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A combination of two nonlinear control techniques, fractional order sliding mode and feedback linearization control methods, is
applied to 3-DOF helicopter model. Increasing of the convergence rate is obtained by using proposed controller without increasing
control effort. Because the proposed control law is robust against disturbance, so we only use the upper bound information of
disturbance and estimation or measurement of the disturbance is not required. The performance of the proposed control scheme
is compared with integer order sliding mode controller and results are justified by the simulation.

1. Introduction

Helicopters are versatile flight vehicles that can perform
aggressive maneuvers because of their unique thrust gen-
eration and operation principle. They can perform many
missions that are dangerous or impossible for human to per-
form them. Helicopter is a multi-input multioutput (MIMO)
highly nonlinear dynamical system, so most of the existing
results to date have been based on the linearization model
or through several linearization techniques [1, 2]. The lin-
earization method provides local stability. In presence of
disturbance or uncertainties the linearization can lead state
variables of system to instability.

In recent years, many papers have been published about
control design of helicopter. The sliding mode approach has
been employed for helicopter’s altitude regulation at hovering
[3, 4]. H-infinity approach has been also used to design a
robust control scheme for helicopter [5, 6]. In [5] a robust
H-infinity controller has been presented using augmented
plant and the performance and robustness of the proposed
controller have been investigated in both time and frequency
domain. The proposed controller in [6] is based on H-
infinity loop shaping approach and it has been shown that the
proposed controller is more efficient than classical controller
such as PI and PID controller. A robust linear time-invariant

controller based on signal compensation has been presented
in [7]. By suitably combining feedforward control actions and
high-gain and nested saturation feedback laws, a new control
scheme has been presented in [8]. Intelligent methods such
as fuzzy [9] and neural network theory [10] have been used
to design controller. Furthermore, in [11] a new intelligent
control approach based on emotional model of human brain
has been presented.

The history of fractional calculus goes back 300 years
ago. For many years, it has remained with no applications.
Recently, this branch of science has become an attractive
discussion among control scholars [12]. Good references on
fractional calculus have been presented in [13, 14].The sliding
mode control (SMC) has been also extended in [12, 15–
19]. In [15] a PID controller based on sliding mode strategy
is designed for linear fractional order systems. In [17] a
single input fractional order model, described by a chain
of integrators, is considered for nonlinear systems. In [16–
18] sliding mode method has been applied to synchronize
fractional order nonlinear chaotic systems. In [12, 19] sliding
surface has been defined as an expressed manifold with
fractional order integral.

In this paper, we propose a combination of two nonlinear
control techniques, fractional order (FO) sliding mode and
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feedback linearization control methods. The performance of
the proposed control scheme is compared with integer order
(IO) sliding mode controller and results are justified by the
simulation.

This paper is organized as follows: in Section 2, the
integer order SMC and feedback linearization techniques
are briefly reviewed, and, in Section 3, some preliminaries
and definitions of fractional order calculus are introduced.
In Section 4, the 3-DOF helicopter model description is
presented. In Section 5, the proposed controller scheme is
given, and, in Section 6, the proposed approach is applied
to 3-DOF helicopter model and experimental results are
provided. Finally, conclusion is addressed in Section 7.

2. Review of IO SMC and
Feedback Linearization

In this section, definitions of sliding mode and feedback
linearization control methods are briefly reviewed for essen-
tial preparation of the combination of two nonlinear control
techniques, FO SMC and feedback linearization.

2.1. Integer Order Sliding Mode Control. Consider a second-
order nonlinear dynamical system as

�̇�

1
= 𝑥

2
�̇�

2
= 𝑓 (𝑥) + 𝑔 (𝑥) 𝑢, (1)

where 𝑥 = [𝑥

1
𝑥

2
]

𝑇 is the system state vector, 𝑓(𝑥) and
𝑔(𝑥) are nonlinear functions of 𝑥, and 𝑢 ̸= 0 is the scalar
input. Sliding mode control approach consists of two parts,
correctivecontrol law (𝑢

𝑐
) that compensates the deviations

from the sliding surface to reach the sliding surfaceand
equivalent control law (𝑢eq) that makes the derivative of the
sliding surface equal zero to stay on the sliding surface. This
control law is represented as

𝑢 = 𝑢eq + 𝑢𝑐. (2)

In general, the sliding surface is 𝑆 = 𝑥
2
+ 𝛽𝑥

1
, where 𝛽 > 0.

