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The knowledge of the spatial distribution feline immunodeficiency virus and feline leukemia virus infections, which are untreatable,
can inform on their risk factors and high-risk areas to enhance control. However, when spatial analysis involves aggregated spatial
data, results may be influenced by the spatial scale of aggregation, an effect known as the modifiable areal unit problem (MAUP).
In this study, area level risk factors for both infections in 28,914 cats tested with ELISA were investigated by multivariable spatial
Poisson regressionmodels alongwithMAUP effect on spatial clustering and cluster detection (for postal codes, counties, and states)
by Moran’s 𝐼 test and spatial scan test, respectively.The study results indicate that the significance and magnitude of the association
of risk factors with both infections varied with aggregation scale. Further more, Moran’s 𝐼 test only identified spatial clustering at
postal code and county levels of aggregation. Similarly, the spatial scan test indicated that the number, size, and location of clusters
varied over aggregation scales. In conclusion, the association between infection and area was influenced by the choice of spatial
scale and indicates the importance of study design and data analysis with respect to specific research questions.

1. Introduction

Infections with feline immunodeficiency virus (FIV) and
feline leukemia virus (FeLV) have been reported from a
number of countries and are important conditions in cats
[1]. The most common mode of transmission of these
immunosuppressive retroviruses is through bite wounds.
FeLV infection is also commonly acquired via the oronasal
route throughmutual grooming, nursing, or sharing of dishes
[2]. The known risk factors for acquiring these infections
are male sex, adulthood, and exposure to outdoors, whereas
being neutered and indoor lifestyle are known protective
factors [3]. Recent studies estimate a seroprevalence of 2.3%
(FeLV) and 2.5% (FIV) in the United States (US) [4] and 3.4%
(FeLV) and 4.3% (FIV) in Canada [1].

Despite decades of discovery, clinical management of
cats infected with FIV and FeLV is still challenging without

the existence of an effective therapeutic intervention [3].
Therefore, better ways to control the infections and pro-
phylactic management is the mainstay of disease prevention
strategy for these infections. A number of previous studies
have suggested that the prevalence of retroviral infections
in domestic cat populations varies by regions and maybe
attributed to variable population density, reproductive status,
age, gender, and housing conditions [5–11]. For the US and
Canada, spatial variation in FIV and FeLV seroprevalence
has been reported in previous studies that generated data
for this research [1, 4]. Here we attempt to extend the
findings by applying spatial statistical methods to illustrate
geographic variation in the distribution of FIV and FeLV
infections and assess the relationship with group-level risk
factors. Spatial epidemiological methods are commonly used
to identify, describe, and quantify spatial patterns in the
distribution of health events. Spatial patterns commonly of
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interest include trends, clustering, and detection of clusters in
the occurrence of health events in a population. Furthermore,
geographic correlation studies can be important tools to
evaluate the association of spatial or environmental risk
factors with the occurrence of health events after adjusting
for confounders. The identification of such spatial patterns
may provide clues for further testable hypotheses about an
unknown disease etiology [12]. Ecological studies, such as
geographic correlation studies, are particularly valuable when
an individual level association between infection and risk
factors is evident and a group-level association is assessed to
determine the population health impact [13]. To this effect,
spatial analysis of FIV and FeLV infections can be a valuable
tool in epidemiological understanding of these infections.

Due to lack of individual level data and client confi-
dentiality and to create meaningful units for data analysis,
aggregated or area level data may be used to carry out such
spatial epidemiological studies. However, the way areal units
are defined can influence the results and inferences based on
aggregated data. Specifically, the number or size of areas used
and how the area boundaries are drawn can influence spatial
data analysis. This has been termed the modifiable areal unit
problem (MAUP) and is a long known phenomenon [14, 15]
in the geographical literature. The MAUP stems from the
fact that areal units are usually arbitrarily determined and
can be modified to form units of different sizes or spatial
arrangements [16]. The MAUP consists of two interrelated
components—the scale and zoning effects. The scale effect is
the variation in results obtained when the areal data compris-
ing smaller areal units is grouped to form increasingly larger
units. The zoning effect, on the other hand, is the variation in
results obtained due to alternative formations of areal units
where the number of areal units is constant, that is, analysis
comprising the same number of areal units but different area
shapes [14, 17, 18].

The goal of this study was to evaluate the association
of seroprevalence of FIV and FeLV with ecological risk
factors in a spatial regressionmodel. Specific objectives of the
study were to examine the MAUP effects on (a) the spatial
clustering of FIV and FeLV infections; (b) the occurrence
of high-risk clusters of FIV and FeLV infections; and (c)
the relationship between area level seroprevalence and risk
factors in context of aggregated covariates.

