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We determine the radiative opacity of plasmas in a local thermal equilibrium (LTE) by time-dependent density-functional theory
(TDDFT) including autoionization resonances, where the photoabsorption cross section is calculated for an ion embedded in the
plasma using the detailed configuration accounting (DCA) method. The abundance of ion with integer occupation numbers is
determined by means of the finite temperature density-functional theory (FTDFT). For an Al plasma of temperature 𝑇 = 20 eV
and density 0.01 g/cm3, we show the opacity and the photoabsorption cross section of b-f and b-b transitions with Doppler and
Stark width, and also show a result that the Planck and Rosseland mean opacities are 28,348 cm2/g and 4,279 cm2/g, respectively.

1. Introduction

For investigation of hot dense plasmas, the density-functional
theory has been used to calculate their atomic properties
and has provided reliable data such as electronic structure,
equation of state (EOS), and opacity [1–7]. Particularly, the
study of radiative properties of inertial confinement plasmas,
interior of stars, and so on is important and theoretically great
interest for the reason that the thermal properties and the
electronic ones of plasmas are closely correlated with each
other.

The most popular model for the hot dense plasmas is the
average atom (AA) model [5, 8–11], and it has been employed
vigorously to study the opacity [12] and so on. However, as
an actual LTE plasma is composed of various ions in different
excited states and charge states; the spectral structure of LTE
plasma is very complex because of the enormous number
of transition lines. The method of the supertransition array
(STA) [7, 12–14] has been used to analyze such a complex line
spectrum of an ion in a LTE plasma.

For the dense plasmas, autoionization is an intrinsically
crucial atomic process and is important for treatments
of plasma opacity, but the autoionization and the ion-ion
pair distribution function are not treated in calculations of
the opacities by STA. One of methods of calculating the
autoionization in the dense plasmas is the time-dependent

density-functional theory which is treated the autoionization
resonance as the dynamical linear response of electronic
system.

To calculate the opacity of plasmas, we have considered
the time-dependent density-functional theory (TDDFT) to
treat the photoabsorption cross section of plasmas, where the
autoionization process is included without using any other
code [15].

In this method, LTE plasmas are treated by finite temper-
ature density-functional theory (FTDFT) [16, 17] and all the
calculations are carried out within the framework of density-
functional theory (DFT). The method is fast and stable for
the numerical calculation of autoionization resonance. The
resonance energy point obtained by our method is found
to be equal to the difference of two related orbital energies
shifted by an amount due to the relaxation effects of electrons
in the time-dependent external electric field.

In Section 2, we review the formulation of LTE plasmas
by FTDFT [16, 17] in brief. In Section 3, a model of the
calculation of the photoabsorption cross section of LTE
plasmas is shown by TDDFT, where ions in the plasmas
are “real ion” with integer numbers of bound electrons. The
opacity of an Al plasma is shown in Section 4, and we
compare our results with other experimental and theoretical
results. We conclude with a short summary in Section 5.
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2. A Self-Consistent Model of Plasmas: FTDFT

Int this section, we review the finite temperature density
functional theory for plasmas (FTDFT) [15, 18–20], briefly.
We consider a plasma containing𝑁

𝑛
nuclei of nuclear charge

𝑍
𝑎
and 𝑁

𝑛
𝑍
𝑎
electrons in a volume 𝑉sys. The system is in

thermal equilibrium with temperature 𝑇 (in energy unit).
TheHamiltonian of the system is as follows (hereafter, we

use atomic units):
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(1)

where 𝑀, P are nuclear mass, momentum of a nucleus,
respectively, and R and r denote the positions of nucleus
and electron, respectively. We assumed here that the nuclear
motion can be treated classically, while the electron subsys-
tem obeys the quantum mechanics. We also assumed the
plasma consists of average ions and uniform continuum
electrons, where the electronic structure of the average ion
is determined by the Kohn-Sham equation as follows:
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(2)

where 𝑛, ℓ are principle quantum number and angular
momentum of electron and Veff(𝑟) is the effective potential at
finite temperature including the exchange-correlation poten-
tial:
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where 𝜌
𝑐
is the continuum electron density,
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and 𝜌
𝑏
(r) is the bound electron density of the average ion,
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The chemical potential 𝜇
𝑒
of electron subsystem is deter-

mined by ensuring the charge neutrality of the system

𝑍
𝑎
= ∑

𝑛ℓ

2 (2ℓ + 1)

exp [𝛽 (𝜀
𝑛ℓ

− 𝜇
𝑒
)] + 1

+
𝜌
𝑐

𝜌ion
, (6)

where 𝜌ion is the ion density of the plasma. The function
𝑄
𝑠
(r) in (3) is the charge density, composed of three parts

Ion distribution

Continuum electron−𝜌c

Figure 1: The image of the charge density 𝑄
𝑠
(𝑟) of (7). In this

figure, the black circle ∙ shows a nucleus located at the origin of the
coordinate system. “Ion distribution” means the sum of the first and
second terms of the right-hand side in (7).

(Figure 1): (i) the charge density 𝑍
𝑎
𝜌ion𝑔𝑖𝑖(r) of the other

nucleus crowded around the ion located at the origin of the
coordinate system, (ii) the bound electrons density of these
nucleus, and (iii) the uniform background electron charge
density −𝜌

𝑐
, as follows:
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(7)

The function 𝑔
𝑖𝑖
(𝑟) is the radial distribution function for the

average ion.
The radial distribution function 𝑔

𝑖𝑖
(𝑟) is obtained by

hypernetted chain (HNC) approximation [21] as follows:
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where functions 𝐺
𝑖𝑖
(r) ≡ 𝑔

𝑖𝑖
− 1 and 𝐶(r) are the direct

correlation function, and these functions must satisfy the
next Ornstein-Zernike’s relation:
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The function 𝜙(𝑟) in (8), the effective interatomic potential,
is the electrostatic interaction between two average ions
separated distance R, and is approximately calculated as
follows:
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(10)

where the polarization of continuum electrons is neglected.