To guarantee the existence of sliding mode, the control
law must satisfy the condition

1

2

𝑑

𝑑𝑡

𝑠

2
< 0.

(3)

To have a fast convergence, it is sufficient tomodify the sliding
surface.

2.2. Input-Output Linearization Control. Consider the fol-
lowing nonlinear dynamical system:

�̇� = 𝑓 (𝑥) + 𝑔 (𝑥) 𝑢 𝑦 = ℎ (𝑥) . (4)

The control method consists of the following steps.

(a) Differentiate 𝑦 until 𝑢 appears in one of the equations
for the derivatives of 𝑦. Consider

𝑦

(𝑟)
= 𝛼 (𝑥) + 𝛽 (𝑥) 𝑢.

(5)

(b) Choose 𝑢 to give 𝑦(𝑟) = V, where V is the synthetic
input. Consider

𝑢 =

1

𝛽 (𝑥)

[−𝛼 (𝑥) + V] . (6)

(c) Then the system has the following form:

𝑌 (𝑠)

𝑉 (𝑠)

=

1

𝑠

𝑟
. (7)

Design a linear control law for this 𝑟-integrator linear
system.

(d) Check internal dynamics.

3. Basic Description of Fractional Calculus

There exist many definitions of fractional derivative. Two
of the most commonly used definitions are the Riemann-
Liouville (RL) and Caputo (C) definitions [14].

Definition 1 (see [20]). The left RL fractional derivative is
described by

RL
𝑎
𝐷

𝛼

𝑡
𝑓 (𝑡) =

1

Γ (𝑛 − 𝛼)

𝑑

𝑛

𝑑𝑡

𝑛
∫

𝑡

𝑎

𝑓 (𝜏)

(𝑡 − 𝜏)

𝛼−𝑛+1
𝑑𝜏, (8)

where 𝑛 is the first integer which is not less than 𝛼, that is,
𝑛 − 1 ≤ 𝛼 < 𝑛 and 𝛼 > 0, and Γ(⋅) is the gamma function.

Definition 2 (see [21]). The Laplace transform of the RL
definition is described as

∫

∞

0
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−st
𝑎
𝐷

𝛼

𝑡
𝑓 (𝑡) 𝑑𝑡 = 𝑠
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∑

𝑘=0
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𝑎
𝐷
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𝑡
𝑓 (𝑡)



















𝑡=0

. (9)

Lemma 3 (see [20]). The following equality is satisfied for all
𝛼 > 0 and 𝑛 is a natural number. Consider

𝑑

𝑛

𝑑𝑡

𝑛
{

RL
𝐷

𝛼
𝑓 (𝑡)} =

RL
𝐷

𝑛+𝛼
𝑓 (𝑡),

C
𝐷

𝛼
{

𝑑

𝑛

𝑑𝑡

𝑛
𝑓 (𝑡)} =

C
𝐷

𝑛+𝛼
𝑓 (𝑡) .

(10)

Lemma 4 (see [21]). Fractional differentiation and fractional
integration are linear operations. Consider

0
𝐷

𝛼

𝑡
(𝑎𝑓 (𝑡) + 𝑏𝑔 (𝑡)) = 𝑎

0
𝐷

𝛼

𝑡
𝑓 (𝑡) + 𝑏

0
𝐷

𝛼

𝑡
𝑔 (𝑡) . (11)

Lemma 5 (see [20]). The following equality for left RL defini-
tion is satisfied for all 𝛼 ∈ (0, 1):

RL
𝐷

𝛼
{𝐼

𝛼
𝑓 (𝑡)} = 𝑓 (𝑡) , 𝛼 ∈ (0, 1) .

(12)

However the opposite is not true, since

𝐼

𝛼
{

RL
𝐷

𝛼
𝑓 (𝑡)} = 𝑓 (𝑡) −

𝑓

1−𝛼
(0)

Γ (𝛼)

𝑡

𝛼−1
, (13)

where 𝑓
1−𝛼

(0) = lim
𝑡→0

𝐼

1−𝛼
𝑓(𝑡).
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Figure 1: The 3-DOF helicopter system.

4. System Description

In this work, a 3-DOF helicopter model is considered (see
Figure 1).