2. Materials and Methods

2.1. Data Source, Study Areas and Population. A dataset con-
sisting of diagnostic test results from 29,182 cats tested for
FIV and FeLV between August and November of the years
2004 and 2007 from the US and Canada was obtained from
previous cross-sectional studies [1, 4]. The cats included
in this study were conveniently sampled from veterinary
clinics and animal shelters across 40 contiguous states of
the US and 9 Canadian provinces encompassing 641 US
zip codes and Canadian forward sortation areas in 346 US
counties and Canadian census divisions [19]. The testing for
FIV and FeLV was carried out in house or in laboratory
employing a commercially available ELISA (SNAP Combo

FeLV antigen/FIV antibody, PetCheck FIV Antibody, and
PetCheck FeLV Antigen; IDEXX Laboratories) using blood,
serum, or plasma. Information on postal code of testing
facility, type of testing facility (clinic or shelter), age of the cat
(juvenile<6months or adult), sex, and neuter status (sexually
intact female, spayed female, sexually intactmale, or castrated
male), access to outdoors (indoors or outdoors), and general
health at time of testing (healthy or sick) was also retrieved
from the dataset (Table 1(a)).

2.2. Data Aggregation. The three spatial aggregation scales of
interest in this study were postal codes, counties and states.
The US five-digit zip code and Canadian forward sorta-
tion areas (FSA) were designated as postal codes, StatCan
(Statistics Canada) census divisions (CDs) were defined as
corresponding to US counties, and Canadian provinces were
defined as states. The counts of positive test results and
number of tests for each area were aggregated to these
three spatial aggregation scales of interest (641 postal codes,
346 counties, and 49 states). In addition, group-level risk
factors, constructed from individual risk factors, included
the proportion of juvenile cats (<6 months), intact males,
intact females, cats that were exclusively indoors, cats tested
at clinics, cats that were healthy at the time of testing,
and the seroprevalence of FIV and FeLV. These covariates
were “constructed” for respective scales using categories of
individual data presented in Table 1(a).

2.3. Geocoding. In order to spatially reference the postal
codes, counties, and states, the geographic coordinates (as
centroids) of the US zip codes, counties, states, and the
Canadian FSAs were obtained from Environmental System
Research Institute (ESRI) postal code shapefiles [20].

EachCanadian FSAwas assigned to the respective county
and state based on the postal code conversion file (PCCF)
available from StatCan.

2.4. Statistical Methods

2.4.1. Spatial Clustering. To investigate disease clustering (i.e.,
the presence of spatial autocorrelation in the data), Moran’s
𝐼 test was applied. Given the infectious nature of FIV and
FeLV, clustering was assumed to be present. The interest
in this study was to evaluate whether aggregation of data
from postal code level (where the data was collected) to
county and states had any effect on strength and presence
of clustering. In this regard, the presence and strength
of spatial clustering of FIV and FeLV infections for each
level of aggregation were assessed by Moran’s 𝐼 test on the
smoothed seroprevalence estimates using empirical Bayesian
smoothing [21]. Since the number of tested cats varied
among the areas, smoothed seroprevalence estimates were
estimated from crude seroprevalence (number of cats testing
positive/number of cats tested) for each area using the
empirical Bayesian (EB) estimation such that the area specific
seroprevalence estimates were adjusted towards the overall
mean. The EB estimation technique can be interpreted as
internal standardization [22].



Journal of Veterinary Medicine 3

Table 1: (a) Descriptive characteristics of sampled cat population tested for FIV and FeLV infections in the US and Canada. (b) Descriptive
statistics of FIV and FeLV seroprevalence (%), number of positive cats (cases), and number of cats tested for state, county, and postal code
aggregation level.

(a)

Factors Testeda FIV positive Prevalence (95% CI)b FeLV positive Prevalence (95% CI)b

Testing site
Veterinary clinic 19314 674 3.5 (3.2–3.8) 617 3.2 (2.9–3.4)
Shelter 9600 241 2.5 (2.2–2.8) 166 1.7 (1.5–2.0)

Age
Juvenile 15461 160 1.0 (0.9–1.2) 198 1.3 ( 1.1–1.5)
Adult 13453 755 5.6 (5.2–6.0) 585 4.4 (4.0–4.7)

Sex
Male intact 8649 372 4.3 (3.9–4.8) 240 2.8 (2.4–3.1)
Male castrated 6027 299 5.0 (4.4–5.5) 198 3.3 (2.9–3.8)
Female intact 9211 139 1.5 (1.3–1.8) 198 2.2 (1.9– 2.5)
Female spayed 4987 102 2.1 (1.7–2.5) 144 2.9 (2.4–3.4)
Unknown 40 3 7.5 (1.7–20.4) 3 7.5 (1.7–20.4)

