Complex Roots of Unity and Normal Numbers

Jean Marie De Koninck ${ }^{1}$ and Imre Kátai ${ }^{2}$
${ }^{1}$ Département de Mathématiques et de Statistique, Université Laval, Québec, QC, Canada G1V 0A6
${ }^{2}$ Computer Algebra Department, Eötvös Loránd University, Pázmány Péter Sétány I/C, Budapest 1117, Hungary

Correspondence should be addressed to Jean Marie De Koninck; jmdk@mat.ulaval.ca
Received 7 December 2013; Accepted 26 May 2014; Published 12 June 2014
Academic Editor: Andrej Dujella
Copyright © 2014 J. M. De Koninck and I. Kátai. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Given an arbitrary prime number q, set $\xi=e^{2 \pi i / q}$. We use a clever selection of the values of $\xi^{\alpha}, \alpha=1,2, \ldots$, in order to create normal numbers. We also use a famous result of André Weil concerning Dirichlet characters to construct a family of normal numbers.

1. Introduction and Statement of the Results

Let $\lambda(n)$ be the Liouville function (defined by $\lambda(n):=$ $(-1)^{\Omega(n)}$, where $\left.\Omega(n):=\sum_{p^{\alpha} \| n} \alpha\right)$. It is well known that the statement " $\sum_{n \leq x} \lambda(n)=o(x)$ as $x \rightarrow \infty$ " is equivalent to the Prime Number Theorem. It is conjectured that if $b_{1}<b_{2}<\cdots<b_{k}$ are arbitrary positive integers, then $\sum_{n \leq x} \lambda(n) \lambda\left(n+b_{1}\right) \cdots \lambda\left(n+b_{k}\right)=o(x)$ as $x \rightarrow \infty$. This conjecture seems presently out of reach since we cannot even prove that $\sum_{n \leq x} \lambda(n) \lambda(n+1)=o(x)$ as $x \rightarrow \infty$.

The Liouville function belongs to a particular class of multiplicative functions, namely, the class \mathscr{M}^{*} of completely multiplicative functions. Recently, Indlekofer et al. [1] considered a very special function $f \in \mathscr{M}^{*}$ constructed in the following manner. Let \wp stand for the set of all primes. For each $q \in \wp$, let $C_{q}=\left\{\xi \in \mathbb{C}: \xi^{q}=1\right\}$ be the group of complex roots of unity of order q. As p runs through the primes, let ξ_{p} be independent random variables distributed uniformly on C_{q}. Then, let $f \in \mathscr{M}^{*}$ be defined on \wp by $f(p)=\xi_{p}$, so that $f(n)$ yields a random variable. In their 2011 paper, Indlekofer et al. proved that if $(\Omega, \mathscr{A}, \wp)$ stands for a probability space, where $\xi_{p}(p \in \wp)$ are the independent random variables, then, for almost all $\omega \in \Omega$, the sequence $\alpha=f(1) f(2) f(3) \cdots$ is a normal sequence over C_{q} (see Definition 1 below).

Let us now consider a somewhat different setup. Let $q \geq 2$ be a fixed prime number and set $A_{q}:=\{0,1, \ldots, q-1\}$. Given an integer $t \geq 1$, an expression of the form $i_{1} i_{2} \cdots i_{t}$, where each $i_{j} \in A_{q}$, is called a word of length t. We use the symbol
Λ to denote the empty word. Then, A_{q}^{t} will stand for the set of words of length t over A_{q}, while A_{q}^{*} will stand for the set of all words over A_{q} regardless of their length, including the empty word Λ. Similarly, we define C_{q}^{*} to be the set of words over C_{q} regardless of their length.