The following notations are used to describe the 3-DOF
helicopter system dynamics:

𝜃: is angular position of the pitch axis, rad;
𝜑: is angular position of the roll axis, rad;
𝜓: is angular position of the yaw axis, rad;
𝐽

𝜃
: is moment of inertia of the system around the pitch
axis, kgm2;

𝐽

𝜑
: is moment of inertia of the helicopter body about the
roll axis, kgm2;

𝐽

𝜓
: is moment of inertia of the helicopter body about the
yaw axis, kgm2;

𝑉

𝑙
: is voltage applied to the left motor, V;

𝑉

𝑟
: is voltage applied to the right motor, V;

𝐾

𝑓
: is force constant of the motor combination, N;

𝑙

𝑎
: is distance between the base and the helicopter body,
m;

𝑙

ℎ
: is distance from the pitch axis to either motor, m;

𝑇

𝑔
: is effective gravitational torque, Nm;

𝐾

𝑝
: is constant of proportionality of the gravitational
force, N.

The 3-DOF helicopter control system consists of two
DC motors at the end of the arm as shown in Figure 1.
Figure 2 shows a physical model of the 3-DOF helicopter.
The following equations (see Figure 2) describe the 3-DOF
helicopter dynamics:

̈
𝜓 = −

𝐾

𝑝
𝑙

𝑎

𝐽

𝜓

sin (𝜑) , (14)

̈

𝜃 = −

𝑇

𝑔

𝐽

𝜃

+

𝐾

𝑓
𝑙

𝑎

𝐽

𝜃

(𝑉

𝑙
+ 𝑉

𝑟
+ 𝜉

𝜑
) , (15)

�̈� =

𝐾

𝑓
𝑙

ℎ

𝐽

𝜑

(𝑉

𝑙
− 𝑉

𝑟
) , (16)

𝑦 = [𝜓 𝜃 𝜑]

𝑇

.
(17)
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𝜙 lh
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la
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𝜃

Left motor

Right motor𝜓
𝜓

Figure 2: Schematic diagram of the 3-DOF helicopter.
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Figure 3: Stability curve of elevation.
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Figure 4: Stability curve of rotation.

Let define 𝑢
1
= 𝑉

𝑙
+ 𝑉

𝑟
and 𝑢

2
= 𝑉

𝑙
− 𝑉

𝑟
; for the sake of

simplicity we define state vector as 𝑥 = [𝜓
̇

𝜓 𝜃

̇

𝜃 𝜑 �̇�]

𝑇 and
the model (14)–(16) can be rewritten as

�̇�

1
= 𝑥

2
�̇�

2
= −

𝑇

𝑔

𝐽

𝜃

+

𝐾

𝑓
𝑙

𝑎

𝐽

𝜃

(𝑢

1
+ 𝜉

𝜑
) ,

�̇�

3
= 𝑥

4
�̇�

4
= −

𝐾

𝑝
𝑙

𝑎

𝐽

𝜓

sin (𝑥
5
) ,

�̇�

5
= 𝑥

6
�̇�

6
=

𝐾

𝑓
𝑙

ℎ

𝐽

𝜑

𝑢

2
.

(18)
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Figure 5: Stability curve of pitch.

Furthermore, let vectors 𝑋
1
and 𝑋

2
represent the partitions

of the state vector, respectively.Thus, 𝑥 = [𝑋
1

𝑇
, 𝑋

2

𝑇
]

𝑇, where
𝑋

1
∈ 𝑅

2 and 𝑋

2
∈ 𝑅

4. Hence, ̇

𝑋

1
-subsystem and ̇

𝑋

2
-

subsystem are presented as follows:

̇

𝑋

1
-subsystem:

{

{

{

{

{

�̇�

1
= 𝑥

2

�̇�

2
= −

𝑇

𝑔

𝐽

𝜃

+

𝐾

𝑓
𝑙

𝑎

𝐽

𝜃

(𝑢

1
+ 𝜉

𝜑
) ,

̇

𝑋

2
-subsystem:

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

�̇�

3
= 𝑥

4

�̇�

4
= −

𝐾

𝑝
𝑙

𝑎

𝐽

𝜓

sin (𝑥
5
)

�̇�

5
= 𝑥

6

�̇�

6
=

𝐾

𝑓
𝑙

ℎ

𝐽

𝜑

𝑢

2
.