Outdoor exposure
No 7142 99 1.4 (1.1–1.7) 136 1.9 (1.6–2.3)
Yes 17968 708 3.9 (3.7–4.2) 565 3.1 (2.9–3.4)
Unknown 3804 108 2.8 (2.3–3.4) 82 2.2 (1.7–2.7)

Health status
Healthy 22311 507 2.3 (2.1– 2.5) 379 1.7 (1.5–1.9)
Sick 6092 389 6.4 (5.8–7.0) 391 6.4 (5.8–7.1)
Unknown 511 19 3.7 (2.3–5.7) 13 2.5 (1.4–4.3)

aTotal number of cats tested for FIV and FeLV infection. Cats were tested at the same time for both FIV and FeLV infections.
bCI: confidence intervals for seroprevalence estimates with 𝛼 = 0.05.

(b)

Infection Aggregation level Characteristicsa Total Mean SDb Range

FIV

State
Seroprevalence 3 2 0–13

Cases 915 18.67 35.14 0–221
Tested 28914 590.08 903.01 8–5732

County
Seroprevalence 4 5 0–50

Cases 915 2.64 5.28 0–59
Tested 28914 83.57 125.81 1–958

Postal code
Seroprevalence 4 7 0–100

Cases 915 1.43 1.78 0–26
Tested 28914 45.11 61.58 1–838

FeLV

State
Seroprevalence 3 3 0–20

Cases 783 15.98 25.25 0–145
Tested 28914 590.08 903.01 8–5732

County
Seroprevalence 3 4 0–33

Cases 783 2.26 4.24 0–47
Tested 28914 83.57 125.81 1–958

Postal code
Seroprevalence 3 6 0–100

Cases 783 1.22 2.12 0–19
Tested 28914 45.11 61.58 1–838

aThe descriptive statistics for seroprevalence pertain to mean value among states, counties, or postal codes. For example, min. and max. seroprevalence
estimates for FIV among states are 0 and 13, respectively.
bStandard deviation.



4 Journal of Veterinary Medicine

The null hypothesis of Moran’s 𝐼 test states that there
is no spatial autocorrelation of FIV or FeLV seroprevalence
between areas, and the respective Moran’s 𝐼 coefficient
summarizes the degree to which similar observations (i.e.,
seroprevalence of FIV or FeLV) tend to occur near each other
[17]. The Moran’s 𝐼 coefficient was estimated as follows:
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nearest neighbours (𝑤
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is 1 if area 𝑖 and 𝑗 are within a

distance of three nearest neighbours and zero if otherwise).
The Moran’s 𝐼 test was applied using the spdep package of
statistical software 𝑅 [23].

2.4.2. Spatial Cluster Detection. While Moran’s 𝐼 summarizes
the overall clustering pattern in the study area, disease cluster
detection methods are used to identify the locations of
clusters and thus are location specific. Of various methods
proposed for cluster detection [17], the most widely used is
the spatial scan test [24]. Here, theMAUP effect on the spatial
scan test was investigated with respect to FIV and FeLV
infections. Furthermore, the spatial scan test can be extended
to detect clusters after adjustment for known risk factors
or confounders for FIV and FeLV infections. Therefore, the
presence of statistically significant high-risk clusters of FIV
(or FeLV) infection was investigated using a spatial scan test
adjusted for risk factors under the Poisson assumption [25],
as implemented in SaTScan version 9.0 [26].

The spatial scan test identifies potential clusters using
circular windows of varying radius (size) and location (area
centroids) across the study area. To apply the Poisson model,
it was assumed under the null hypothesis that the number of
FIV or FeLV cases in each area followed Poisson distribution
with the expected number of cases in each area proportional
to the covariate (risk factor) adjusted tested cat population
[27]. High-risk cluster detection was performed by com-
paring the observed number of cases within the scanning
window with the expected number, that is, if cases were to be
distributed randomly in space [25]. In other words, detection
of high-risk clusters would indicate the prevalence of FIV
(or FeLV) inside the circular window as significantly higher
than outside the window. The statistical significance of the
clusters was established by Monte Carlo hypothesis testing
using 999 Monte Carlo replications with a significance level
set to 𝛼 = 5%.The significance of multiple clusters was tested
sequentially conditional on the presence of the previously
detected clusters such that secondary clusters were tested
and reported only if the more likely clusters were significant
[28]. The size of the scanning window in the spatial scan
statistic was allowed to increase from individual areas and
expanded to include neighbouring areas until a maximum of

50% of the total tested population. No geographical overlap
of clusters was allowed. Detected clusters were visualized
by plotting respective circles on a map of the study area.
The characteristics of detected clusters were compared across
aggregation levels to assess the MAUP effect.

