑆
𝑚

𝑙𝑖
+ 𝑔
𝑙𝑚
𝑆
𝑚

𝑘𝑖
) (40)

is a tensor that expresses the combined effect of the metric
and torsion.

First of all, it is easy to show that the element (1/2)𝑆𝑝
𝑘𝑙
does

not affect the geodesic, since by the asymmetry of the torsion
it is not included in the equations of geodesic lines:

𝑑
2

𝑥
𝑘

𝑑𝜏
2
= −Γ
𝑘

𝑖𝑗

𝑑𝑥
𝑖

𝑑𝜏

𝑑𝑥
𝑗

𝑑𝜏

; (41)

that is, (6) will be determined only by sum 𝑃
𝑝

𝑘𝑙
+𝑀
𝑝

𝑘𝑙
. In (6) 𝜏

is the canonical parameter, that is the vector 𝑑𝑥𝑖/𝑑𝜏 is parallel
transported vector. For no isotropic geodesic the length of arc
𝑠 is a canonical parameter, for geodetic related to 𝑠 takes place
in differential equations:

𝑑
2

𝑥
𝑘

𝑑𝑠
2

= −Γ
𝑘

𝑖𝑗

𝑑𝑥
𝑖

𝑑𝑠

𝑑𝑥
𝑗

𝑑𝑠

. (42)

Definition 5. The line is called a geodesic if any tangent to this
line at some point vector remains tangent to it at the parallel
transport along it.

Theorem 6. The equations of geodesic lines in space 𝑌
𝑛 is

determined by the geometric object in form of the sum:

𝑃
𝑝

𝑘𝑙
+𝑀
𝑝

𝑘𝑙
=

1

2

𝑔
𝑝𝑖

(𝑔
𝑖𝑘,𝑙

+ 𝑔
𝑙𝑖,𝑘

− 𝑔
𝑘𝑙,𝑖
)

+

1

2

𝑔
𝑝𝑖

(𝑔
𝑘𝑚
𝑆
𝑚

𝑙𝑖
+ 𝑔
𝑙𝑚
𝑆
𝑚

𝑘𝑖
) .

(43)

In case classical Riemannian space geodetic lines have
known extreme properties, in this case analogical properties
of geodesic require additional research.

Thus, for a no isotropic geodesic with canonical parame-
ter arc length 𝑠, we have differential equations:

𝑑
2

𝑥
𝑘

𝑑𝑠
2

= −Γ
𝑘

𝑖𝑗

𝑑𝑥
𝑖

𝑑𝑠

𝑑𝑥
𝑗

𝑑𝑠

. (44)

Consider the problem of calculating the variation of the
arc length.

Let a nonisotropic curve 𝑥
𝑖

= 𝑥
𝑖

(𝑡), 𝑡 ∈ [𝑡
1
; 𝑡
2
]. We

calculate the variation of length 𝛿𝑆 of the curve 𝑆:

𝛿𝑆 = ∫

𝑡
2

𝑡
1

𝛿
√
𝑔
𝑖𝑗

𝑑𝑥
𝑖

𝑑𝑡

𝑑𝑥
𝑗

𝑑𝑡

𝑑𝑡

= ∫

𝑡
2

𝑡
1

𝛿 (𝑔
𝑖𝑗
(𝑑𝑥
𝑖

/𝑑𝑡) (𝑑𝑥
𝑗

/𝑑𝑡))

2√𝑔
𝑖𝑗
(𝑑𝑥
𝑖
/𝑑𝑡) (𝑑𝑥

𝑗
/𝑑𝑡)

𝑑𝑡,

𝛿 (𝑔
𝑖𝑗

𝑑𝑥
𝑖

𝑑𝑡

𝑑𝑥
𝑗

𝑑𝑡

) = 𝑔
𝑖𝑗
𝐷

𝑑𝑥
𝑖

𝑑𝑡

𝑑𝑥
𝑗

𝑑𝑡

+ 𝑔
𝑖𝑗

𝑑𝑥
𝑖

𝑑𝑡

𝐷

𝑑𝑥
𝑗

𝑑𝑡

= 2𝑔
𝑖𝑗

𝑑𝑥
𝑖

𝑑𝑡

𝐷

𝑑𝑥
𝑗

𝑑𝑡

,

𝐷

𝑑𝑥
𝑗

𝑑𝑡

= 𝛿

𝑑𝑥
𝑗

𝑑𝑡

+ Γ
𝑗

𝑝𝑘

𝑑𝑥
𝑝

𝑑𝑡

𝛿𝑥
𝑘

,

𝐷

𝛿𝑥
𝑗

𝑑𝑡

=

𝑑

𝑑𝑡

𝛿𝑥
𝑗

+ Γ
𝑗

𝑘𝑝

𝑑𝑥
𝑘

𝑑𝑡

𝛿𝑥
𝑝

,

𝐷

𝑑𝑥
𝑗

𝑑𝑡

= 𝐷

𝛿𝑥
𝑗

𝑑𝑡

+ 𝑆
𝑗

𝑝𝑘

𝑑𝑥
𝑝

𝑑𝑡

𝛿𝑥
𝑘

,

(45)

where𝐷 denotes the absolute differential through the param-
eter curves of the family at a constant value 𝑡 and𝐷 is absolute
differential charge small displacement 𝑑𝑡 curve at a constant
parameter of the family; then

𝛿(𝑔
𝑖𝑗

𝑑𝑥
𝑖

𝑑𝑡

𝑑𝑥
𝑗

𝑑𝑡

) = 2𝑔
𝑖𝑗

𝑑𝑥
𝑖

𝑑𝑡

(𝐷

𝛿𝑥
𝑗

𝑑𝑡

+ 𝑆
𝑗

𝑝𝑘

𝑑𝑥
𝑝

𝑑𝑡

𝛿𝑥
𝑘

) ,

𝛿𝑠 = ∫

𝑡
2

𝑡
1

𝑔
𝑖𝑗

𝑑𝑥
𝑖

𝑑𝑠

𝐷𝛿𝑥
𝑗

+ ∫

𝑡
2

𝑡
1

𝑔
𝑖𝑗
𝑆
𝑗

𝑝𝑘

𝑑𝑥
𝑖

𝑑𝑠

𝑑𝑥
𝑝

𝛿𝑥
𝑘

= ∫

𝑡
2

𝑡
1

𝐷(𝑔
𝑖𝑗

𝑑𝑥
𝑖

𝑑𝑠

𝛿𝑥
𝑗

)

− ∫

𝑡
2

𝑡
1

𝑔
𝑖𝑗
𝐷

𝑑𝑥
𝑖

𝑑𝑠

𝛿𝑥
𝑗

+ ∫

𝑡
2

𝑡
1

𝑔
𝑖𝑗
𝑆
𝑗

𝑝𝑘

𝑑𝑥
𝑖

𝑑𝑠

𝑑𝑥
𝑝

𝛿𝑥
𝑘

;

(46)

if the ends of the variable curve are fixed, then

𝛿𝑠 = ∫

𝑡
2

𝑡
1

(𝑔
𝑖𝑗
𝑆
𝑗

𝑝𝑘

𝑑𝑥
𝑖

𝑑𝑡

𝑑𝑥
𝑝

𝛿𝑥
𝑘

− 𝑔
𝑖𝑗
𝐷

𝑑𝑥
𝑖

𝑑𝑡

𝛿𝑥
𝑗

) ; (47)

if the considered curve has fixed length (analytically 𝛿𝑠 = 0),
then we obtain

∫

𝑡
2

𝑡
1

(𝑔
𝑖𝑗
𝑆
𝑗

𝑝𝑘

𝑑𝑥
𝑖

𝑑𝑠

𝑑𝑥
𝑝

𝛿𝑥
𝑘

− 𝑔
𝑖𝑗
𝐷

𝑑𝑥
𝑖

𝑑𝑠

𝛿𝑥
𝑗

) = 0. (48)

Using the fundamental lemma calculus of variations, it
follows that

𝑔
𝑖𝑘
𝑆
𝑘

𝑝𝑗

𝑑𝑥
𝑖

𝑑𝑠

𝑑𝑥
𝑝

− 𝑔
𝑖𝑗
𝐷

𝑑𝑥
𝑖

𝑑𝑠

= 0. (49)

This equation means that the tangent vector 𝜉𝑞 of the
curve is transported according to the law𝐷𝜉

𝑞

𝑔
𝑗𝑞

𝑔
𝑖𝑘
𝑆
𝑘

𝑝𝑗
𝜉
𝑖

𝑑𝑥
𝑝,

which means that 𝑠 is not geodesic curve. Conversely, the
variation of the length of the geodesic lines is

𝛿𝑠 = ∫

𝑡
2

𝑡
1

𝑔
𝑖𝑗
𝑆
𝑗

𝑝𝑘

𝑑𝑥
𝑖

𝑑𝑡

𝑑𝑥
𝑝

𝛿𝑥
𝑘

. (50)