Given a positive integer n, we write its q-ary expansion as

$$
\begin{equation*}
n=\varepsilon_{0}(n)+\varepsilon_{1}(n) q+\cdots+\varepsilon_{t}(n) q^{t} \tag{1}
\end{equation*}
$$

where $\varepsilon_{i}(n) \in A_{q}$ for $0 \leq i \leq t$ and $\varepsilon_{t}(n) \neq 0$. To this representation, we associate the word

$$
\begin{equation*}
\bar{n}=\varepsilon_{0}(n) \varepsilon_{1}(n) \cdots \varepsilon_{t}(n) \in A_{q}^{t+1} \tag{2}
\end{equation*}
$$

Definition 1. Given a sequence of integers $a(1), a(2), a(3), \ldots$, one will say that the concatenation of their q-ary digit expansions $\overline{a(1)} \overline{a(2)} \overline{a(3)} \cdots$, denoted by Concat $\overline{\overline{a(n)}}: n \in$ \mathbb{N}), is a normal sequence if the number $0 . \overline{a(1)} \overline{a(2)} \overline{a(3)} \cdots$ is a q-normal number.

It can be proved using a theorem of Halász (see [2]) that if $f \in \mathscr{M}^{*}$ is defined on the primes p by $f(p)=\xi_{a}(a \neq 0)$, then $\sum_{n \leq x} f(n)=o(x)$ as $x \rightarrow \infty$.

Now, given $u_{0}, u_{1}, \ldots, u_{\ell-1} \in A_{q}$, let $Q(n):=\prod_{j=0}^{\ell-1}(n+$ $j)^{u_{j}}$. We believe that if $\max _{j \in\{0,1, \ldots, \ell-1\}} u_{j}>0$, then

$$
\begin{equation*}
\sum_{n \leq x} f(Q(n))=o(x) \quad \text { as } x \longrightarrow \infty \tag{3}
\end{equation*}
$$

If this was true, it would follow that
Concat $(f(n): n \in \mathbb{N})$ is a normal sequence over C_{q}.

We cannot prove (3), but we can prove the following. Let $q \in \wp$ and set $\xi:=e^{2 \pi i / q}$. Furthermore set $x_{k}=2^{k}$ and $y_{k}=x_{k}^{1 / \sqrt{k}}$ for $k=1,2, \ldots$. Then, consider the sequence of completely multiplicative functions $f_{k}, k=1,2, \ldots$, defined on the primes p by

$$
f_{k}(p)= \begin{cases}\xi & \text { if } k \leq p \leq y_{k} \tag{5}\\ 1 & \text { if } p<k \text { or } p>y_{k}\end{cases}
$$

Then, set

$$
\begin{gather*}
\eta_{k}:=f_{k}\left(x_{k}\right) f_{k}\left(x_{k}+1\right) f_{k}\left(x_{k}+2\right) \cdots f_{k}\left(x_{k+1}-1\right) \\
\quad(k \in \mathbb{N}) \tag{6}\\
\theta:=\text { Concat }\left(\eta_{k}: k \in \mathbb{N}\right)
\end{gather*}
$$

Theorem 2. The sequence θ is a normal sequence over C_{q}.
We now use a famous result of André Weil to construct a large family of normal numbers.

Let q be a fixed prime and set $\xi:=e^{2 \pi i / q}$ and $\xi_{a}:=e^{2 \pi i a / q}=$ ξ^{a}. Recall that C_{q} stands for the group of complex roots of unity of order q; that is,

$$
\begin{equation*}
C_{q}=\left\{\varsigma \in \mathbb{C}: \varsigma^{q}=1\right\}=\left\{\xi^{a}: a=0,1, \ldots, q-1\right\} \tag{7}
\end{equation*}
$$

Let $p \in \wp$ be such that $q \mid p-1$. Moreover, let χ_{p} be a Dirichlet character modulo p of order q, meaning that the smallest positive integer t for which $\chi_{p}^{t}=\chi_{0}$ is q. (Here χ_{0} stands for the principal character.)