2.4.3. Spatial Regression Modeling. Apart from describing
the spatial patterns of disease in terms of clustering and
cluster, geographic correlation analysis (or spatial regression
modeling) for spatial data was carried out to quantify the
effect of spatially referenced group-level risk factors on
the spatial distribution of disease events, that is, FIV and
FeLV infections [17, 29]. While these studies are similar to
ecological regression methods, it is critical to adjust for the
spatial autocorrelation in the data in order to prevent type 𝐼
errors, that is, providing “statistically significant” resultswhen
none exists [30]. Among many proposed methods for spatial
regression modeling for areal data [17, 29, 31, 32], Poisson
distributed counts for rare disease or infections such as FIV
and FeLV can be effectively modeled to assess its relationship
with group-level risk factors using generalized linear mixed
models (GLMM) with spatially correlated random effects,
also known as spatial GLMM. In this study, interest was to
evaluate group-level risk factors for FIV and FeLV infections
as well as to quantify the effect of MAUP as change in
magnitude and significance of regression parameters with
spatial aggregation scale. For each aggregation level, the count
of FIV and FeLV infections in each area was modelled as a
function of the group-level covariates in a Poisson regression
model framework with the log of number of tested cats as the
offset.

Prior to inclusion of covariates in the regression models,
the relationship between the outcome and covariates was
assessed for linearity by plotting the log of the seroprevalence
of infection for both FIV and FeLV against the covariate
using a locally weighted regression. The covariates were
modelled as dichotomized variables if the relationship was
deemed to be nonlinear. This decision was taken to ensure
comparability of covariates across the aggregation levels.
Covariates were modeled as dichotomous variables with cut-
offs for low and high categories set at median value (50%)
of the respective covariates. When modeled as predictor
variable and not the outcome, the cut-off for categories of
covariate FIV and FeLV seroprevalence was set at 3%, 8%
and over 8%. The cut-off of 3% is the general prevalence
of FIV and FeLV in cats in North America. Since all the
covariates are deemed clinically important risk factors, they
were included as fixed effects in a multivariable model, with
no interactions. Further, the same model was fit to data at
all 3 levels of aggregation (state, county, and postal code) to
avoid any influence of the selection method or covariate(s)
exclusion in the comparison of models [33]. For state level
aggregation, covariates with sample size less than five were
omitted.

In order to account for spatial autocorrelation and over-
dispersion in the models, an exponential spatial covari-
ance structure was introduced and the models were rerun
using penalized quasilikelihood (PQL) estimation [32, 34].
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Table 2: Moran’s 𝐼 statistics based on empirical Bayesian smoothed seroprevalence of FIV and FeLV infections by spatial aggregation level.

Infection Areal unit 𝐼 𝐸
a Varb SDc

𝑃 value

FIV
Postal code 0.09 −0.002 0.001 3.30 <0.01
County 0.15 −0.003 0.002 3.82 <0.01
State −0.06 −0.021 0.409 −0.37 0.66

FeLV
Postal code 0.12 −0.002 0.001 4.05 <0.01
County 0.15 −0.003 0.002 3.53 <0.01
State 0.00 −0.021 0.011 0.18 0.42

aExpected value of Moran’s 𝐼 under the null hypothesis of no spatial autocorrelation; bvariance; cstandard Deviation.

An exponential covariance structure was based on a semi-
variogram fitted to the deviance residuals of the Poisson
regression models and was deemed biologically appropriate
because, for infectious agents such as FIV and FeLV, areas in
proximity are expected to be similar with respect to disease
prevalence.

The presence of overdispersion in (nonspatial) Pois-
son regression models was evaluated by testing the model
deviance against degrees of freedom using a 𝜒2 distribution
and a 5% significance level [35]. Multicollinearity was tested
among the covariates in the multivariable model by estimat-
ing the variance inflation factor (VIF), and all variables with
a VIF value of 10 or above were considered collinear [36]. All
statisticalmodelingwas done using statistical software𝑅 [37].

3. Results and Discussion

3.1. Results

3.1.1. Descriptive Statistics. A total of 28,914 test results were
included in this study from 688 veterinary clinics and 158
animal shelters from 40 states of the US and 9 Canadian
provinces encompassing 346 counties and 641 postal codes. A
total of 634 recorded postal codes (out of 648)were accurately
matched during geocoding. Seven records were reassigned to
proper postal codes using clinic address. In total, geographic
coordinates were retrieved for 641 postal codes (out of 648)
for 28,914 cats (out of 29,182 cats).