Properties in the new geodesic geometry defined by
means of two tensors 𝑔

𝑖𝑘
and 𝑆

𝑗

𝑖𝑘
differ greatly from similar

properties in Riemann geometry. The theorem is proved.
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Theorem 7. In order a line in space 𝑌𝑛 (that is generated by
𝑔
𝑖𝑘
and 𝑆

𝑗

𝑖𝑘
) was geodetic it is necessary and sufficient that a

variation of the arc this line was equaled:

∫

𝑡
2

𝑡
1

𝑔
𝑖𝑗
𝑆
𝑗

𝑝𝑘

𝑑𝑥
𝑖

𝑑𝑡

𝑑𝑥
𝑝

𝛿𝑥
𝑘

. (51)

Consequence. In the case of spaces with affine connection
is known that there is a gap (breach) of closure during the
transition from the original to the image and vice versa, in
the case of an infinitely small contour (determined up to the
second order relative to 𝜏). If you specify the torsion tensor 𝑆𝑘

𝑖𝑗

at the corresponding point, then if this gap is denoted by Ψ𝑘,
then Ψ

𝑘

= 𝑆
𝑘

𝑖𝑗
𝐴
𝑖

𝐵
𝑗

𝜏
2, where the parallelogram 𝐴

𝑖

𝜏 and 𝐵
𝑗

𝜏

shrink to a point at 𝜏 → 0. In this case, we have the formula
for square of the length: |Ψ|2 = 𝑔

𝑝𝑞
𝑆
𝑝

𝑖𝑗
𝐴
𝑖

𝐵
𝑗

𝑆
𝑞

𝑘𝑙
𝐴
𝑘

𝐵
𝑙

𝜏
4.

Theorem 8. Let classical Riemannian space be given (Rie-
mannian manifold with Riemannian metric tensor 𝑔

𝑖𝑘
) with

the connection 𝑃
𝑘

𝑖𝑗
, connection Riemannian space. Let 𝑌𝑛 be

the space generated jointly and agreed on by metric 𝑔
𝑖𝑘
and

torsion 𝑆𝑘
𝑖𝑗
tensors together with connection Γ𝑘

𝑖𝑗
. To coincide the

geodesics in classical Riemannian space with the geodesics in
space 𝑌𝑛 it is necessary and sufficient that the connections 𝑃𝑘

𝑖𝑗

and Γ𝑘
𝑖𝑗
be differed by tensor:

1

2

1

𝑛 + 1

(𝛿
𝑘

𝑖
𝑆
𝑙

𝑗𝑙
+ 𝛿
𝑘

𝑗
𝑆
𝑙

𝑖𝑙
) ; (52)

that is,

Γ
𝑘

𝑖𝑗
− 𝑃
𝑘

𝑖𝑗
=

1

2

1

𝑛 + 1

(𝛿
𝑘

𝑖
𝑆
𝑙

𝑗𝑙
+ 𝛿
𝑘

𝑗
𝑆
𝑙

𝑖𝑙
) . (53)

Remark 9. The last summand in

Γ
𝑘

𝑖𝑗
=

1

2

𝑔
𝑘𝑝

(𝑔
𝑖𝑝𝑗𝑙

+ 𝑔
𝑗𝑝,𝑖

− 𝑔
𝑖𝑗,𝑝

+ 𝑔
𝑖𝑚
𝑆
𝑚

𝑗𝑝
+ 𝑔
𝑗𝑚
𝑆
𝑚

𝑖𝑝
)

+

1

2

𝑆
𝑘

𝑖𝑗
,

(54)

that is, (1/2)𝑆𝑘
𝑖𝑗
, is irrelevant (it is clear).

Proof. The necessity means that if the geodesics in classical
Riemannian space coincide with the geodesics in space 𝑌𝑛,
then

Γ
𝑘

𝑖𝑗
− 𝑃
𝑘

𝑖𝑗
=

1

2

1

𝑛 + 1

(𝛿
𝑘

𝑖
𝑆
𝑙

𝑗𝑙
+ 𝛿
𝑘

𝑗
𝑆
𝑙

𝑖𝑙
) . (55)

Let the vector 𝐴𝑖 be tangent to any geodesic and 𝐴
𝑖 is

parallel transported to the connection Γ𝑝
𝑘𝑙
:

Γ
𝑝

𝑘𝑙
=

1

2

𝑔
𝑝𝑖

(𝑔
𝑖𝑘,𝑙

+ 𝑔
𝑙𝑖,𝑘

− 𝑔
𝑘𝑙,𝑖

+ 𝑔
𝑘𝑚
𝑆
𝑚

𝑙𝑖
+ 𝑔
𝑙𝑚
𝑆
𝑚

𝑘𝑖
)

+

1

2

𝑆
𝑝

𝑘𝑙
,

(56)

and a vector 𝐵𝑖 is parallel transported to the connection 𝑃𝑝
𝑘𝑙
:

𝑃
𝑝

𝑘𝑙
=

1

2

𝑔
𝑝𝑖

(𝑔
𝑖𝑘,𝑙

+ 𝑔
𝑙𝑖,𝑘

− 𝑔
𝑘𝑙,𝑖
) . (57)

It was found that the first geodesic connections coincide
with geodesic connection 𝑃

𝑝

𝑘𝑙
+ 𝑀
𝑝

𝑘𝑙
; here 𝑀𝑘

𝑖𝑗
is an arbitrary

symmetric tensor. Since both vectors are tangential, then

𝐵
𝑖

= 𝑎𝐴
𝑖

, (58)

where the coefficient 𝑎 is variable and 𝑎 ̸= 0. Tensor-vector
𝐴
𝑖 is given by

𝑑𝐴
𝑘

= − (𝑃
𝑘

𝑖𝑗
+𝑀
𝑘

𝑖𝑗
)𝐴
𝑖

𝑑𝑥
𝑗

,

𝑑𝐵
𝑘

= −𝑃
𝑘

𝑖𝑗
𝐵
𝑖

𝑑𝑥
𝑗

.

(59)

Then, we have

𝐴
𝑘

𝑑𝑎 + 𝑎𝑑𝐴
𝑘

= −𝑃
𝑘

𝑖𝑗
𝑎𝐴
𝑖

𝑑𝑥
𝑗

, (60)

𝐴
𝑘

𝑑𝑎

𝑎

= 𝑀
𝑘

𝑖𝑗
𝐴
𝑖

𝑑𝑥
𝑗

. (61)

Tangent vector𝐴𝑖 can be written:𝐴𝑖 = 𝑑𝑥
𝑖

/𝑑𝜏, where 𝜏 is the
canonical parameter relative to the connection 𝑃𝑝

𝑘𝑙
+𝑀
𝑝

𝑘𝑙
.

Then, after dividing by 𝑑𝜏, we have

𝑑 ln 𝑎
𝑑𝜏

𝐴
𝑘

= 𝑀
𝑘

𝑖𝑗
𝐴
𝑖

𝐴
𝑗

. (62)

Since geodesic lines can be carried out through any point and
in any direction, then equality must be true at any point and
for any vector𝐴𝑖, the functional dependence of the point and
direction, obviously there.

The last equality is multiplied by 𝐴𝑙 and alternated by 𝑘
and 𝑙:

𝐴
𝑙

𝑀
𝑘

𝑖𝑗
𝐴
𝑖

𝐴
𝑗

− 𝐴
𝑘

𝑀
𝑙

𝑖𝑗
𝐴
𝑖

𝐴
𝑗

= 0, (63)

or

𝛿
𝑙

𝑚
𝑀
𝑘

𝑖𝑗
𝐴
𝑖

𝐴
𝑗

𝐴
𝑚

− 𝛿
𝑘

𝑚
𝑀
𝑙

𝑖𝑗
𝐴
𝑖

𝐴
𝑗

𝐴
𝑚

= 0, (64)

where we denote 𝛿
𝑙

𝑚
= 𝑔
𝑚𝑝
𝑔
𝑝𝑙. This equation must hold

identically with respect to vectors 𝐴1, . . . , 𝐴𝑛, consequently,
after summed similar summands all the coefficients of the
cubic form must vanish. We compute the total coefficient:

𝛿
𝑙

𝑚
𝑀
𝑘

𝑖𝑗
− 𝛿
𝑘

𝑚
𝑀
𝑙

𝑖𝑗
+ 𝛿
𝑙

𝑖
𝑀
𝑘

𝑗𝑚
− 𝛿
𝑘

𝑖
𝑀
𝑙

𝑗𝑚
+ 𝛿
𝑙

𝑗
𝑀
𝑘

𝑚𝑖
− 𝛿
𝑘

𝑗
𝑀
𝑙

𝑚𝑖

= 0.