3. A Modeling of Absorption
Cross Section: TDDFT

In our previous theory [15] of the photoabsorption cross
section for plasmas by means of time-dependent density
functional theory (TDDFT) [22–25], we employed the aver-
age ionmodel of calculating the electronic structure of ions in
the plasma, where all ions have the same electronic structure.
In this section, we extend our previous formula for the
photoabsorption cross section to apply in the case of the
photoabsorption by real ions in the plasma.
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3.1. Probability of Existence of an Ion. When plasmas are in
LTE, electronic state of ion in the plasma will be in every
possible state, that is, the number of bound electrons in an
orbital of the ion fluctuates around the average value. The
electronic configuration of average atom model is a virtual
image obtained by a time average for these deviated states. In
our presented model, these average values of occupation are
calculated by means of FTDFT as mentioned in Section 2.

The relaxation time 𝜏 of this fluctuation will estimate
roughly by the mean time between two-electron or ion-
electron collisions. For the spatial distribution of surrounding
an ion (given by (8)), the relaxation time of its fluctuation will
roughly be equal to themean collision time between ions, and
it is very large compared to the electron collision time. On the
other hand, the photoabsorption occurs in very short time
compared with that fluctuation time 𝜏. Therefore, electronic
state of ions going to absorb photon is in one of deviated states
from the average atom, and this ion will be in electric field
caused by deviation of spatial distribution of ions. Then, we
must prepare a deviated electronic state, that is, a electronic
configuration with integer occupation for an initial state of
ion, but we here assume that the ion spatial distribution is
given by (8) without fluctuation, and other ions around an ion
at origin are replaced with average atoms obtained by FTDFT
(so-called the constant density method [12]).

In the calculation of the opacity of LTE plasmas, it is
necessary to know the probability distribution of excited
electronic state of an ion with integer occupation, where
the plasma effects (the ionization potential depression (IPD
[26]), pressure ionization, etc.) must be correctly taken into
account. To consider this probability distribution, we calcu-
late the energy of an ion with integer occupation numbers
of bound electrons embedded in the plasma, where the
electrostatic potential surrounding that ion is determined by
continuum electrons, the spatial distribution of neighboring
ions, and their electronic structure. Therefore, the IPD is
included in calculation of opacity.

For a given electron configuration
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with integer occupation numbers (𝑞
1
, 𝑞
2
, 𝑞
3
, 𝑞
4
, . . .), there are

many terms with different energies in general; however, we
assume that the average energy of an electron configuration
of an ion [27] can be calculated as follows:
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where V
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the bound electron density, respectively;
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{q} denotes a set of occupation numbers (𝑞
1
, 𝑞
2
, 𝑞
3
, . . .), and
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and 𝑅

𝑖
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function of orbital 𝑖 obtained by the Kohn-Sham equation
which is obtained by replacing the potential Veff(𝑟) in (2) by
the following potential:
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The probability 𝑃
{q} of existence for the ion (nuclear

charge 𝑍
𝑎
) with an electronic configuration of integer occu-

pation numbers {q} is given as the change in the total energy
of the ion.The probability 𝑃

{q} of existence for the ion with an
electron configuration {q} is
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where 𝑍
ion
𝐺

is a normalization factor, ℓ
𝑖
is the angular

momentum, and 𝑔
𝑖
= 2(2ℓ

𝑖
+ 1) is the maximum occupation

number of the orbital 𝑖 [15].

3.2. Photoabsorption Cross Section. We now discuss the
photoresponse of an ion in plasmas to a frequency-dependent
external field. The electronic configuration of this ion is
assumed to be (1𝑠)
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process can coincide with this process; that is, one of the
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These two processes compete with each other; namely, a
channel mixing occurs, and consequently, the Fano profile
appears on the photoabsorption cross section. If the energies
of the 𝜀
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can occur if the photon energy satisfies the resonance condi-
tion ℏ𝜔 = 𝜀
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− 𝜀
𝑛
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. To investigate the above processes, we
study how the electrons respond to a frequency-dependent
external field.
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3.2.1. Photoabsorption Cross Section of an Ion: 𝜎(𝜔 : {q}).
In previous theory [15], we considered only bound-free
contribution to the calculation of the photoabsorption cross
section, but here we extend the theory to include the bound-
bound absorption.

We assume that the frequency-dependent external elec-
tric field is of magnitude 𝐸

0
directed along the 𝑧-axis. The

interaction between this field and the electrons of an ion
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(𝑟) is the self-consistent field produced by the
photoresponse of the electrons. The self-consistent field
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In the above equation, the 2nd term in the integrand is a
functional derivative of the exchange potential V
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When a photon energy 𝜔 is in the vicinity of the energy
deference of optically allowed two- bound states 𝑛

𝑖
ℓ
𝑖
and

𝑛
𝑓
ℓ
𝑓
, namely,𝜔 ∼ 𝜀

𝑓
−𝜀

𝑖
≡ Δ𝜀, the response function𝜒

0

𝜔
(𝑟, 𝑟

󸀠
)

in (21) is given as follows:

𝜒
0

𝜔
(𝑟, 𝑟

󸀠
) ≃ 2𝑓

𝑖
(1 − 𝑓

𝑓
) 𝐶

ℓ
𝑖
ℓ
𝑓

𝜂
𝑖𝑓
𝑅
𝑛
𝑖
ℓ
𝑖

(𝑟) 𝑅𝑛
𝑓
ℓ
𝑓

(𝑟)