The individual characteristics of FIV and FeLV infected
cats anddescriptive statistics of areawise counts are presented
in Tables I(a) and I(b). Overall the observed seroprevalence
of FIV was higher than that of FeLV, 3.16% and 2.71%,
respectively. The mean and variability in number of cats with
positive test results for both infections and the number of
cats tested increased with higher level of aggregation but
decreased for seroprevalence (Table 1(b)).The seroprevalence
of FIV infection for postal codes, counties and states ranged
from 0–100%, 0–50%, and 0–13% respectively, while the
seroprevalence of FeLV ranged from 0–100%, 0–33%, and 0–
20% for postal code, county, and state levels, respectively.

3.1.2. Spatial Clustering. The results of Moran’s 𝐼 clustering
test on EB smoothed seroprevalence is presented in Table 2.
Moran’s 𝐼 statistic indicated significant spatial clustering in
seroprevalence of infection for FIV at postal code and county
level aggregations (𝐼 = 0.09 and 𝐼 = 0.15 resp., 𝑃 < 0.01),

Likewise, spatial clustering was identified for FeLV at postal
code and county level aggregations (𝐼 = 0.12 and 0.15, resp.,
𝑃 < 0.01). At state level of aggregation no spatial clustering
was detected.

3.1.3. Spatial Cluster Detection. Tables 3(a)-3(b) and Figures
1 and 2 display detailed information for all clusters iden-
tified by the spatial scan statistic. For both FIV and FeLV
infections, spatial clusters were detected at all aggregation
levels. However, the numbers of clusters detected for FIV and
FeLV infections varied with the level of aggregation. For FIV
infections, one cluster was detected for state, five for county,
and six for postal code level aggregations. Some clusters
identified at postal code level were not detected at county level
and state level aggregations (Table 3(a) and Figures 1(a)–1(c)).
For FeLV, three clusters each for state, county, and postal code
levels were identified, with location and size of the clusters
slightly varying by spatial scale (Table 3(b) and Figures 2(a)–
2(c)). Figures 2(a)–2(c) indicate that FeLV clusters were about
the same size and in the same location for postal code and
county levels of aggregation, whereas clusters at the state level
differed with respect to size and, more importantly, location.

3.1.4. Spatial Regression Modeling. Spatial Poisson regression
indicated that the seroprevalence of FeLV infections was
observed to be lower among areas with greater proportion
of cats that were young and indoors (Table 4(a)). Conversely,
seroprevalence of FeLV infections was higher among areas
with a greater proportion of intact males and cats tested at
clinics and with a higher seroprevalence of FIV (Table 4(a)).
Similarly, seroprevalence of FIV infection was higher among
areas with a greater proportion of cats tested at clinics and
with a higher seroprevalence of FeLV (Table 4(b)). The sero-
prevalence of FIV, however, was lower in areas with greater
proportion of intact females. The significance and magni-
tude of observed associations were not consistent across all
aggregation levels. The direction of change in magnitude
of association was also not consistent. Associations seen at
postal code and county levels may not be evident at the state
level (e.g., percentage of juvenile cats in an area and FeLV).
Or conversely, associations observed at state level were not
detected at lower levels (e.g., percentage of male intact in an
area and FeLV).

3.2. Discussion. This study showed that commonly used
spatial epidemiological methods (Moran’s 𝐼, spatial scan test,
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(a) (b)

(c)

Figure 1: Spatial clusters of FIV infections (red circles) identified by the spatial scan test at postal code, county, and state level aggregations.
Arrows indicate clusters hidden by the black open circles that represent region centroids. (a) Clusters at postal code level aggregation. (b)
Clusters at county level aggregation. (c) Cluster at state level aggregation.

(a) (b)

(c)

Figure 2: Spatial clusters of FeLV infections (red circles) identified by the spatial scan test at postal code, county and state level aggregations.
Black open circles represent region centroids. (a) Clusters at postal code level aggregation (b) Clusters at county level aggregation (c) Cluster
at state level aggregation.

and spatial regression modeling) are sensitive to choice of
the spatial aggregation scale for analysis, that is, affected by
the MAUP. Recognizing the importance of bias due to the
MAUP is important for the validity of spatial epidemiological
inferences.