(65)

Then we contracted tensor by indices 𝑙 and 𝑗. Since 𝛿𝑖
𝑖
= 𝑛, we

have

𝑀
𝑘

𝑖𝑗
=

1

𝑛 + 1

(𝛿
𝑘

𝑖
𝑀
𝑙

𝑗𝑙
+ 𝛿
𝑘

𝑗
𝑀
𝑙

𝑖𝑙
) . (66)
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All calculations above are correct for any symmetrical
tensor𝑀𝑘

𝑖𝑗
.

All calculations presented above do not take into
account the specificity of the tensor 𝑀𝑘

𝑖𝑗
; then, let 𝑀𝑝

𝑘𝑙
≡

(1/2)𝑔
𝑝𝑖

(𝑔
𝑘𝑚
𝑆
𝑚

𝑙𝑖
+ 𝑔
𝑙𝑚
𝑆
𝑚

𝑘𝑖
); then𝑀𝑙

𝑘𝑙
≡ (1/2)𝑆

𝑙

𝑘𝑙
.

We obtained

Γ
𝑘

𝑖𝑗
− 𝑃
𝑘

𝑖𝑗
=

1

2

1

𝑛 + 1

(𝛿
𝑘

𝑖
𝑆
𝑙

𝑗𝑙
+ 𝛿
𝑘

𝑗
𝑆
𝑙

𝑖𝑙
) . (67)

The necessity is proof.

Remark 10. In the beginning we considered more general
situation and then specified tensor𝑀𝑘

𝑖𝑗
.

We prove the sufficiency. We assume that Γ𝑘
𝑖𝑗
− 𝑃
𝑘

𝑖𝑗
=

(1/2)(1/(𝑛 + 1))(𝛿
𝑘

𝑖
𝑆
𝑙

𝑗𝑙
+ 𝛿
𝑘

𝑗
𝑆
𝑙

𝑖𝑙
); we have to show that the

geodesics coincide.
We again use (61); we have 𝐴𝑘𝑑𝑎/𝑎 = 𝑀

𝑘

𝑖𝑗
𝐴
𝑖

𝑑𝑥
𝑗.

Tangent vector𝐴𝑖 can be written:𝐴𝑖 = 𝑑𝑥
𝑖

/𝑑𝜏, where 𝜏 is
the canonical parameter relative to the connection Γ𝑘

𝑖𝑗
.

Since along the curve 𝑆𝑙
𝑖𝑙
𝐴
𝑖 there is a definite function of

the parameter 𝜏, then it will find ln 𝑎 after integration with
up to a constant 𝑎, but only up to a constant factor (we can
integrate). Therefore, the vector is found to be 𝐵𝑖 = 𝑎𝐴

𝑖 and
all geodesics coincide. The sufficiency is proved. The theorem
is proved.

4. The Theory of Hypersurfaces

First we formulate a well-known classical result on the
derivation formulas of hypersurface in Riemannian torsion-
free space, where the connection is uniquely generated by the
metric.

Formal statement of Gauss-Codazzi equations in space
with symmetrical connection, 𝑆𝑘

𝑖𝑗
= 0. Assume that 𝑖 : 𝑀 ⊂ 𝑃

is 𝑛-dimensional embedded submanifold of a Riemannian
manifold 𝑃 of dimension 𝑛 + 𝑝. There is a natural inclusion
of the tangent bundle of𝑀 into that of 𝑃 by the pushforward,
and the cokernel is the normal bundle of 𝑀 : 0 → 𝑇

𝑥
→

𝑇
𝑥
𝑃|
𝑀

→ 𝑇
⊥

𝑥
𝑀 → 0. The metric splits this short exact

sequence, and so 𝑇𝑃|
𝑀
= 𝑇𝑀 ⊕ 𝑇

⊥

𝑀.
The Levi-Civita connection ∇

 of 𝑃 decomposes into
tangential and normal components. For each 𝑋 ∈ 𝑇𝑀 and
vector field 𝑌 on 𝑀, ∇

𝑋
𝑌 = 𝑇(∇



𝑋
𝑌) + ⊥ (∇



𝑋
𝑌). Let it be

∇
𝑋
𝑌 = 𝑇(∇



𝑋
𝑌), 𝛼(𝑋, 𝑌) = ⊥ (∇

𝑋
𝑌). Gauss’ formula asserts

that ∇
𝑋
is Levi-Civita connection on𝑀, and 𝛼 is a symmetric

form with values into the normal bundle. It is also referred to
as the second fundamental form. An immediate corollary is
the Gauss equation. For𝑋,𝑌, 𝑍,𝑊 ∈ 𝑇𝑀,

⟨𝑅


(𝑋, 𝑌)𝑍,𝑊⟩ = ⟨𝑅 (𝑋, 𝑌)𝑍,𝑊⟩

+ ⟨𝛼 (𝑋, 𝑍) , 𝛼 (𝑌,𝑊)⟩

− ⟨𝛼 (𝑌, 𝑍) , 𝛼 (𝑋,𝑊)⟩ ,

(68)

where 𝑅 is the Riemann curvature tensor of 𝑃 and 𝑅 is that
of𝑀.

There are thus a pair of connections: ∇, defined on the
tangent bundle of 𝑀, and 𝐷, defined on the normal bundle
of 𝑀. These combine to form a connection on any tensor
product of copies of 𝑇𝑀 and 𝑇 ⊥ 𝑀. In particular, they
defined the covariant derivative of 𝛼:

(∇


𝑋
𝛼) (𝑌, 𝑍) = 𝐷

𝑋
(𝛼 (𝑌, 𝑍)) − 𝛼 (∇

𝑋
𝑌,𝑍)

− 𝛼 (𝑌, ∇
𝑋
𝑍) .

(69)

Codazzi equation is

⊥ ⟨𝑅


(𝑋, 𝑌)𝑍⟩ = (∇


𝑋
𝛼) (𝑌, 𝑍) − (∇



𝑌
𝛼) (𝑋, 𝑍) . (70)

The above formulas also hold for immersions, because
every immersion is, in particular, a local embedding. The
important assumption in the theory stated above is that
connection is symmetrical, so analog of second form of
hypersurface is symmetrical and we could obtain the deriva-
tion formulas of hypersurface.

In our case we do not assume any conditions about
the connection symmetry, so below we study much more
complicated problem.

A similar manner as in the Riemannian space can be
developed as a theory of hypersurfaces, so in themetric space
with torsion a theory of hypersurfaces can be constructed.
But, due to the presence of torsion, in these cases there is a
significant difference. For example, the derivation equations
(analog PetersonCodazzi equations) take amore complicated
form, in which there are new summands, which are caused by
the presence of torsion in the space.

We make a study of the hypersurfaces 𝑌𝑛−1 in a metric
space with torsion𝑌𝑛. We are assuming that the hypersurface
is defined by a system of equations:

𝑥
𝑖

= 𝑥
𝑖

(𝑦
1

, . . . , 𝑦
𝑛−1

) , (71)

and the rank of the matrix [𝜕𝑥𝑖/𝜕𝑦𝛼] equals 𝑛 − 1. The metric
tensor of hypersurface 𝑌𝑛−1 is given by

𝑎
𝛼𝛽

= 𝑔
𝑖𝑗

𝜕𝑥
𝑖

𝜕𝑦
𝛼

𝜕𝑥
𝑗

𝜕𝑦
𝛽

. (72)

Then we obtain the formula for tensor of torsion 𝑇
𝛾

𝛼𝛽
of

hypersurface 𝑌𝑛−1 (assuming that functions 𝑥𝑖(𝑦1, . . . , 𝑦𝑛−1)
are smooth enough). Let 𝐺𝛼

𝛽𝛾
be the connection of 𝑌𝑛−1 and

we assume that 𝐺𝛼
𝛽𝛾

express via metric 𝑎
𝛼𝛽

and torsion 𝑇
𝛾

𝛼𝛽

similarly to as the connection Γ𝑘
𝑖𝑗
express by means of 𝑔

𝑖𝑗
and

𝑆
𝑘

𝑖𝑗
, we have:

𝐺
𝛼

𝛽𝛾

=

1

2

(𝑎
𝛼𝜂

(𝑎
𝛽𝜂,𝛾

+ 𝑎
𝛾𝜂,𝛽

+ 𝑎
𝛽𝛾,𝜂

+ 𝑎
𝛽𝜇
𝑇
𝜇

𝛾𝜂
+ 𝑎
𝛾𝜇
𝑇
𝜇

𝛽𝜂
) + 𝑇
𝛼

𝛾𝛽
) ,

(73)
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𝐺
𝛼

𝛽𝛾
is geometric object and is subjected to the law of the

transformation from one coordinate system 𝑢
𝛼 to another 𝑢𝛼



by the formula:

𝐺
𝛼

𝛽𝛾
= 𝐺
𝛼


𝛽

𝛾


𝜕𝑢
𝛼

𝜕𝑢
𝛼


𝜕𝑢
𝛽


𝜕𝑢
𝛽

𝜕𝑢
𝛾


𝜕𝑢
𝛾
+

𝜕𝑢
𝛼

𝜕𝑢
𝛼


𝜕
2

𝑢
𝛼


𝜕𝑢
𝛽
𝜕𝑢
𝛾

. (74)

Then we assume that connection 𝐺
𝛼

𝛽𝛾
of 𝑌𝑛−1 are associated

with connection Γ𝑘
𝑖𝑗
of 𝑌𝑛 mean of formula:

𝐺
𝛼

𝛽𝛾

𝜕𝑥
𝑘

𝜕𝑢
𝛼
= Γ
𝑘

𝑖𝑗

𝜕𝑥
𝑖

𝜕𝑢
𝛽

𝜕𝑥
𝑗

𝜕𝑢
𝛾
+

𝜕
2

𝑥
𝑘

𝜕𝑢
𝛽
𝜕𝑢
𝛾

. (75)

We obtain

1

2

(𝑎
𝛼𝜂

(𝑎
𝛽𝜂,𝛾

+ 𝑎
𝛾𝜂,𝛽

+ 𝑎
𝛽𝛾,𝜂

+ 𝑎
𝛽𝜇
𝑇
𝜇

𝛾𝜂
+ 𝑎
𝛾𝜇
𝑇
𝜇

𝛽𝜂
) + 𝑇
𝛼

𝛾𝛽
)

𝜕𝑥
𝑘

𝜕𝑢
𝛼

=

1

2

(𝑔
𝑘𝑛

(𝑔
𝑛𝑖,𝑗

+ 𝑔
𝑛𝑗,𝑖

− 𝑔
𝑖𝑗,𝑛

+ 𝑔
𝑖𝑚
𝑆
𝑚

𝑗𝑛
+ 𝑔
𝑗𝑚
𝑆
𝑚

𝑖𝑛
) + 𝑆
𝑘

𝑖𝑗
)

×

𝜕𝑥
𝑖

𝜕𝑢
𝛽

𝜕𝑥
𝑗

𝜕𝑢
𝛾
+

𝜕
2

𝑥
𝑘

𝜕𝑢
𝛽
𝜕𝑢
𝛾

.

(76)

By permuting indices, we have the next formula for the
torsion tensor of hypersurface 𝑌𝑛−1:

𝑇
𝛾

𝛼𝛽
= 𝑎
𝛾𝜂

𝑔
𝑝𝑞
𝑆
𝑝

𝑖𝑗

𝜕𝑥
𝑖

𝜕𝑦
𝛼

𝜕𝑥
𝑗

𝜕𝑦
𝛽

𝜕𝑥
𝑞

𝜕𝑦
𝜂
; (77)

using tensors 𝑎
𝛼𝛽

and 𝑇
𝛾

𝛼𝛽
, both metric and torsion, we can

explore the geometry of the space hypersurface 𝑌𝑛−1.
The connection of𝑌𝑛−1 will be determined by the formula

(73).
Below we use the mixed tensors values which enumer-

ated two types of indices, while Latin indices refer to the
containing space 𝑌

𝑛 and are responsive to the coordinate
transformation 𝑥

𝑖, and Greek indices belong to the space
hypersurface 𝑌

𝑛−1 and are responsive to the coordinate
transformation 𝑦𝛼.

The index 𝑖 is not responsive to the coordinate 𝑦
𝛼

transformation into 𝑌𝑛−1, and the index 𝛼 does not respond
to the coordinate 𝑥

𝑖 transformation in 𝑌
𝑛. For example,

the formula to calculate the covariant derivative of a mixed
tensor:

𝐴
𝑖𝛼

𝑗𝛽;𝛾
= 𝐴
𝑖𝛼

𝑗𝛽,𝛾
+ Γ
𝑖

𝑝𝑘
𝐴
𝑝𝛼

𝑗𝛽

𝜕𝑥
𝑘

𝜕𝑦
𝛾
− Γ
𝑝

𝑗𝑞
𝐴
𝑖𝛼

𝑝𝛽

𝜕𝑥
𝑞

𝜕𝑦
𝛾
+ 𝐺
𝛼

𝜂𝛾
𝐴
𝑖𝜂

𝑗𝛽

− 𝐺
𝜂

𝛽𝛾
𝐴
𝑖𝛼

𝑗𝜂
.

(78)

The direct calculations lead us to formulas

𝑢
𝑖;𝛼;𝛽

− 𝑢
𝑖;𝛽;𝛼

= 𝑅
𝑝

𝑘𝑙𝑖
𝑢
𝑝

𝜕𝑥
𝑙

𝜕𝑦
𝛼

𝜕𝑥
𝑘

𝜕𝑦
𝛽

+ 𝑆
𝑞

𝑘𝑙
𝑢
𝑖;𝑞

𝜕𝑥
𝑙

𝜕𝑦
𝛼

𝜕𝑥
𝑘

𝜕𝑦
𝛽

,

𝑢
𝛾;𝛼;𝛽

− 𝑢
𝛾;𝛽;𝛼

= 𝑅
𝜂

𝛽𝛼𝛾
𝑢
𝜂
+ 𝑇
𝜂

𝛽𝛼
𝑢
𝛾;𝜂
,

(79)

where 𝑅
𝜂

𝛽𝛼𝛾
is curvature tensor of space 𝑌

𝑛−1 compiled by
using the components of connection 𝐺𝛼

𝛽𝛾
.

A further aim of our study is to obtain some analogs of
Peterson-Kodachi equations. To do this, consider the system
of values:

𝜉
𝑖

𝛼
=

𝜕𝑥
𝑖

𝜕𝑦
𝛼
. (80)

At each point of the hypersurface 𝑌
𝑛−1 we can build

rapper consisting of the vectors:

𝜉
𝑖

1
, . . . , 𝜉

𝑖

𝑛−1
, ]𝑖, (81)

where 𝜉
𝑖

1
, . . . , 𝜉

𝑖

𝑛−1
are linearly independent tangent vectors

and ]𝑖 is normal vector, defined since the metric and connec-
tivity agreed.

Next we act formally; the idea is the same as in the
classical case, and we will indicate significant new moments.
We compute the derivative of the mixed tensors 𝜉𝑖

𝛼
:

𝜉
𝑖

𝛼;𝛾
= 𝜉
𝑖

𝛼,𝛾
+ Γ
𝑖

𝑝𝑞
𝜉
𝑝

𝛼

𝜕𝑥
𝑞

𝜕𝑦
𝛾
− 𝐺
𝜂

𝛼𝛾
𝜉
𝑖

𝜂
. (82)

In contrast to the case of torsion-free connection, we have
the equality:

𝜉
𝑖

𝛼;𝛾
− 𝜉
𝑖

𝛾;𝛼
= 𝑆
𝑖

𝑝𝑞
𝜉
𝑝

𝛼
𝜉
𝑞

𝛾
+ 𝑇
𝜂

𝛾𝛼
𝜉
𝑖

𝜂
. (83)

Next, we permute the indices in equation

0 = 𝑎
𝛼𝛽;𝛾

= (𝑔
𝑖𝑗
𝜉
𝑖

𝛼
𝜉
𝑗

𝛽
)

;𝛾

= 𝑔
𝑖𝑗
𝜉
𝑖

𝛼;𝛾
𝜉
𝑗

𝛽
+ 𝑔
𝑖𝑗
𝜉
𝑖

𝛼
𝜉
𝑗

𝛽;𝛾
; (84)

we obtain

𝑔
𝑖𝑗
𝜉
𝑖

𝛼;𝛾
𝜉
𝑗

𝛽
= 0. (85)

Hence, we can write a decomposition:

𝜉
𝑖

𝛽;𝛼
= 𝜋
𝛼𝛽
]𝑖. (86)

Remark 11. 𝜋
𝛼𝛽

is tensor, which is similar to the second
fundamental tensor of hypersurfaces 𝑌𝑛−1, but its structure
in this space is substantially different from the case of
Riemannian spaces with zero torsion.

Then, we have obtained (by differentiating 𝑔
𝑖𝑗
]𝑖𝜉𝑗
𝛼
= 0 by

𝛾) the formula:

𝑔
𝑖𝑗
]𝑖
;𝛾
𝜉
𝑖

𝛼
= −𝜋
𝛾𝛼
. (87)

Similarly, by differentiating 𝑔
𝑖𝑗
]𝑖]𝑗 = 1 by 𝛾, we obtain

]𝑖
;𝛾
= −𝑎
𝜂𝜇

𝜋
𝜇𝛾
𝜉
𝑖

𝜂
. (88)

Formulae (86) and (88) characterize the change of vectors
in the small accompanying frame relative to this frame itself.
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Further, we obtain

𝜉
𝑖

𝛽;𝜒;𝜆
− 𝜉
𝑖

𝛽;𝜆;𝜒
= −𝑅
𝑖

𝑘𝑙𝑝
𝜉
𝑘

𝜆
𝜉
𝑙

𝜒
𝜉
𝑝

𝛽
+ 𝑅
𝜎

𝜆𝜒𝛽
𝜉
𝑖

𝜎
+ 𝑇
𝜎

𝜆𝜒
𝜉
𝑖

𝛽;𝜎

= (𝜋
𝜒𝛽;𝜆

− 𝜋
𝜆𝛽;𝜒

) ]𝑖

− (𝜋
𝜒𝛽
𝜋
𝜂𝜆
𝑎
𝜂𝜎

− 𝜋
𝜆𝛽
𝜋
𝜂𝜒
𝑎
𝜂𝜎

) 𝜉
𝑖

𝜎
.