× 𝑅
𝑛
𝑓
ℓ
𝑓

(𝑟
󸀠
) 𝑅

𝑛
𝑖
ℓ
𝑖

(𝑟
󸀠
)

+

󸀠

∑

𝑠<𝑠
󸀠

2𝑓
𝑠
(1 − 𝑓

𝑠
󸀠) 𝐶

ℓ
𝑠
ℓ
𝑠
󸀠

𝜂
𝑠,𝑠
󸀠𝑅
𝑠
(𝑟) 𝑅

𝑠
󸀠 (𝑟)

× 𝑅
𝑠
󸀠 (𝑟

󸀠
) 𝑅

𝑠
(𝑟
󸀠
)

− 𝑖𝜋∑

𝑠

∑

ℓ=ℓ
𝑠
±1

2𝑓
𝑠
(1 − 𝑓 (𝜀

𝑠
+ 𝜔)) 𝐶

ℓ
𝑠
ℓ

× 𝑅
𝑠
(𝑟) 𝑅

(𝜀
𝑠
+𝜔)ℓ

(𝑟) 𝑅
(𝜀
𝑠
+𝜔)ℓ

(𝑟
󸀠
)

× 𝑅
𝑠
(𝑟
󸀠
) 𝜃 (𝜀

𝑠
+ 𝜔) ,

(25)

where 𝑓
𝑠
= 𝑞

𝑠
/[2(2ℓ

𝑠
+ 1)], 𝜃(𝜀

𝑠
+𝜔) is the unit step function,

and 𝐶
ℓℓ
󸀠 , 𝜂

𝑛ℓ,𝑛
󸀠
ℓ
󸀠 are given as

𝐶
ℓℓ
󸀠 =

{

{

{

ℓ + ℓ
󸀠
+ 1

8𝜋
for 󵄨󵄨󵄨󵄨󵄨

ℓ − ℓ
󸀠󵄨󵄨󵄨󵄨󵄨

= 1

0 for 󵄨󵄨󵄨󵄨󵄨
ℓ − ℓ

󸀠󵄨󵄨󵄨󵄨󵄨
̸= 1,

(26)

𝜂
𝑖𝑓

=
1

𝜔 − Δ𝜀 + 𝑖𝛿
−

1

𝜔 + Δ𝜀 + 𝑖𝛿
, Δ𝜀 = 𝜀

𝑓
− 𝜀

𝑖
. (27)

In (25), summations for 𝑠 are over only occupied orbitals,
as distinct from 𝜒

0

𝜔
(𝑟, 𝑟

󸀠
) for finite temperature where sum-

mation is over all occupied and unoccupied orbitals [15]. In
the second term on the right-hand side of (25), the double
summation runs over all bound states on the condition 𝜀

𝑠
<

𝜀
𝑠
󸀠 , and the prime denotes the omission of two bound states

(𝑛
𝑖
ℓ
𝑖
) and (𝑛

𝑓
ℓ
𝑓
).

In (27), the factor 𝛿 is a infinitesimal positive quantity.The
factor 𝜂

𝑠,𝑠
󸀠 in this term is real value and given as follows:

𝜂
𝑠,𝑠
󸀠 =

1

𝜀
𝑠
− 𝜀

𝑠
󸀠 + 𝜔

−
1

𝜀
𝑠
󸀠 − 𝜀

𝑠
+ 𝜔

. (28)

The 𝑅
𝐸ℓ

(𝑟) in (25) is the radial wave function of a
photoionized electron of positive energy 𝐸 and angular
momentum ℓ, which is obtained by solving the Kohn-Sham
equation.

3.2.2. Bound-Free Absorption. We rewrite the first term and
the sum in the second term of (25) to a single sum as follows:

𝑘max

∑

𝑘=0,1,2,...

𝑐
𝑘
𝜂
𝑘
𝑈
𝑘
(𝑟) 𝑈

𝑘
(𝑟
󸀠
) , (29)
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where the term of 𝑘 = 0 in above sum corresponds to the first
term of (25) and the factors 𝑐

0
, 𝜂
0
and the function 𝑈

0
(𝑟) are

given as follows:

𝑐
0
= 2𝑓

𝑖
(1 − 𝑓

𝑓
) 𝐶

ℓ
𝑖
ℓ
𝑓

,

𝜂
0
= 𝜂

𝑖𝑓
,

𝑈
0
(𝑟) = 𝑅

𝑛
𝑖
ℓ
𝑖

(𝑟) 𝑅
𝑛
𝑓
ℓ
𝑓

(𝑟) .

(30)

The other terms (𝑘 = 1, 2, . . .) in the sum equation (29)
correspond to the nonvanishing terms on the second term
of (25), and the factors 𝑐

𝑘
, 𝜂

𝑘
and the function 𝑈

𝑘
(𝑟) are

determined by a combination of two bound states as follows:

𝑐
𝑘
= 2𝑓

𝑠
(1 − 𝑓

𝑠
󸀠) 𝐶

ℓ
𝑠
ℓ
𝑠
󸀠

,

𝜂
𝑘
= 𝜂

𝑠,𝑠
󸀠 ,

𝑈
𝑘 (𝑟) = 𝑅

𝑠 (𝑟) 𝑅𝑠󸀠 (𝑟) .

(31)

Here, we assume that the number of all nonvanishing terms
in the second term of (25) is 𝑘max.