Moran’s 𝐼 coefficient indicated clustering of FIV and FeLV
positive test results. However, the strength and significance of

clustering varied across spatial aggregation levels. Given the
infectious nature of both retroviruses, areas near each other
are expected to have similar seroprevalence levels. Therefore,
positive autocorrelation in FIV and FeLV seroprevalence was
expected. As the data are aggregated, variations at lower levels
of aggregation dissolve to form more homogenous areas in
terms of population characteristics [17].With the postal codes
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Table 3: (a) Disease clusters as identified by the spatial scan test for FIV infections among cats in the US and Canada. (b) Disease clusters as
identified by the spatial scan test for FeLV infections among cats in the US and Canada.

(a)

Cluster Coordinatesa Radiusb Obsc Popd Expe Obs/exp 𝑃 value
State

1 45.894, −73.425 0.00 118 1270 72.56 1.63 <0.01
County

1 41.615, −73.201 191.69 118 1191 69.26 1.70 <0.01
2 53.329, −114.075 0.00 33 462 13.46 2.45 <0.01
3 41.621, −83.653 641.51 345 9648 279.73 1.23 <0.01
4 28.515, −81.324 715.81 84 2545 52.83 1.59 <0.01
5 40.666, −105.461 1163.84 86 2336 52.41 1.64 <0.01

Postal code
1 53.572, −114.046 0.00 25 25 0.70 35.54 <0.01
2 45.578, −73.800 147.14 127 1322 72.45 1.75 <0.01
3 41.650, −83.673 638.28 345 9625 274.98 1.25 <0.01
4 27.817, −82.6777 864.23 101 3085 65.73 1.54 <0.01
5 40.595, −105.129 1123.52 84 2260 49.19 1.71 <0.01
6 40.105, −74.353 109.25 22 645 8.34 2.64 <0.01

aLongitude and latitude coordinates of the center of cluster; bradius in kilometers; cobserved number of ELISA positive cats; dtotal number of cats in the
cluster; eexpected number of ELISA positive cats under Poisson assumption.

(b)

Cluster Coordinatesa Radiusb Obsc Popd Expe Obs/exp 𝑃 value
State

1 48.045, −54.689 1437.00 164 2827 93.48 1.75 <0.01
2 45.228, −93.998 637.96 78 1918 47.37 1.65 <0.01
3 34.341, −80.767 999.14 272 10089 209.11 1.30 <0.01

County
1 48.785, −55.986 1381.90 162 2789 90.83 1.78 <0.01
2 47.109, −94.917 660.90 81 1697 43.05 1.87 <0.01
3 34.841, −79.480 932.22 275 9791 209.66 1.31 <0.01

Postal code
1 48.949, −55.634 1403.07 150 2337 75.66 1.98 <0.01
2 46.948, −94.824 545.70 64 1169 31.03 2.06 <0.01
3 34.767, −79.452 936.10 274 9680 206.15 1.30 <0.01

aLongitude and latitude coordinates of the center of cluster; bradius in kilometers; cobserved number of ELISA positive cats; dtotal number of cats in the
cluster; eexpected number of ELISA positive cats under Poisson assumption.

aggregated to counties and states, the variability in sero-
prevalence estimates evident at the scale of postal code and
counties likely diminished as the seroprevalence estimates
were averaged (Table 1(b)). Generally, spatial aggregation
is expected to increase spatial correlations [38]. However,
in this study the opposite effect was observed, and the
spatial autocorrelation present at postal and county levels
disappeared at state level. This may imply that the biological
processes which are associated with the clustering of infected
cats at local levels (i.e., postal codes and counties) become
irrelevant or unobservable at higher aggregation levels (i.e.,
states). It is important to note that there is a random
aspect to the effects of the MAUP and it may be difficult
to generalize about how different datasets with different
spatial units are affected by the MAUP [15]. Furthermore,

the aggregation process itself may induce positive spatial
autocorrelation, particularly if the aggregation process allows
overlapping units [15] such as postal code to form counties.
Unfortunately, not all postal code areas or counties in the US
and Canada were sampled for this study and Moran’s 𝐼 test
was based on a neighbourhood specification of three nearest
neighbours. Therefore it is possible to get “first three nearest
neighbours” areas too distant from a biological perspective
on infection, which would tend to aggravate variability and
reduce autocorrelation at lower levels of aggregation.

Evidence of high-risk areas for FIV and FeLV infections
as detected by the spatial scan test adjusted for known
confounders suggests that yet unknown spatial factors may
exist.This study also indicates that the results from the spatial
scan test can be influenced by spatial aggregation as evident
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Table 4: (a) Results from multivariable spatial Poisson regression modeling of potential risk factors for FeLV infection at three spatial
aggregation levels (postal code, county, and state levels). (b) Results from multivariable spatial Poisson regression modeling of potential
risk factors for FIV infection at three spatial aggregation levels (postal code, county, and state levels).