(89)

Equation (89) is multiplied by 𝑔
𝑖𝑗
𝜉
𝑗

𝛼
; we have

𝑅
𝛼𝜆𝜒𝛽

= 𝑅
𝑖𝑘𝑙𝑝

𝜉
𝑘

𝜆
𝜉
𝑙

𝜒
𝜉
𝑝

𝛽
𝜉
𝑖

𝛼
− (𝜋
𝜒𝛽
𝜋
𝛼𝜆

− 𝜋
𝜆𝛽
𝜋
𝛼𝜒
) . (90)

Similarly, we derive a formula

]𝑖
;𝜒;𝜆

− ]𝑖
;𝜆;𝜒

= −𝑅
𝑖

𝑘𝑙𝑝
𝜉
𝑘

𝜆
𝜉
𝑙

𝜒
]𝑝 + 𝑇

𝜎

𝜆𝜒
]𝑖
;𝜎

= (𝜋
𝜂𝜆;𝜒

𝑎
𝜂𝜎

− 𝜋
𝜂𝜒;𝜆

𝑎
𝜂𝜎

) 𝜉
𝑖

𝜎
.

(91)

We contract (89) with 𝑔
𝑖𝑗
]𝑗; then

−𝑅
𝑖𝑘𝑙𝑝

𝜉
𝑘

𝜆
𝜉
𝑙

𝜒
𝜉
𝑝

𝛽
]𝑖 + 𝑇

𝜎

𝜆𝜒
𝜋
𝜎𝛽

= 𝜋
𝜒𝛽;𝜆

− 𝜋
𝜆𝛽;𝜒

. (92)

Formula (91) is multiplied by 𝑔
𝑖𝑗
𝜉
𝑗

𝛼
; we concluded that

−𝑅
𝑖𝑘𝑙𝑝

𝜉
𝑘

𝜆
𝜉
𝑙

𝜒
]𝑝𝜉𝑖
𝛼
+ 𝑇
𝜎

𝜆𝜒
𝜋
𝛼𝜎

= 𝜋
𝛼𝜆;𝜒

− 𝜋
𝛼𝜒;𝜆

. (93)

Remark 12. If (91) contract with 𝑔
𝑖𝑗
]𝑗, then we obtain identi-

cally zero equals zero.
Thus, we have the two types of formulas. Formula (90)

does not contain the torsion tensor explicitly, but it is counted
in the tensor 𝜋

𝛼𝛽
. In the formula (91) the torsion tensor

of the hypersurface is present explicitly and in the form
of coefficients of 𝜋

𝛼𝛽
and appears in the calculation of the

covariant derivative.

5. Establish Some Important Relationships

We consider the equation

𝑆
𝑖

𝑗𝑘;𝑝;𝑞
− 𝑆
𝑖

𝑗𝑘;𝑞;𝑝
= 𝑅
𝑡

𝑞𝑝𝑗
𝑆
𝑖

𝑡𝑘
+ 𝑅
𝑡

𝑞𝑝𝑘
𝑆
𝑖

𝑗𝑡
− 𝑅
𝑖

𝑞𝑝𝑡
𝑆
𝑡

𝑗𝑘

+ 𝑆
𝑡

𝑞𝑝
𝑆
𝑖

𝑗𝑘;𝑡
,

(94)

or

𝑆
𝑖

𝑗𝑘;𝑝;𝑞
− 𝑆
𝑖

𝑗𝑘;𝑞;𝑝
− 𝑆
𝑡

𝑞𝑝
𝑆
𝑖

𝑗𝑘;𝑡

= 𝑅
𝑡

𝑞𝑝𝑗
𝑆
𝑖

𝑡𝑘
+ 𝑅
𝑡

𝑞𝑝𝑘
𝑆
𝑖

𝑗𝑡
− 𝑅
𝑖

𝑞𝑝𝑡
𝑆
𝑡

𝑗𝑘
;

(95)

we contract these tensors by indices 𝑖, 𝑞; then the left side of
this equation can be transformed into

𝑆
𝑖

𝑗𝑘;𝑝;𝑖
− 𝑆
𝑖

𝑗𝑘;𝑖;𝑝
− 𝑆
𝑡

𝑖𝑝
𝑆
𝑖

𝑗𝑘;𝑡

= (𝑆
𝑖

𝑗𝑘;𝑝
− 𝑆
𝑖

𝑞𝑝
𝑆
𝑞

𝑗𝑘
)

;𝑖

− 𝑆
𝑖

𝑗𝑘;𝑖;𝑝
− 𝑆
𝑖

𝑝𝑞;𝑖
𝑆
𝑞

𝑗𝑘
;

(96)

then, we contract this equation by indices 𝑘, 𝑝 and raising the
index 𝑗; we obtained

(𝑔
𝑘𝑝

𝑔
𝑗𝑠

𝑆
𝑖

𝑠𝑘;𝑝
− 𝑔
𝑘𝑝

𝑔
𝑗𝑠

𝑆
𝑖

𝑞𝑝
𝑆
𝑞

𝑠𝑘
)
;𝑖

− 𝑔
𝑘𝑝

𝑔
𝑗𝑠

𝑆
𝑖

𝑠𝑘;𝑖;𝑝
− 𝑔
𝑘𝑝

𝑔
𝑗𝑠

𝑆
𝑖

𝑝𝑞;𝑖
𝑆
𝑞

𝑠𝑘

= 𝑔
𝑘𝑝

𝑔
𝑗𝑠

𝑅
𝑡

𝑖𝑝𝑠
𝑆
𝑖

𝑡𝑘
+ 𝑔
𝑘𝑝

𝑔
𝑗𝑠

𝑅
𝑡

𝑖𝑝𝑘
𝑆
𝑖

𝑠𝑡

− 𝑔
𝑘𝑝

𝑔
𝑗𝑠

𝑅
𝑖

𝑖𝑝𝑡
𝑆
𝑡

𝑠𝑘
;

(97)

we introduce the notation

𝐻
𝑗𝑖

= 𝑔
𝑘𝑝

𝑔
𝑗𝑠

𝑆
𝑖

𝑠𝑘;𝑝
− 𝑔
𝑘𝑝

𝑔
𝑗𝑠

𝑆
𝑖

𝑞𝑝
𝑆
𝑞

𝑠𝑘
,

𝐹
𝑗𝑝

= 𝑔
𝑘𝑝

𝑔
𝑗𝑠

𝑆
𝑖

𝑠𝑘;𝑖
.

(98)

Then, without any loss of generality, we obtain the
relations:

𝐻
𝑗𝑖

;𝑖
− 𝐹
𝑗𝑖

;𝑖
− 𝑔
𝑘𝑝

𝑔
𝑗𝑠

𝑆
𝑞

𝑠𝑘
𝐹
𝑝𝑞

= 𝑔
𝑘𝑝

𝑔
𝑗𝑠

𝑅
𝑡

𝑖𝑝𝑠
𝑆
𝑖

𝑡𝑘
+ 𝑔
𝑘𝑝

𝑔
𝑗𝑠

𝑅
𝑡

𝑖𝑝𝑘
𝑆
𝑖

𝑠𝑡
− 𝑔
𝑘𝑝

𝑔
𝑗𝑠

𝑅
𝑖

𝑖𝑝𝑡
𝑆
𝑡

𝑠𝑘
,

(99)

where 𝐹
𝑝𝑞

= 𝑆
𝑖

𝑝𝑞;𝑖
.