In similar manner, numbering 𝑘max + 1, 𝑘max + 2, . . . for
all nonvanishing terms on the third term of (25), we rewrite
it as follows:

∑

𝑘>𝑘max

𝑐
𝑘
𝜂
𝑘
𝑈
𝑘
(𝑟) 𝑈

𝑘
(𝑟
󸀠
) , (32)

where the factors 𝑐
𝑘
, 𝜂

𝑘
and the function 𝑈

𝑘
(𝑟) are, respec-

tively,

𝑐
𝑘
= 2𝑓

𝑠
(1 − 𝑓 (𝜀

𝑠
+ 𝜔)) 𝐶

ℓ
𝑠
ℓ
𝜃 (𝜀

𝑠
+ 𝜔) ,

𝜂
𝑘
= −𝑖𝜋,

𝑈
𝑘
(𝑟) = 𝑅

𝑠
(𝑟) 𝑅

(𝜀
𝑠
+𝜔)ℓ

(𝑟) .

(33)

Then, (25) can be expressed as

𝜒
0

𝜔
(𝑟, 𝑟

󸀠
) = ∑

𝑘=0

𝑐
𝑘
𝜂
𝑘
𝑈
𝑘
(𝑟) 𝑈

𝑘
(𝑟
󸀠
) . (34)

Substituting (34) into (21), we obtain the radial part of the
induced electron density 𝛿𝜌

𝜔
(𝑟) as follows:

𝛿𝜌
𝜔
(𝑟) = 𝑐

0
𝑈
0
(𝑟) 𝑎

0
+ ∑

𝑘=1

𝑐
𝑘
𝜂
𝑘
𝑈
𝑘
(𝑟) 𝑎

𝑘
, (35)

where complex coefficients 𝑎
0
and 𝑎

𝑘
are given as follows:

𝑎
0
= 𝜂

0
∫

∞

0

𝑈
0
(𝑟) 𝜙

scf
𝜔

(𝑟) 𝑟
2
𝑑𝑟

𝑎
𝑘
= ∫

∞

0

𝑈
𝑘
(𝑟) 𝜙

scf
𝜔

(𝑟) 𝑟
2
𝑑𝑟, 𝑘 > 0.

(36)

From (22), (23), and (35), the self-consistent field 𝜙
scf
𝜔

(𝑟)

satisfies

𝜙
scf
𝜔

(𝑟) = 𝜙
ext
𝜔

(𝑟) + 𝑐
0
𝐵
0 (𝑟) 𝑎0 + ∑

𝑘=1

𝑐
𝑘
𝜂
𝑘
𝐵
𝑘 (𝑟) 𝑎𝑘. (37)

The function 𝐵
𝑘
(𝑟) is given by

𝐵
𝑘
(𝑟) = ∫

∞

0

𝐾(𝑟, 𝑟
󸀠
)𝑈

𝑘
(𝑟
󸀠
) 𝑟

󸀠2
𝑑𝑟
󸀠
. (38)

The self-consistent field 𝜙
scf
𝜔

(𝑟) is obtained by simultane-
ously solving (36) and (37). Substituting (37) into (36), we
obtain the following relation:

𝑉̂(

𝑎
0

𝑎
1

𝑎
2

.

.

.

) = (

𝑑
0

𝑑
1

𝑑
2

.

.

.

) , (39)

where the factor 𝑑
𝑘
is

𝑑
𝑘
= ∫

∞

0

𝑈
𝑘
(𝑟) 𝜙

ext
𝜔

(𝑟) 𝑟
2
𝑑𝑟, (40)

and 𝑉̂ is the matrix given as follows:

(
(

(

1

𝜂
0

− 𝑉
00

−𝜂
1
𝑉
01

−𝜂
2
𝑉
02

−𝜂
3
𝑉
03

⋅ ⋅ ⋅

−𝑉
10

1 − 𝜂
1
𝑉
11

−𝜂
2
𝑉
12

−𝜂
3
𝑉
13

⋅ ⋅ ⋅

−𝑉
20

−𝜂
1
𝑉
21

1 − 𝜂
2
𝑉
22

−𝜂
3
𝑉
23

⋅ ⋅ ⋅

−𝑉
30

−𝜂
1
𝑉
31

−𝜂
2
𝑉
32

1 − 𝜂
3
𝑉
33

⋅ ⋅ ⋅

.

.

.
.
.
.

.

.

.
.
.
. d

)
)

)

. (41)

The factor 𝑉
𝑘𝑘
󸀠 in the above matrix elements is given as

𝑉
𝑘𝑘
󸀠 = 𝑐

𝑘
󸀠 ∫

∞

0

𝑈
𝑘 (𝑟) 𝐵𝑘󸀠 (𝑟) 𝑟

2
𝑑𝑟. (42)

The determinant 𝐷 of the matrix 𝑉̂ can be expanded in
terms of its cofactors as follows:

𝐷 = (
1

𝜂
0

− 𝑉
00
)𝐴 + 𝐵, (43)

where 𝐴 and 𝐵 are the determinants obtained from the
cofactors of 𝐷. |𝐷|

2 becomes

|𝐷|
2
= |𝐴|

2 [

[

(
𝜔
2
− 𝜀

(2)

𝑟
(𝜔)

2Δ𝜀
)

2

+ (𝜆 +
𝜔

Δ𝜀
𝛿)

2

]

]

, (44)

(the infinitesimal positive quantity 𝛿 in 𝜂
0
(or 𝜂

𝑖𝑓
, (27)) put 0

in previous theory [15]) where Δ𝜀 = 𝜀
𝑛
𝑓
ℓ
𝑓

− 𝜀
𝑛
𝑖
ℓ
𝑖

, and

𝜀
(2)