(19)

5. Design of Controller

It will be seen that ̇

𝑋

1
-subsystem and ̇

𝑋

2
-subsystem have

no coupling. We know feedback linearization scheme is
suitable approach for multivariable systems but is not robust
inherently. Sliding mode control is well known as a robust
nonlinear control scheme by disturbance rejection capability.
Because feedback linearization is a simple method and
the FO SMC method is robust against disturbance, so we
combine these two approaches. Firstly, feedback linearization
method is applied; secondly, FO SMC method is used. Our
control approach is formed in two steps. In the first step, a
fractional order sliding mode controller for ̇

𝑋

1
-subsystem

is designed; then, since the ̇

𝑋

2
-subsystem is multivariable

and nonlinear, feedback linearization control is applied. For
̇

𝑋

2
-subsystem, controller must be robust against disturbance.

After linearization, a fractional order sliding mode controller
is proposed for linearized subsystem. This helicopter model
is an underactuated system by three outputs and two inputs,
so we can control two outputs and third output only is kept
limited.

Consider ̇

𝑋

1
-subsystem as

�̈�

1
= 𝑓 + 𝑔𝑢

1
. (20)

Let define sliding surface as 𝑆
1
=

RL
𝐷

𝛼
̈𝑒

1
+ 𝜆

1
𝑒

1
and the error

signal is defined as 𝑒
1
= 𝑥

1𝑑
−𝑥

1
. Also, disturbance is imposed

to roll and yaw channel.
The fractional order slidingmode control input signal can

be defined as follows for subsystem (20), [12]:

𝑢

1
(𝑡) = 𝑔

−1
[�̈�

𝑑
(𝑡) − 𝑓 +

RL
𝐷

−1−𝛼
(𝜆

1
̇𝑒

1
)

+

RL
𝐷

−1−𝛼
(𝑘

1
𝑆

1
+ 𝑘

1
sign (𝑆

1
))] ,

(21)

where 𝑘
1
and 𝜆

1
are positive constants.

In [12], it has been shown that this control input signal
guarantees the stability of the closed-loop ̇

𝑋

1
-subsystem and

the tracking error converges to zero in finite time. Then, in
order to control ̇

𝑋

2
-subsystem, at first we use input-output

feedback linearization method. Feedback linearization con-
trol law is defined as

𝑢

2
(𝑡) = (−

𝐾

𝑝
𝑙

𝑎

𝐽

𝜓

cos (𝑥
5
))

−1

[𝑉 −

𝐾

𝑝
𝑙

𝑎

𝐽

𝜓

𝑥

6
sin (𝑥

5
)] .

(22)

𝑉 is new control law that will be designed for linearized
system. So we want to obtain overall control law that it
has robustness behavior and good performance. We use
fractional order control instead of integer order to design
control input 𝑉.

The sliding mode control law, 𝑉, is designed as follows:

𝑉 = 𝑥

(4)

3𝑑
− 𝜆

3

2

RL
𝐷

𝛽
̇𝑒

2
−3𝜆

2

2

RL
𝐷

𝛽
̈𝑒

2

−3𝜆

2

RL
𝐷

𝛽
𝑒

(3)

2
−𝑘

2
Sgn (𝑆

2
)

.

(23)

Let the sliding surface equation be proposed as follows:

𝑆

2
= 𝑒

(3)

2
+ 𝜆

3

2

RL
𝐷

𝛽
𝑒

2
+3𝜆

2

2

RL
𝐷

𝛽
̇𝑒

2
+3𝜆

2

RL
𝐷

𝛽
̈𝑒

2
.

(24)

The error signal is defined as 𝑒
2
= 𝑥

3
− 𝑥

3𝑑
and the Lyapunov

function is to be defined as

̃

𝑉 =

1

2

𝑆

2

2
. (25)
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Figure 6: Force control inputs of proposed controller (stability).
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Consider the sufficient condition for the existence finite time
convergence is

1

2

𝑑

𝑑𝑡

𝑆

2

2
(𝑡) ≤ −𝑘

2









𝑆

2
(𝑡)









,
(26)

where 𝑘
2
is a positive constant. Taking time derivative of both

sides of (25), according to Lemmas 3 and 5, then we have

̇

̃

𝑉 = 𝑆

2
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𝑆
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2
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Figure 9: Tracking curve of rotation.

= 𝑆

2
(𝑉 − 𝑥

(4)

3𝑑
+ 𝜆

3

2

RL
𝐷

𝛽+1
𝑒

2

+3𝜆

2

2
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𝐷

𝛽+1
̇𝑒

2
+ 3𝜆

2

RL
𝐷

𝛽+1
̈𝑒

2
) .