Suppose now that the identity Ricci-Jacobi run in a
standard form, 𝑅𝑝

𝑖𝑘𝑙
+ 𝑅
𝑝

𝑘𝑙𝑖
+ 𝑅
𝑝

𝑙𝑖𝑘
= 0; hence

𝑆
𝑝

𝑖𝑘;𝑙
+ 𝑆
𝑝

𝑘𝑙;𝑖
+ 𝑆
𝑝

𝑙𝑖;𝑘
+ 𝑆
𝑝

𝑙𝑞
𝑆
𝑞

𝑖𝑘
+ 𝑆
𝑝

𝑘𝑞
𝑆
𝑞

𝑙𝑖
+ 𝑆
𝑝

𝑖𝑞
𝑆
𝑞

𝑘𝑙
= 0. (100)

We contract this equation by indices 𝑝, 𝑙 and we found
identity:

𝑆
𝑝

𝑖𝑘;𝑝
+ 𝑆
𝑝

𝑘𝑝;𝑖
+ 𝑆
𝑝

𝑝𝑖;𝑘
= 0. (101)

Next, we are assuming that 𝑆𝑝
𝑖𝑝

= 𝜑
𝑖
and taking into

account the identity 𝑆
𝑝

𝑖𝑗
𝑆
𝑞

𝑝𝑞
= 0, we obtain the following

expression:

𝑆
𝑝

𝑖𝑗;𝑝
= 𝜑
𝑖,𝑗
− 𝜑
𝑗,𝑖
. (102)

Next if we put 𝑆𝑝
𝑖𝑗;𝑝

= 0, then it follows that 𝜑
𝑖,𝑗
− 𝜑
𝑗,𝑖

=

0 and hence the value 𝑆𝑝
𝑖𝑝
can be expressed in terms of the

partial derivative of the scalar 𝑆𝑝
𝑖𝑝
= 𝜑
𝑖
= (ln𝜓)

,𝑖
. System (99)

takes the form

𝐻
𝑗𝑖

;𝑖
= 𝑔
𝑘𝑝

𝑔
𝑗𝑠

𝑅
𝑡

𝑖𝑝𝑠
𝑆
𝑖

𝑡𝑘
+ 𝑔
𝑘𝑝

𝑔
𝑗𝑠

𝑅
𝑡

𝑖𝑝𝑘
𝑆
𝑖

𝑠𝑡
− 𝑔
𝑘𝑝

𝑔
𝑗𝑠

𝑅
𝑖

𝑖𝑝𝑡
𝑆
𝑡

𝑠𝑘
,

𝐹
𝑖𝑗

= 0.

(103)

We consider the tensor

𝐶
𝑖𝑗𝑘

= 𝑔
𝑝𝑗

𝑔
𝑞𝑘

𝑆
𝑖

𝑝𝑞
+ 𝑔
𝑝𝑘

𝑔
𝑞𝑖

𝑆
𝑗

𝑝𝑞
+ 𝑔
𝑝𝑖

𝑔
𝑞𝑗

𝑆
𝑘

𝑝𝑞
, (104)

obvious that tensor is antisymmetric.
We have the equality

𝐻
𝑗𝑘

− 𝐻
𝑘𝑗

= 𝐶
𝑖𝑘𝑗

;𝑖
+ 𝐹
𝑗𝑘

+ 𝑔
𝑘𝑝

𝑔
𝑞𝑠

𝑆
𝑡

𝑝𝑞
𝑆
𝑗

𝑡𝑠

− 𝑔
𝑗𝑝

𝑔
𝑞𝑠

𝑆
𝑡

𝑝𝑞
𝑆
𝑘

𝑡𝑠
.

(105)
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By direct calculations we can conclude that

𝑔
𝑘𝑝

𝑔
𝑞𝑠

𝑆
𝑡

𝑝𝑞
𝑆
𝑗

𝑡𝑠
− 𝑔
𝑗𝑝

𝑔
𝑞𝑠

𝑆
𝑡

𝑝𝑞
𝑆
𝑘

𝑡𝑠

=

1

2

(𝐶
𝑗𝑝𝑞

𝑆
𝑘

𝑝𝑞
− 𝐶
𝑘𝑝𝑞

𝑆
𝑗

𝑝𝑞
) ;

(106)

hence

𝐻
𝑗𝑘

− 𝐻
𝑘𝑗

= 𝐶
𝑖𝑘𝑗

;𝑖
+ 𝐹
𝑗𝑘

+

1

2

(𝐶
𝑗𝑝𝑞

𝑆
𝑘

𝑝𝑞
− 𝐶
𝑘𝑝𝑞

𝑆
𝑗

𝑝𝑞
) . (107)

We calculate the covariant derivative

𝐶
𝑖𝑘𝑗

;𝑖
= −𝐶
𝑖𝑗𝑘

;𝑖
= − (𝐶

𝑖𝑗𝑘

,𝑖
+ Γ
𝑗

𝑝𝑖
𝐶
𝑖𝑝𝑘

+ Γ
𝑘

𝑝𝑖
𝐶
𝑖𝑗𝑝

+ Γ
𝑖

𝑝𝑖
𝐶
𝑝𝑘𝑗

) . (108)

By virtue of the fact that tensor 𝐶
𝑖𝑗𝑘

= 𝑔
𝑝𝑗

𝑔
𝑞𝑘

𝑆
𝑖

𝑝𝑞
+

𝑔
𝑝𝑘

𝑔
𝑞𝑖

𝑆
𝑗

𝑝𝑞
+ 𝑔
𝑝𝑖

𝑔
𝑞𝑗

𝑆
𝑘

𝑝𝑞
is antisymmetric, we have

Γ
𝑗

𝑝𝑖
𝐶
𝑖𝑝𝑘

= Γ
𝑗

𝑖𝑝
𝐶
𝑖𝑝𝑘

=

1

2

(Γ
𝑗

𝑖𝑝
𝐶
𝑖𝑝𝑘

+ Γ
𝑗

𝑝𝑖
𝐶
𝑝𝑖𝑘

) =

1

2

𝑆
𝑗

𝑖𝑝
𝐶
𝑝𝑘𝑖

= −

1

2

𝑆
𝑗

𝑝𝑖
𝐶
𝑘𝑝𝑖

;

(109)

similarly, we obtain

Γ
𝑘

𝑝𝑖
𝐶
𝑖𝑗𝑝

= Γ
𝑘

𝑖𝑝
𝐶
𝑝𝑗𝑖

=

1

2

𝐶
𝑗𝑝𝑖

(Γ
𝑘

𝑖𝑝
− Γ
𝑘

𝑝𝑖
) =

1

2

𝑆
𝑘

𝑖𝑝
𝐶
𝑗𝑝𝑖

=

1

2

𝑆
𝑘

𝑝𝑞
𝐶
𝑗𝑞𝑝

.

(110)

Then we write,

𝐶
𝑖𝑘𝑗

;𝑖
= −𝐶
𝑖𝑗𝑘

;𝑖

= −𝐶
𝑖𝑗𝑘

,𝑖
−

1

2

𝑆
𝑗

𝑝𝑞
𝐶
𝑘𝑝𝑞

+

1

2

𝑆
𝑘

𝑝𝑞
𝐶
𝑗𝑝𝑞

− Γ
𝑞

𝑝𝑞
𝐶
𝑝𝑘𝑗

,

𝐻
𝑗𝑘

− 𝐻
𝑘𝑗

= −𝐶
𝑖𝑗𝑘

,𝑖
+

1

2

𝑆
𝑗

𝑝𝑞
𝐶
𝑘𝑝𝑞

−

1

2

𝑆
𝑘

𝑝𝑞
𝐶
𝑗𝑝𝑞

− Γ
𝑞

𝑝𝑞
𝐶
𝑝𝑘𝑗

+ 𝐹
𝑗𝑘

+

1

2

(𝐶
𝑗𝑝𝑞

𝑆
𝑘

𝑝𝑞
− 𝐶
𝑘𝑝𝑞

𝑆
𝑗

𝑝𝑞
) ,

𝐻
𝑗𝑘

− 𝐻
𝑘𝑗

= −𝐶
𝑖𝑗𝑘

,𝑖
− Γ
𝑞

𝑝𝑞
𝐶
𝑝𝑘𝑗

+ 𝐹
𝑗𝑘

.

(111)

We will compute Γ
𝑝

𝑙𝑝
; for this, we recall that Γ

𝑝

𝑝𝑙
=

(1/2)𝑔
𝑖𝑝,𝑙
𝑔
𝑖𝑝

= (1/√𝑔)(𝜕√𝑔/𝜕𝑥
𝑙

), and Γ
𝑝

𝑙𝑝
= Γ
𝑝

𝑝𝑙
+ 𝑆
𝑝

𝑙𝑝
and

obtain

Γ
𝑝

𝑝𝑙
=

1

√−𝑔

𝜕√−𝑔

𝜕𝑥
𝑙

+ (ln𝜓)
,𝑙
= (ln (𝜓√−𝑔))

,𝑙
. (112)

Then we obtain

𝐻
𝑗𝑘

− 𝐻
𝑘𝑗

− 𝐹
𝑗𝑘

= −𝐶
𝑖𝑗𝑘

,𝑖
− (ln (𝜓√−𝑔))

,𝑖
𝐶
𝑖𝑘𝑗

. (113)

We multiply by 𝜓√−𝑔 and have

𝜓√−𝑔 (𝐻
𝑗𝑘

− 𝐻
𝑘𝑗

− 𝐹
𝑗𝑘

)

= −𝜓√−𝑔 (𝐶
𝑖𝑗𝑘

,𝑖
+ (ln (𝜓√−𝑔))

,𝑖
𝐶
𝑖𝑘𝑗

) ,

𝜓√−𝑔 (𝐻
𝑗𝑘

− 𝐻
𝑘𝑗

− 𝐹
𝑗𝑘

)

= − (𝜓√−𝑔𝐶
𝑖𝑗𝑘

)
,𝑖

.