𝑟
(𝜔) ≡ Δ𝜀

2
+ 2Δ𝜀 (𝑉

00
− 𝛾) + 𝛿

2
, (45)

and 𝜆 ≡ Im(𝐵/𝐴), 𝛾 ≡ Re(𝐵/𝐴).The value 𝜀
(2)

𝑟
(𝜔) of (45)may

be negative because of the 𝜔 dependence of 𝛾, but if it has a
positive value, a positive solution of the relation𝜔

2
−𝜀

(2)

𝑟
(𝜔) =

0 in (44) is considered as a resonance energy position 𝜔
𝑟
of

Fano profile, and this position is approximately given by

𝜔
𝑟
≃ lim
𝛿→0

√𝜀
(2)

𝑟 (𝜔) = √Δ𝜀2 + 2Δ𝜀 (𝑉
00

− 𝛾). (46)
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The complex coefficients 𝑎
0
and 𝑎

𝑘
satisfy the following

relations the same as (43):

𝐷𝑎
0
= (

1

𝜂
0

− 𝑉
00
)𝐴 + 𝐵

󸀠
;

𝐷𝑎
𝑘
= (

1

𝜂
0

− 𝑉
00
)𝑃

𝑘
+ 𝑄

𝑘
,

(47)

then, we obtain the following:

𝑎
0
=

1

𝐷

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑
0

−𝜂
1
𝑉
01

−𝜂
2
𝑉
02

⋅ ⋅ ⋅

𝑑
1

1 − 𝜂
1
𝑉
11

−𝜂
2
𝑉
12

⋅ ⋅ ⋅

𝑑
2

−𝜂
1
𝑉
21

1 − 𝜂
2
𝑉
22

⋅ ⋅ ⋅

.

.

.
.
.
.

.

.

. d

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≡
𝐺
0

𝐷
,

𝑎
1
=

1

𝐷

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝜂
0

− 𝑉
00

𝑑
0

−𝜂
2
𝑉
02

⋅ ⋅ ⋅

−𝑉
10

𝑑
1

−𝜂
2
𝑉
12

⋅ ⋅ ⋅

−𝑉
20

𝑑
2

1 − 𝜂
2
𝑉
22

⋅ ⋅ ⋅

.

.

.
.
.
.

.

.

. d

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≡
𝐺
1

𝐷
,

(48)

and the others are obtained in the same way as 𝑎
1
.

The photoabsorption cross section is calculated as follows
[22, 24]:

𝜎 (𝜔 : {q}) = −4𝜋𝛼𝜔∬𝜙
scf∗
𝜔

(𝑟
󸀠
) [Im𝜒

0

𝜔
(𝑟, 𝑟

󸀠
)]

× 𝜙
scf
𝜔

(𝑟) 𝑟
󸀠2

𝑟
2
𝑑𝑟
󸀠
𝑑𝑟,

= 4𝜋𝛼𝜔(𝑐
0

󵄨󵄨󵄨󵄨𝐺0
󵄨󵄨󵄨󵄨

2

|𝐷|
2

𝜔

Δ𝜀
𝛿 + 𝜋 ∑

𝑘>𝑘max

𝑐
𝑘

󵄨󵄨󵄨󵄨𝐺𝑘
󵄨󵄨󵄨󵄨

2

|𝐷|
2
) ,

(49)

where 𝛼 is the fine structure constant.
When 𝜆 ̸= 0, for 𝛿 → 0 in (49), we obtain the bound-free

photoabsorption corss section as follows

𝜎 (𝜔 : {q}) = 4𝜋
2
𝛼𝜔 ∑

𝑘>𝑘max

𝑐
𝑘

󵄨󵄨󵄨󵄨𝐺𝑘
󵄨󵄨󵄨󵄨

2

|𝐷|
2
. (50)

The photoabsorption cross section equation (50) is the
superposition of the “Fano profile” and “Lorentz profile” [15].

3.2.3. Bound-Bound Absorption. When the photon energy is
in the vicinity of the difference of two orbital energies 𝜀

𝑛
𝑖
ℓ
𝑖

and 𝜀
𝑛
𝑓
ℓ
𝑓

, but satisfies the condition 𝜔 < |𝜀
𝑖
| for any other

orbital energies, the matrices 𝐴 and 𝐵 in (43) become real
values, namely, 𝜆 = 0, 𝑐

𝑘
= 0 (𝑘 > 𝑘max); the cofactors

𝐴 and 𝐵 become real values and autoionization resonance
does not occur, though an ordinary bound-bound transition
𝑛
𝑖
ℓ
𝑖
→ 𝑛

𝑓
ℓ
𝑓
may occur. In this case, the second term of the

right-hand side of (49) becomes 0, but the limit of the first
term as 𝛿 → 0 is a non-zero value. For calculating the
first term in (49), we may expand the 𝜔

2
− 𝜀

(2)

𝑟
(𝜔) in (44) into

power-series, but neglecting terms in high powers of (𝜔−𝜔
𝑟
)

as follows:

𝜔
2
− 𝜀

(2)

𝑟
(𝜔)

≃ 𝜔
2

𝑟
− 𝜀

(2)

𝑟
(𝜔
𝑟
) + [2𝜔

𝑟
−

𝑑𝜀
(2)

𝑟
(𝜔
𝑟
)

𝑑𝜔
] (𝜔 − 𝜔

𝑟
)

= (2𝜔
𝑟
+ 2Δ𝜀

𝑑𝛾

𝑑𝜔
) (𝜔 − 𝜔

𝑟
)

≃ 2𝜔
𝑟
(𝜔 − 𝜔

𝑟
) .