(a)

Postal code
𝑃 value County

𝑃 value State
𝑃 value

PRa (95% CI) PRa (95% CI) PRa (95% CI)
% juvenile
≤50 Ref Ref Ref
>50 0.66 (0.52–0.84) <0.01 0.78 (0.65–0.94) <0.01 0.74 (0.5–1.08) 0.13

% female intact
≤50 Ref Ref Ref
>50 1.25 (0.97–1.61) 0.09 1.18 (0.96–1.45) 0.12 0.63 (0.36–1.09) 0.10

% male intact
≤50 Ref Ref Ref
>50 1.05 (0.82–1.35) 0.69 0.88 (0.72–1.07) 0.19 2.06 (1.12–3.77) <0.05

% indoors
≤50 Ref Ref — —
>50 0.62 (0.48–0.81) <0.01 0.8 (0.63–1.02) 0.07 — —

% healthy
≤50 Ref Ref — —
>50 0.99 (0.74–1.32) 0.93 1.07 (0.82–1.4) 0.63 — —

% tested at clinics
≤50 Ref Ref Ref
>50 1.79 (1.34–2.39) <0.01 1.26 (1.04–1.54) 0.02 1.29 (0.86–1.92) 0.22

FIV seroprevalence
<3.0 Ref Ref Ref
3.0–8.0 1.42 (1.12–1.80) <0.01 1.17 (0.98–1.4) 0.08 1.11 (0.78–1.57) 0.55
>8.0 2.44 (1.80–3.33) <0.01 2.4 (1.87–3.09) <0.01 2.6 (1.27–5.32) <0.05

Intercept: −4.86, −3.86, and −3.99 for postal code, county, and state levels respectively, with a 𝑃 value of <0.01.
aPrevalence ratios obtained by exponentiation of respective coefficients and their 95% confidence intervals. Rate/risk ratios are interpreted as prevalence
ratios.

(b)

Postal code
𝑃 value County

𝑃 value State
𝑃 value

PRa (95% CI) PRa (95% CI) PRa (95% CI)
% juvenile
≤50 Ref Ref Ref
>50 0.76 (0.56–1.02) 0.07 0.91 (0.71–1.16) 0.44 0.83 (0.57–1.21) 0.35

% female intact
≤50 Ref Ref Ref
>50 0.73 (0.53–0.99) 0.04 0.77 (0.59–1) 0.05 0.94 (0.55–1.62) 0.83

% male intact
≤50 Ref Ref Ref
>50 0.98 (0.71–1.34) 0.89 1.01 (0.78–1.3) 0.96 0.88 (0.48–1.59) 0.67

% indoors
≤50 Ref Ref — —
>50 1.03 (0.72–1.48) 0.87 0.85 (0.58–1.24) 0.39 — —

% healthy
≤50 Ref Ref — —
>50 1.08 (0.73–1.60) 0.70 0.85 (0.61–1.2) 0.36 — —

% tested at clinics
≤50 Ref Ref Ref
>50 1.03 (0.77–1.39) 0.84 1.46 (1.13–1.89) <0.01 1.23 (0.85–1.76) 0.28
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(b) Continued.

Postal code
𝑃 value County

𝑃 value State
𝑃 value

PRa (95% CI) PRa (95% CI) PRa (95% CI)
FeLV seroprevalence
<3.0 Ref Ref Ref
3.0–8.0 1.57 (1.17–2.11) <0.01 1.29 (1.02–1.63) 0.04 1.18 (0.82–1.69) 0.38
>8.0 2.30 (1.60–3.29) <0.01 2.01 (1.44–2.81) <0.01 5.19 (1.16–23.25) 0.04

Intercept: −3.40, −3.30, and −3.39 for postal code, county, and state levels respectively, with a 𝑃 value of <0.01.
aPrevalence ratios obtained by exponentiation of respective coefficients and their 95% confidence intervals. Rate/risk ratios are interpreted as prevalence
ratios.

from the difference in size, number, and location of clusters
for both FIV and FeLV infections.