(114)

We differentiate the last equality, in view of the anti-
symmetry of the tensors, and we obtain the next important
equality:

(𝜓√−𝑔 (𝐻
𝑗𝑘

− 𝐻
𝑘𝑗

− 𝐹
𝑗𝑘

))
,𝑘

= 0. (115)

6. The Field Equations

Below we consider the derivation of the field equations in
depending on conditions.

6.1. The Field Equations in the Absence of Symmetry Con-
ditions. Let Γ𝑖

𝑗𝑘
be constructed on the basis of connection

𝑛-dimensional manifold. It is not assumed that the Γ𝑖
𝑗𝑘

are
symmetric in 𝑗 and 𝑘. Regardless of connection Γ

𝑖

𝑗𝑘
, we

introduce symmetric metric tensor 𝑔
𝑖𝑘
(4).

We will derive the field equations from the variation
principle of least action, by varying the function Γ

𝑖

𝑗𝑘
and 𝑔

𝑖𝑘

independently.
Using (23) we can write the Riemann tensor

𝑅
𝑖𝑗
= Γ
𝑝

𝑖𝑝,𝑗
− Γ
𝑝

𝑖𝑗,𝑝
+ Γ
𝑝

𝑞𝑗
Γ
𝑞

𝑖𝑝
− Γ
𝑝

𝑞𝑝
Γ
𝑞

𝑖𝑗
. (116)

We form the scalar density as (𝑅
𝑖𝑘
+𝑆
𝑗

𝑖𝑙
𝑆
𝑙

𝑘𝑗
)𝑔
𝑖𝑘

√−𝑔, where 𝑆𝑖
𝑗𝑘
=

Γ
𝑖

𝑗𝑘
− Γ
𝑖

𝑘𝑗
, and postulate that all the variations of the integral

∫ (𝑅
𝑖𝑘
+ 𝑆
𝑗

𝑖𝑙
𝑆
𝑙

𝑘𝑗
) 𝑔
𝑖𝑘

√−𝑔𝑑𝑉, (117)

with respect to Γ𝑖
𝑗𝑘
and 𝑔𝑖𝑘√−𝑔 as the independent variables,

are zero (at the boundaries they do not vary).
Without dwelling on the standard intermediate calcula-

tions, we find that the variation with respect to 𝑔𝑖𝑘√−𝑔 leads
to the equation

𝑅
𝑖𝑘
+ 𝑆
𝑗

𝑖𝑙
𝑆
𝑙

𝑘𝑗
= 0; (118)

then the variation with respect to Γ𝑖
𝑗𝑘
gives the equation

𝑔
𝑖𝑗

,𝑘
−

1

2

𝑔
𝑖𝑗

𝑔
𝑝𝑞
𝑔
𝑝𝑞

,𝑘
+ 𝑔
𝑝𝑗

Γ
𝑖

𝑝𝑘
+ 𝑔
𝑖𝑝

Γ
𝑗

𝑘𝑝

− 𝛿
𝑗

𝑘
(𝑔
𝑖𝑝

,𝑝
−

1

2

𝑔
𝑖𝑝

𝑔
𝑚𝑛
𝑔
𝑚𝑛

,𝑝
+ 𝑔
𝑝𝑞

Γ
𝑖

𝑝𝑞
) − 𝑔
𝑖𝑗

Γ
𝑝

𝑘𝑝

+ 2 (𝑔
𝑖𝑝

𝑆
𝑗

𝑝𝑘
+ 𝑔
𝑝𝑗

𝑆
𝑖

𝑘𝑝
) = 0.

(119)



12 Journal of Gravity

If we contract the left side of the last equality by indices
𝑖 and 𝑘, then we obtain zero identically equal to zero. If we
contract by indices 𝑗 and 𝑘, we obtain the equation

−3𝑔
𝑖𝑗

,𝑗
+

3

2

𝑔
𝑖𝑗

𝑔
𝑝𝑞
𝑔
𝑝𝑞

,𝑗
− 3𝑔
𝑝𝑞

Γ
𝑖

𝑝𝑞
+ 𝑔
𝑖𝑝

𝑆
𝑗

𝑝𝑗
= 0. (120)

Therefore, we have

𝑔
𝑖𝑗

,𝑘
−

1

2

𝑔
𝑖𝑗

𝑔
𝑝𝑞
𝑔
𝑝𝑞

,𝑘
+ 𝑔
𝑝𝑗

Γ
𝑖

𝑝𝑘
+ 𝑔
𝑖𝑝

Γ
𝑗

𝑘𝑝
− 𝑔
𝑖𝑗

Γ
𝑝

𝑘𝑝

−

1

3

𝛿
𝑗

𝑘
𝑔
𝑖𝑝

𝑆
𝑞

𝑝𝑞
+ 2 (𝑔

𝑖𝑝

𝑆
𝑗

𝑝𝑘
+ 𝑔
𝑝𝑗

𝑆
𝑖

𝑘𝑝
) = 0.

(121)

Then we lowered upper indices by using the metric and
obtain the equation

− 𝑔
𝑖𝑗,𝑘

−

1

2

𝑔
𝑖𝑗
𝑔
𝑝𝑞

𝑔
𝑝𝑞,𝑘

+ 𝑔
𝑖𝑝
Γ
𝑝

𝑘𝑗
+ 𝑔
𝑗𝑝
Γ
𝑝

𝑖𝑘
− 𝑔
𝑖𝑗
Γ
𝑝

𝑘𝑝

−

1

3

𝑔
𝑗𝑘
𝑆
𝑝

𝑖𝑝
+ 2 (𝑔

𝑝𝑗
𝑆
𝑝

𝑖𝑘
+ 𝑔
𝑖𝑝
𝑆
𝑝

𝑘𝑗
) = 0.

(122)

We use the symmetry of tensor 𝑔
𝑖𝑗
and rearrange 𝑖 and 𝑗

and deduce the equation

5 (𝑔
𝑖𝑝
𝑆
𝑝

𝑘𝑗
+ 𝑔
𝑗𝑝
𝑆
𝑝

𝑖𝑘
) +

1

3

(𝑔
𝑗𝑘
𝑆
𝑝

𝑖𝑝
+ 𝑔
𝑖𝑘
𝑆
𝑝

𝑗𝑝
) = 0. (123)

Further, we obtained

− 𝑔
𝑖𝑗,𝑘

−

1

2

𝑔
𝑖𝑗
𝑔
𝑝𝑞

𝑔
𝑝𝑞,𝑘

+ 𝑔
𝑖𝑝
Γ
𝑝

𝑘𝑗
+ 𝑔
𝑗𝑝
Γ
𝑝

𝑖𝑘
− 𝑔
𝑖𝑗
Γ
𝑝

𝑘𝑝

−

1

3

𝑔
𝑗𝑘
𝑆
𝑝

𝑖𝑝
−

2

15

(𝑔
𝑘𝑗
𝑆
𝑝

𝑖𝑝
+ 𝑔
𝑖𝑘
𝑆
𝑝

𝑗𝑝
) = 0.

(124)

Thus, we obtained the field equations (122) by varying
connection obtained equation and as a result of them we
obtained (123) where there are only metric and torsion. We
assuming that the electromagnetic component is absent 𝜑 ≡

0, then, from (123) we have 𝑆
𝑖

𝑗𝑘
≡ 0, and connection is

symmetrical, as in Riemann geometry and (124) shows the
known law of Einstein-Hilbert problem for the gravitational
field. If 𝜑 ̸= 0 and the metric is flat (no gravitational
field), then from (124) can be obtainedMaxwell equations for
electromagnetic field in vacuum.

6.2. The Einstein-Hilbert Equation in Case of the Absence
of Symmetry Conditions, When the Lagrange Function Is
Depending on the Torsion Tensor. Now we also start from the
variation principle of the least action in the form 𝛿(𝑊

𝑚
+

𝑊
𝑔
) = 0, where 𝑊

𝑚
and 𝑊

𝑔
-action, respectively, for matter

and field values, we are varying 𝑔
𝑖𝑘
.