(51)

Then |𝐷|
2 in (49) becomes

|𝐷|
2
= |𝐴|

2
[(

𝜔
𝑟

Δ𝜀
)

2

(𝜔 − 𝜔
𝑟
)
2
+ (

𝜔

Δ𝜀
𝛿)

2

] . (52)

Therefore the 1st term of the right-hand side in (49) is
rewritten as follows:

𝑐
0

󵄨󵄨󵄨󵄨𝐺0
󵄨󵄨󵄨󵄨

2

|𝐷|
2

𝜔

Δ𝜀
𝛿

= 𝑐
0

󵄨󵄨󵄨󵄨𝐺0
󵄨󵄨󵄨󵄨

2 1

|𝐴|
2

Δ𝜀

𝜔
𝑟

(𝜔/𝜔
𝑟
) 𝛿

[(𝜔 − 𝜔
𝑟
)
2
+ ((𝜔/𝜔

𝑟
) 𝛿)

2
]

;

(53)

as a result, the photoabsorption cross section for bound-
bound is expressed as

lim
𝛿→0

𝜎 (𝜔 : {q}) = 4𝜋𝛼𝜔𝑐
0

󵄨󵄨󵄨󵄨𝐺0
󵄨󵄨󵄨󵄨

2 lim
𝛿→0

(𝜔/Δ𝜀) 𝛿

|𝐷|
2

≃ 4𝜋
2
𝛼𝑐
0
Δ𝜀

󵄨󵄨󵄨󵄨𝐺0
󵄨󵄨󵄨󵄨

2

|𝐴|
2
𝛿 (𝜔 − 𝜔

𝑟
) .

(54)

From (53), we consider the quantity 2𝛿 as the natural line
width of the transition 𝑛

𝑓
𝑙
𝑓

→ 𝑛
𝑖
𝑙
𝑖
.

The𝜔
𝑟
is the positive solution of the relation𝜔

2
−𝜀

(2)

𝑟
(𝜔) =

0, and it is the energy point of the resonance absorption of this
bound–bound transition. As mentioned above, this energy
point is shifted from the difference of the energies of two
orbitals involved in the photoabsorption, as for the case of
autoionization resonance.

The photoabsorption cross section for a plasma is
expressed as

𝜎 (𝜔) = ∑

q
𝑃
{q}𝜎 (𝜔 : {q}) , (55)

superimposing the photoabsorption cross section 𝜎(𝜔 : {q})
for an ion with a configuration q = (𝑞

1
, 𝑞
2
, 𝑞
3
, . . .), where

summation is over electronic configurations ready before-
hand (detailed configuration accounting (DCA) method).

4. Results and Discussion

For the purpose of demonstrating the usefulness of our
model, we show opacities including autoionization reso-
nances of Al plasma. At first, some physical properties of an
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Table 1: Orbital energies and mean orbital radii ⟨𝑟⟩ of average atom
obtained by FTDFT for Al plasma of temperature 𝑇 = 20 eV and
density 0.01 g/cm3. 𝑎ion is the ion-sphere radius, in this case, 𝑎ion =

19.3563 in a.u.

Orbital Occupation Energy [eV] ⟨𝑟⟩/𝑎ion

1s 1.0000000 −1593.2399450 0.0062490

2s 0.9471505 −185.2130378 0.0307858

2p 0.7507994 −149.5504598 0.0284118

3s 0.0170534 −46.4087164 0.0893144

3p 0.0112252 −37.9267667 0.0944112

3d 0.0065214 −26.9702796 0.0984221

4s 0.0040830 −17.5564467 0.1868533

4p 0.0035343 −14.6586288 0.2001951

4d 0.0029352 −10.9321117 0.2172469

4f 0.0027064 −9.3044024 0.2041051

5s 0.0024418 −7.2412225 0.3263015

5p 0.0022922 −5.9737677 0.3498977

5d 0.0021112 −4.3251798 0.3842115

5f 0.0020295 −3.5337236 0.3796523

5g 0.0019966 −3.2065049 0.3361391

6s 0.0019489 −2.7221846 0.5264264

6p 0.0018911 −2.1186225 0.5678503

6d 0.0018186 −1.3359917 0.6364388

6f 0.0017813 −0.9203438 0.6548017

6g 0.0017597 −0.6762144 0.6174240

7s 0.0017625 −0.7081767 0.8533281

Al plasma of temperature 𝑇 = 20 eV and density 0.01 g/cm3

are obtained by means of FTDFT as mentioned in Section 2.
The chemical potential 𝜇

𝑒
of the electron subsystem and the

charge state 𝑍
∗
(= 𝑍

𝑎
− ∫𝜌

𝑏
𝑑𝑟) (both are calculated by (6))

for average ion of this Al plasma are 𝜇
𝑒

= −127.4928557 eV
and 𝑍

∗
= 4.1399487, respectively, and these values are in

good agreement with other typical theoretical results. Orbital
energies of average atom obtained by (2) are shown in Table 1.
In this table, mean orbital radii ⟨𝑟⟩ are also shown, and these
were all smaller than the ion-sphere radius 𝑎ion though wave
functions are solved under the boundary condition as shown
in (2). For the case of comparatively high temperature, some
mean orbital radii of bound electrons become larger than
the 𝑎ion, but such orbitals are not discard for calculating the
bound electron density (see, (5)).

The radial distribution function 𝑔
𝑖𝑖
(𝑟) obtained by (8) is

shown in Figure 2. The coupling constant Γ of the plasma,
which is defined in this paper as Γ = (𝑍

∗
)
2
/(𝑎ion𝑇), is 1.2, so

this Al plasmamay be regarded as a strongly coupled plasma.
For calculation the photoabsorption cross section by (55)

using DCA, the probability distributions 𝑃
{q} (see, (16)) must

be estimated for congurations q as many as possible, and the
normalization factor 𝑍

ion
𝐺

is the sum of those distributions in
order to satisfy the conservation of probability; that is,

𝑍
ion
𝐺

= ∑

{q}
𝑃
{q}. (56)
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Figure 2: The radial distribution function 𝑔
𝑖𝑖
(𝑟) of Al plasma

(0.01 g/cm3, 20 eV) obtained byHNC (see (8) and (9)).The coupling
constant Γ is 1.2.