Despite differences in cluster characteristics with respect
to size and location across aggregation levels for FeLV, no
clusters were detected in the western parts of United States
and Canada indicating that these areas had lower prevalence
of infection compared to the rest of the study area.The results
at county and postal code area levels were similar with respect
to cluster size and locations.The sampled counties and postal
codes were not very different with respect to population
characteristics and thus may be insensitive to aggregation
effects. However, it is most likely an artificial effect as most
counties had only a few postal codes sampled within them.
While multiple clusters were detected for FIV at the postal
code level, these were not detected at higher aggregation
levels (Figures 1(a)–1(c)). Spatial aggregation reduced the
sample size from 641 postal codes to 346 counties and 49
states (or provinces) in this study. Aggregation of data may
smooth out local effects but may also lead to reduced power
to detect small clusters while stabilizing rates that may be
unstable in smaller areas due to smaller at-risk-populations
in the denominator [39, 40].

The results from spatial Poisson regression modeling
indicate that the seroprevalence of both infections is higher in
areas with the greater proportion of cats tested at clinics than
at shelters. Although the seroprevalence of FIV and FeLV
in shelter cat populations mirrors that of cat populations
served by veterinary clinics [3], the reasons for testing
may be different. Testing in shelters is driven by housing
considerations and potential for adoption, whereas at clinics
mostly sick cats are tested [41]. Thus, the seroprevalence
estimates in populations tested at clinics may be inflated.

An increase in seroprevalence of FeLV was found to be
associated with higher FIV seroprevalence. This is expected
since both infections share similar risk factors [42] and as a
result would have similar infection rates. Furthermore, the
seroprevalence of FeLV in an area was negatively associated
with a higher proportion of young cats, indoor cats, and
neutered males. Consequently, the seroprevalence would be
higher in areas with greater proportions of adults, outdoor
cats, and intact cats due to social interactions related to
roaming, breeding, and fighting. Therefore, the areas pop-
ulated with cats of these characteristics can be expected
to harbour cats with higher risk of acquiring retroviral
infections. Areas with greater proportions of intact female
cats had a lower seroprevalence for FIV than areas with

greater proportions of spayed female cats. This finding seems
to be counterintuitive from a biological perspective, as similar
to areas with greater proportions of intact males; populations
with greater proportions of intact females might be expected
to be more susceptible to acquire an infection as a result
of higher probabilities of animals fighting. However, the
predictors that are derived variables (variables constructed
as summaries of individual characteristics) in the group level
analysis cannot distinguish the individual-level effect of the
variable from its contextual or group level effect [43]. Derived
variables are constructed mathematically by summarizing
the individual characteristics in a group [43], for example,
proportion of males in an area.

The significance and magnitude of associations between
health status and risk factors (or predictor variables) are
governed by the scale of spatial aggregation.The associations
observed at one scale should be used with caution when
inferences aremade at another scale. Except for FIV and FeLV
seroprevalence, this study did not identify any covariate con-
sistently associated with the outcome across all three aggre-
gation levels. The geographic scales on which these two vari-
ables are meaningful factors probably include scales larger
than postal code. This is likely true, since veterinary clinics
generally service areas that overlap several postal code areas
or occasionally across county barriers. For other variables, the
choice of the aggregation scale seems to affect the significance
and magnitude of observed associations. Generally, most of
the predictor variables were only significant at lower levels
of aggregation. Suggesting that seroprevalence of FIV and
FeLV at higher levels of aggregation depend on further group-
level factors not considered in this study. It is important that
this spatial scale dependence is not overinterpreted as a sole
MAUP effect as multivariable analysis is a complex subject
and nevertheless can be prone to missing but confounding
variables [16]. This study utilized an ecological regression
framework based on covariates as derived variables from
individual level data [44]. Thus, the associations observed
between covariates and the seroprevalence pertain to group
levels. It is necessary to be cautious in extrapolating these
findings to the individual level due to the potential for
ecological bias.

Currently, there are no solutions to fully overcome the
effects of MAUP and related methodological issues have not
yet been adequately addressed. Recommendations have been
made to minimize MAUP effects in statistical inference by
analyzing the aggregated covariates in hierarchical levels of
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areal units from the finest spatial resolution possible to a
coarser resolution, verifying consistent model results across
different scales, avoiding ecological fallacy, collecting data at
the scale at which inferences is to be made, and using scale
invariant statistics to make inferences [17, 44–46].

4. Conclusion

This study demonstrated the importance of study design in
the context of spatial epidemiological studies. Inference from
spatial epidemiological studies dealing with aggregated data
could potentially be affected by the modifiable areal unit
problem (MAUP). The MAUP can result in overlooking or
conversely overstating the effect of risk factors and influence
statistics designed to test for clustering and clusters. In
the present study of FIV and FeLV seroprevalence among
cats across the US and Canada it was found that disease
clustersmay becomeunidentifiablewhen data are aggregated.
Therefore, it is of utmost importance that investigators define
the appropriate scale for data collection and analysis with
respect to their research questions.
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