By standard calculations, we have

𝛿∫ (𝑅
𝑖𝑘
+ 𝑆
𝑗

𝑖𝑙
𝑆
𝑙

𝑘𝑗
) 𝑔
𝑖𝑘

√−𝑔𝑑𝑉

= ∫ (𝑅
𝑖𝑘
√−𝑔𝛿𝑔

𝑖𝑘

+ 𝑅
𝑖𝑘
𝑔
𝑖𝑘

𝛿√−𝑔 + 𝑔
𝑖𝑘

√−𝑔𝛿𝑅
𝑖𝑘

+ 𝑆
𝑗

𝑖𝑙
𝑆
𝑙

𝑘𝑗
√−𝑔𝛿𝑔

𝑖𝑘

+ 𝑆
𝑗

𝑖𝑙
𝑆
𝑙

𝑘𝑗
𝑔
𝑖𝑘

𝛿√−𝑔) 𝑑𝑉,

𝑅
𝑖𝑘
𝑔
𝑖𝑘

𝛿√−𝑔 = −

1

2

𝑅
𝑝𝑞
𝑔
𝑝𝑞

𝑔
𝑖𝑘
√−𝑔𝛿𝑔

𝑖𝑘

.

(125)

Similarly, we obtain

𝑆
𝑗

𝑖𝑙
𝑆
𝑙

𝑘𝑗
𝑔
𝑖𝑘

𝛿√−𝑔 = −

1

2

𝑆
𝑗

𝑝𝑙
𝑆
𝑙

𝑘𝑞
𝑔
𝑝𝑞

𝑔
𝑖𝑘
√−𝑔𝛿𝑔

𝑖𝑘

. (126)

Nowwe compute𝑔𝑖𝑘√−𝑔𝛿𝑅
𝑖𝑘
directly by using the defini-

tion and thus obtain two types of summands, the first has the
standard form 𝑔

𝑖𝑘

(𝛿Γ
𝑙

𝑘𝑖
)
,𝑙
− 𝑔
𝑖𝑘

(𝛿Γ
𝑙

𝑘𝑙
)
,𝑖
= (𝑔
𝑖𝑘

𝛿Γ
𝑙

𝑘𝑖
− 𝑔
𝑖𝑙

𝛿Γ
𝑝

𝑙𝑝
)
,𝑙
,

where it is considered that 𝑔𝑖𝑘
,𝑙

= 0 and by Stokes’ theorem
turns into zeros. The term of the second type exists due to
the absence of symmetry connection: 𝑔𝑖𝑘𝛿𝑅

𝑖𝑘
= 𝑔
𝑖𝑘

𝛿(Γ
𝑝

𝑞𝑝
Γ
𝑞

𝑘𝑖
−

Γ
𝑝

𝑞𝑖
Γ
𝑞𝑙

𝑘𝑝
). Then we express the connection coefficients via the

metric and torsion, and after a rather lengthy calculation, we
obtain

𝑔
𝑖𝑘

𝛿𝑅
𝑖𝑘
= (𝑆
𝑝

𝑖𝑝
𝑆
𝑞

𝑞𝑘
− 𝑆
𝑝

𝑖𝑞
𝑆
𝑞

𝑝𝑘
− 𝑔
𝑘𝑝
𝑔
𝑞𝑡

𝑆
𝑚

𝑖𝑡
𝑆
𝑝

𝑞𝑚
) 𝛿𝑔
𝑖𝑘

. (127)

Thus, we have

𝛿∫ (𝑅
𝑖𝑘
+ 𝑆
𝑗

𝑖𝑙
𝑆
𝑙

𝑘𝑗
) 𝑔
𝑖𝑘

√−𝑔𝑑𝑉

= ∫(𝑅
𝑖𝑘
−

1

2

𝑔
𝑖𝑘
𝑅 + (𝑆

𝑝

𝑖𝑝
𝑆
𝑞

𝑞𝑘
+ 𝑆
𝑞

𝑖𝑝
𝑆
𝑝

𝑘𝑞
+ 𝑔
𝑘𝑝
𝑔
𝑞𝑡

𝑆
𝑚

𝑖𝑡
𝑆
𝑝

𝑚𝑞
)

+ 𝑆
𝑗

𝑖𝑙
𝑆
𝑙

𝑘𝑗
−

1

2

𝑆
𝑗

𝑝𝑙
𝑆
𝑙

𝑘𝑞
𝑔
𝑝𝑞

𝑔
𝑖𝑘
)√−𝑔𝛿𝑔

𝑖𝑘

𝑑𝑉.

(128)

Then we obtain the conclusions

𝛿𝑊
𝑔

= 𝐾
1
∫ (𝑅
𝑖𝑘
+ 𝑆
𝑗

𝑖𝑙
𝑆
𝑙

𝑘𝑗
) 𝑔
𝑖𝑘

√−𝑔𝑑𝑉

= 𝐾
1
∫(𝑅
𝑖𝑘
−

1

2

𝑔
𝑖𝑘
𝑅 + (𝑆

𝑝

𝑖𝑝
𝑆
𝑞

𝑞𝑘
+ 𝑆
𝑞

𝑖𝑝
𝑆
𝑝

𝑘𝑞
+ 𝑔
𝑘𝑝
𝑔
𝑞𝑡

𝑆
𝑚

𝑖𝑡
𝑆
𝑝

𝑚𝑞
)

+ 𝑆
𝑗

𝑖𝑙
𝑆
𝑙

𝑘𝑗
−

1

2

𝑆
𝑗

𝑝𝑙
𝑆
𝑙

𝑘𝑞
𝑔
𝑝𝑞

𝑔
𝑖𝑘
)√−𝑔𝛿𝑔

𝑖𝑘

𝑑𝑉,

(129)

where a physical constant 𝐾
1
, as a rule, in a classic case is

𝑐
3

/16𝜋𝑘 and 𝑘 is called the universal gravitational constant.
For variation of the action of matter, we find

𝛿𝑊
𝑔
= 𝐾
2
∫𝑇
𝑖𝑘
√−𝑔𝛿𝑔

𝑖𝑘

𝑑𝑉, (130)

where 𝑇
𝑖𝑘
is energy-momentum tensor of matter. 𝐾

2
usually

take a constant equal to −1/2𝑐.
Therefore, by the principle of least action for 𝛿𝑊

𝑔
+𝛿𝑊
𝑚
=

0, we find relations

∫(𝑅
𝑖𝑘
−

1

2

𝑔
𝑖𝑘
𝑅 + (𝑆

𝑝

𝑖𝑝
𝑆
𝑞

𝑞𝑘
+ 𝑆
𝑞

𝑖𝑝
𝑆
𝑝

𝑘𝑞
+ 𝑔
𝑘𝑝
𝑔
𝑞𝑡

𝑆
𝑚

𝑖𝑡
𝑆
𝑝

𝑚𝑞
)

+ 𝑆
𝑗

𝑖𝑙
𝑆
𝑙

𝑘𝑗
−

1

2

𝑆
𝑗

𝑝𝑙
𝑆
𝑙

𝑘𝑞
𝑔
𝑝𝑞

𝑔
𝑖𝑘
− 𝐾𝑇
𝑖𝑘
)√−𝑔𝛿𝑔

𝑖𝑘

𝑑𝑉 = 0,

(131)
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because of the arbitrariness 𝛿𝑔𝑖𝑘, we have

𝑅
𝑖𝑘
−

1

2

𝑔
𝑖𝑘
𝑅 + 𝑆
𝑝

𝑖𝑝
𝑆
𝑞

𝑞𝑘
+ 𝑆
𝑞

𝑖𝑝
𝑆
𝑝

𝑘𝑞
+ 𝑔
𝑘𝑝
𝑔
𝑞𝑡

𝑆
𝑚

𝑖𝑡
𝑆
𝑝

𝑚𝑞
+ 𝑆
𝑗

𝑖𝑙
𝑆
𝑙

𝑘𝑗

−

1

2

𝑆
𝑗

𝑝𝑙
𝑆
𝑙

𝑘𝑞
𝑔
𝑝𝑞

𝑔
𝑖𝑘
= 𝐾𝑇
𝑖𝑘
,

(132)

where the constant𝐾 can be determined by 𝐾
1
and𝐾

2
.

7. Conclusions

We have investigated the properties of the space generated
jointly and agreed on by the metric and the torsion tensors.
We have presented the structure of the curvature tensor and
studied its special features and for this tensor we obtained
analog Ricci-Jacobi identity and also evaluated the gap that
occurs at the transition from the original to the image
and vice versa, in the case of an infinitely small contours.
The geodesic lines equation has been researched. We have
shown that the structure of tensor 𝜋

𝛼𝛽
, which is similar

to the second fundamental tensor of hypersurfaces 𝑌𝑛−1, is
substantially different from the case of Riemannian spaces
with zero torsion. Then we have obtained formulas for
hypersurfaces 𝑌𝑛−1, which characterize the change of vectors
in accompanying basis relative to this basis itself.

Taking into consideration the structure of the space with
metric and torsion we have reach the aim of our paper
that is derived from the variation principle the general
fields equations (electromagnetic and gravitational) so we are
obtained analog of Einstein-Hilbert equation in space 𝑌𝑛.
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