The summation is over all configurations used in (55), where
the number of terms is usually huge even if we limit the
maximum number of orbitals [13]. However, here we carried
out the summation of (55) on two assumptions.

(I) The maximum principle quantum number is 8;
namely, the electron configuration is described as
follows:

(1𝑠)
𝑞
1(2𝑠)

𝑞
2(2𝑝)

𝑞
3

(3𝑠)
𝑞
4(3𝑝)

𝑞
5

(3𝑑)
𝑞
6 ⋅ ⋅ ⋅ (8ℓ = 7)

𝑞
36 . (57)

(II) The number of excited electrons from grand state is 3
or less.

For an Al ion, the total number of electron configurations
on these assumptions is 703,236.

The total energy of an ion with the above assumed
electron configuration cannot always be obtained because the
ion is not isolated but is immersed in the plasma. Hence, it is
regarded than an ion with such an electron configuration is
unstable in the plasma and we omit this configuration from
the summation of (55).

The number of stable electron configurations for this Al
plasma was 288,737; the conservation of probability equation
(16) was established by these 288,737 electron configurations.
Table 2 shows the ten greatest probabilities obtained.

The population fraction𝑊
𝑄
of ionswith charge state𝑄 (=

𝑍
𝑎
−∑

36

𝑖=1
𝑞
𝑖
) is calculated using the probability𝑃

{q} as follows:

𝑊
𝑄

= ∑

𝑞
1
,𝑞
2
,𝑞
3
,...

∑𝑞
𝑖
=𝑍
𝑎
−𝑄

𝑃
{q}. (58)

Figure 3 shows the charge state distribution of ions
obtained for this Al plasma. In this Al plasma, there was no
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Table 2: Probability distribution of electronic configuration {q} of
ion in the Al plasma (0.01 g/cm3, 20 eV) calculated by (22). Charge
state 𝑄 means 𝑄 = 𝑍

𝑎
− ∑

36

𝑖=1
𝑞
𝑖
. The top 10 probabilities are shown

in descending order starting from the highest probability.

Configuration {q} 𝑃
{q} Charge state 𝑄

1s22s22p5 (2, 2, 5, 0, 0, 0, 0, . . .) 0.297933 4
1s22s22p4 (2, 2, 4, 0, 0, 0, 0, . . .) 0.201386 5
1 s22s22p6 (2, 2, 6, 0, 0, 0, 0, . . .) 0.030392 3
1s22s12p5 (2, 1, 5, 0, 0, 0, 0, . . .) 0.027722 5
1s22s22p43p1 (2, 2, 4, 0, 1, 0, 0, . . .) 0.022315 4
1s22s22p43d1 (2, 2, 4, 0, 0, 1, 0, . . .) 0.021047 4
1s22s12p6 (2, 1, 6, 0, 0, 0, 0, . . .) 0.015942 4
1s22s22p53d1 (2, 2, 5, 0, 0, 1, 0, . . .) 0.014986 3
1s22s22p53p1 (2, 2, 5, 0, 1, 0, 0, . . .) 0.014871 3
1s22s22p55f1 (2, 2, 5, 0, 0, 0, 1, . . .) 0.011916 3
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Figure 3: Charge state distribution𝑊
𝑄
of (58) for theAl plasma (𝜌ion

= 0.01 g/cm3, 𝑇 = 20 eV). The average of charge state ⟨𝑄⟩ is 4.07952,
although FTDFT in Section 2 gives this value as 4.1399487.

ion of charge state 𝑄 = 0 (neutral atom) and population
fraction of 𝑊

1
(𝑄 = 1) is about 1.54 × 10

−5 [1]. The average
of charge state ⟨𝑄⟩ is 4.07952, about 1.5 percent less than
𝑍
∗
(= 𝑍

𝑎
− ∫𝜌

𝑏
𝑑𝑟) obtained by FTDFT (see, (5)).

The photoabsorption cross section (55) was calculated by
selecting the top 500 probable electron configurations (from
the total 288,737 configurations). In Figure 4, we show the
opacity obtained by (50) and (54) for the Al plasma. In this
result, the Doppler width was not considered and the profile
of (54) was taken to be rectangle profile of width 4 × 10

−4 eV.
Figure 5 shows the absorption cross section for the photon
energy range 35–45 eV. There are large two peaks in the
vicinity of 38 eV; these are superposition of some Fano proles
with respect to the transition 2p → 3s as shown in Figure 4,
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Figure 4: Red solid line: opacity equations (55) obtained by (50) and
(54) for the Al plasma (𝜌ion = 0.01 g/cm3, 𝑇 = 20 eV). Blue solid line:
opacity included contribution of autoionization resonance only (50).
Both of the red and blue lines don’t include Doppler width ans Stark
width. 2p → 3s absorption lines of Al+2 and Al+3 are indicated in
the figure.
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Figure 5: Opacity equations (55) included contribution of autoion-
ization resonance only (50) for the Al plasma (𝜌ion = 0.01 g/cm3, 𝑇
= 20 eV). It is the same as the opacity shown by red line in Figure 4,
but photon energy range is 35 eV–45 eV. Two black lines are Fano
profiles; these mostly contributed the photoabsorption cross section
with respect to the transition 2p → 3s of Al+3.

we show the two Fano profiles by black lines in Figure 5,
which are most contributed to make that structure.