(27)

Replacing (23) into (27) gives

̇

̃

𝑉 = 𝑆

2
̇

𝑆

2
= 𝑆

2
(−𝑘

2
sgn (𝑆

2
)) ≤ − (𝑘

2
+ 𝐹)









𝑆

2









,

(28)

where 𝐹 is maximum of disturbance. So, total feedback
linearization fractional order sliding mode control (FL FO
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Figure 10: Tracking curve of pitch.

SMC) law is achieved by combination of (22) and (23) that
is represented as follows:

𝑢

2
(𝑡) = (−

𝐾

𝑝
𝑙

𝑎

𝐽

𝜓

cos (𝑥
5
))

−1

× [𝑥

(4)

3𝑑
− 𝜆

3

2
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𝐷

𝛽
̇𝑒

2
− 3𝜆

2

2

RL
𝐷

𝛽
̈𝑒

2

− 3𝜆

2

RL
𝐷

𝛽
𝑒

(3)

2
−𝑘

2
Sgn (𝑆

2
)

−

𝐾

𝑝
𝑙

𝑎

𝐽

𝜓

𝑥

6
sin (𝑥

5
)] .

(29)

These two control laws, 𝑢
1
and 𝑢

2
, are applied to 3-DOF

helicoptermodel and simulation results are shown in the next
section.

6. Simulation Results

To see the performance of the proposed controller, we
have simulated the controlled system. The results have been
compared with integer order sliding mode controller. The
helicopter nominal parameters are shown in Table 1. We
choose 𝛼 = 0.1, 𝛽 = 0.15 in this simulation. Furthermore,
a step disturbance is applied in 𝑡 = 12 sec.

To investigate the stability of the closed-loop system,
the initial conditions are applied and the reference input is
considered to be zero. The time response of the states of the
system (18) in the presence of the control laws (21) and (29) is
illustrated in Figures 3, 4, and 5. It can be seen that under the
proposed controller the output converges to zero and when a
disturbance applies the proposed controller is able to nullify
the output again. It is clear that the convergence rate in the
proposed controller is more than the integer order controller.

The force control inputs are given in Figures 6, and
7. Although the proposed controller is faster than integer
order controller in states convergence rate, it requires less
control signals energy compared with the integer order SMC
controller.

The simulation results of the reference tracking under
the disturbance are illustrated in Figures 8, 9, and 10. These
figures show that the helicopter can follow the reference
trajectory under the proposed control method, and the
output response under the proposed control scheme is faster

Table 1: Parameters’ values.

Parameter Value Unit
𝐽

𝜃
0.91 (kgm2

)

𝐽

𝜑
0.0364 (kgm2

)

𝐽

𝜓
0.91 (kgm2

)

𝐾

𝑓
0.5 (N)

𝐾

𝑝
0.5 (N)

𝑙

𝑎
0.66 (m)

𝑙

ℎ
0.177 (m)

𝑇

𝑔
0.33 (Nm)

than another one in spite of disturbance. Also the pitch angle
remained limited.

The control efforts have been shown in Figures 11 and 12.
According to these figures it can be seen that although the
proposed controller is faster than integer order controller, it
needs less control effort. To implement the controller it is
essential that the control effort has an acceptable value.

According to these simulations, it can be seen that the
tracking performance of proposed controller ismore efficient,
with less control effort compared with the integer order
sliding mode controller in spite of disturbances.

7. Conclusion

In this paper, we presented a combination of two nonlinear
control techniques applied to 3-DOF helicopter. Also we con-
sidered disturbance in roll and yaw channel. In fact we have
used feedback linearization fractional order sliding mode
theory to control roll and yaw channel. It is desirable that
the outputs track the reference input in less time. In practical
application, a high-gain controller may be undesirable. So
in this paper a fractional order controller was developed to
increase the convergence rate in less control signal energy.
To verify the performance of the proposed controller, it
was compared with integer order sliding mode theory. The
results show that the proposed method also simplifies the
design process due to the use of feedback linearization
control mechanism for multivariable systems, the sliding
modemethod advantages, such as robustness is retained.The



ISRN Aerospace Engineering 7

0 5 10 15 20 25 30 35 40
Time (s)

0
2
4

−2

V
f

(V
)

Vf control effort—IO SMC

(a)

0 5 10 15 20 25 30 35 40
Time (s)

0

5

−5

V
b

(V
)

Vb control effort—IO SMC

(b)

Figure 11: Force control inputs of proposed controller (tracking).
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Figure 12: Force control inputs of pitch (tracking).

reason is that after linearization, a fractional order sliding
mode controller is designed for linearized subsystem.
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