Figure 6 shows the opacity obtained by (50) including
the Stark width (electron impact width:FWHM=0.4 eV [1]).
Resonance points (see, (46)) and transitions of some Fano
profiles (a–g in Figure 6) are shown in Table 3. In this table,
two transitions for each profiles compete with each other as
mentioned in Section 3.2. For example, profile “a” is identified
as channel mixing of two processes b-b (2s → 2p) and b-f
(3d → free) for an initial state (1s22s22p43d1) of Al4+. In
this case, b-f transition from 2p cannot occur because the
incident photon energy is smaller than the threshold energy
of 2d → free.

Figure 7 shows the opacity of ordinary b-b resonance
by calculated by (54) including the Stark width (electron
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Figure 6: Opacity of Al plasma (𝜌ion = 0.01 g/cm3, 𝑇 = 20 eV)
obtained by (55)without b-b resonance (see, (54)) but included Stark
width. Spiking profiles are all Fano profiles, and symbols a–g indicate
comparatively large Fano profiles.

Table 3: Assignment of lines a–g in Figure 6. Electronic configura-
tions and two transitions with respect to autoionization resonance
are shown for each line.

Symbol Initial state Transition
a Al4+ : 1s22s22p43d1 2s → 2p, 3d → free
b Al3+ : 1s22s22p53[spd]1 2p → 3s, 3p → free
c Al3+ : 1s22s22p54[spf]1 2p → 3s, 4f → free
d Al3+ : 1s22s22p53[pd]1 2p → 3d, 3d → free
e Al3+ : 1s22s22p5[4d4f5d5f]1 2p → 3d, 4, 5d → free
f Al4+ : 1s22s22p43[pd]1 2p → 3d, 3d → free
g Al4+ : 1s22s22p43[pd]1 2p → 3d, 3d → free

impact width). Symbols a–k in this figure show some major
resonances; these resonance points and transition processes
are shown in Table 4.

The opacity of Al plasma under consideration is the sum
of two opacities equations (50) and (54), or the sum of
Figure 6 and Figure 7; then its result is shown in Figure 8.
The blue solid line in Figure 8 shows the same opacity
but without the contribution from (54), showing several
narrow autoionization resonance profiles and the dominant
autoionization above 100 eV.

The transmission 𝐹(𝜔) = 𝑒
−𝜌𝜅(𝜔)𝐿 of the Al plasma is

shown in Figure 9, where the path length 𝐿 is chosen to be 𝐿=
0.003 cm [1] and the Stark width is considered by convolution
of the obtained photoabsorption cross section and aGaussian
type profile. In the transmission, we considered Kramers
cross section for free-free absorption, but we have not
included the scattering cross section.

5. Conclusion

We propose a new model of calculating radiative opacity of
hot dense plasmas in LTE using the detailed configuration
accounting (DCA) including not only bb and bf contributions
but also autoionization contributions. Electronic structures
for ion with integer number of bound electrons, embedded
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Figure 7: Opacity for b-b resonance of Al plasma (𝜌ion = 0.01 g/cm3,
𝑇 = 20 eV) obtained by (55) with (54), not including autoionization
resonance. Spiking profiles are all b-b resonance profiles with Stark
width.
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Figure 8: Opacity of Al plasma (𝜌ion = 0.01 g/cm3, 𝑇 = 20 eV)
summed up b-f (Figure 6) and b-b (Figure 7) results.

Table 4: Assignment of lines a–k in Figure 7. Electronic configura-
tions and transitions are shown for each line.

Symbol Initial state Transition
a Al4+ : 1s22s22p5 2s → 2p
b Al3+ : 1s22s22p6 2p → 3s
c Al3+ : 1s22s22p6 2p → 3d
d Al4+ : 1s22s22p5 2p → 3s
e Al4+ : 1s22s22p5 2p → 3d
f Al5+ : 1s22s22p4 2p → 3s
g Al4+ : 1s22s22p5 2p → 4d
h Al5+ : 1s22s22p4 2p → 3d
i Al5+ : 1s22s22p4 2p → 4d
j Al5+ : 1s22s22p4 2s → 3p
k Al5+ : 1s22s22p4 2p → 5d

in the plasma, are calculated by Kohn-Sham equation, and
estimate the probability distribution of energies of such ions
in the plasmas.The electrostatic potential surrounding an ion
is determined by means of FTDFT [16].The photoabsorption
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Figure 9: Transmission spectra obtained for Al plasma (𝜌ion =
0.01 g/cm3, 𝑇 = 20 eV). The Doppler width is considered by convo-
lution of the cross section obtained and a Gaussian profile.

cross section of an ion with integer occupations is obtained
by the previously derived formula by means of TDDFT [15],
where Doppler and Stark width are both included.

In conclusion, we have calculated the opacity and trans-
mission of an Al plasma (𝑇 = 20 eV, 0.01 g/cm3) in the energy
region 0–300 eV, but not considered the width caused of
the unresolved transition array (UTA). The results are in
good agreement with the experimental results of Winhart
et al. [28] and theoretical results of Zeng et al. [1], in spite
of the small number (500) of electron configurations used
to calculate the photoabsorption. The Planck mean opacity
and Rosseland mean opacity obtained were 28,348 cm2/g
and 4,279 cm2/g, respectively. These mean opacities were
calculated from the photoabsorption cross section obtained
considering the Doppler width. The Rosseland mean opacity
is very sensitive to the width of the line profile, so cal-
culating this mean opacity is necessary to account for the
autoionization resonance profile and other spectral widths. It
is important to include the UTA width in our model so that
width may be the most dominant in hot dense plasmas, and
it is a subject for future analysis.
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