Let $u_{0}, u_{1}, \ldots, u_{k-1} \in A_{q}$. Consider the polynomial

$$
\begin{equation*}
F(z)=F_{u_{0}, \ldots, u_{k-1}}(z)=\prod_{j=0}^{k-1}(z+j)^{u_{j}} \tag{8}
\end{equation*}
$$

and assume that its degree is at least 1 , that is, that there exists one $j \in\{0, \ldots, k-1\}$ for which $u_{j} \neq 0$. Further set

$$
\begin{equation*}
S_{u_{0}, \ldots, u_{k-1}}\left(\chi_{p}\right)=\sum_{n(\bmod p)} \chi_{p}\left(F_{u_{0}, \ldots, u_{k-1}}(n)\right) \tag{9}
\end{equation*}
$$

According to a 1948 result of Weil [3],

$$
\begin{equation*}
\left|S_{u_{0}, \ldots, u_{k-1}}\left(\chi_{p}\right)\right| \leq(k-1) \sqrt{p} \tag{10}
\end{equation*}
$$

For a proof, see Proposition 12.11 (page 331) in the book of Iwaniec and Kowalski [4].

We can prove the following.
Theorem 3. Let $p_{1}<p_{2}<\cdots$ be an infinite set of primes such that $q \mid p_{j}-1$ for all $j \in \mathbb{N}$. For each $j \in \mathbb{N}$, let $\chi_{p_{j}}$ be a character modulo p_{j} of order q. Further set

$$
\begin{gather*}
\Gamma_{p}=\chi_{p}(1) \chi_{p}(2) \cdots \chi_{p}(p-1) \quad\left(p=p_{1}, p_{2}, \ldots\right) \tag{11}\\
\eta:=\Gamma_{p_{1}} \Gamma_{p_{2}} \cdots \tag{12}
\end{gather*}
$$

Then η is a normal sequence over C_{q}.

As an immediate consequence of this theorem, we have the following corollary.

Corollary 4. Let $\varphi: C_{q} \rightarrow A_{q}$ be defined by $\varphi\left(\xi_{a}\right)=a$. Extend the function φ to $\varphi: C_{q}^{*} \rightarrow A_{q}^{*}$ by $\varphi(\alpha \beta)=\varphi(\alpha) \varphi(\beta)$. Let

$$
\begin{equation*}
\varphi(\eta)=\varphi\left(\Gamma_{p_{1}}\right) \varphi\left(\Gamma_{p_{2}}\right) \cdots \tag{13}
\end{equation*}
$$

and consider the q-ary expansion of the real number

$$
\begin{equation*}
\kappa=0, \varphi\left(\Gamma_{p_{1}}\right) \varphi\left(\Gamma_{p_{2}}\right) \cdots \tag{14}
\end{equation*}
$$

Then κ is a normal number in base q.
Example 5. Choosing $q=3$ and $\left\{p_{1}, p_{2}, p_{3}, \ldots\right\}=\{7,13$, $19, \ldots\}$ as the set of primes $p_{j} \equiv 1(\bmod 3)$, then, the number η defined by (12) is normal sequence over $\left\{0, e^{2 \pi i / 3}, e^{4 \pi i / 3}\right\}$ while κ defined by (14) is a ternary normal number.

2. Proof of Theorem 2

Let ℓ be a fixed positive integer. Let $a_{0}, a_{1}, \ldots, a_{\ell-1} \in A_{q}$. Recall the notation $\xi=e^{2 \pi i / q}$. Given a positive integer k, let x, y be such that $x_{k} \leq x<x+y \leq x_{k+1}-\ell$. We will now count the number $M\left([x, x+y] \mid\left(a_{0}, \ldots, a_{\ell-1}\right)\right)$ of those $n \in[x, x+y]$ for which $f_{k}(n+j)=\xi^{a_{j}}(j=0, \ldots, \ell-1)$ holds.

Consider the polynomial

$$
\begin{equation*}
P_{d}(x)=\frac{x^{q}-1}{x-\xi^{d}}=\prod_{\substack{h=0 \\ h \neq d}}^{q-1}\left(x-\xi^{h}\right), \tag{15}
\end{equation*}
$$

so that in particular

$$
\begin{equation*}
\left(x-\xi^{d}\right) P_{d}(x)=x^{q}-1 \tag{16}
\end{equation*}
$$

Taking the derivatives on both sides of the above equation yields

$$
\begin{equation*}
P_{d}(x)+\left(x-\xi^{d}\right) P_{d}^{\prime}(x)=q x^{q-1} \tag{17}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
P_{d}\left(f_{k}(m)\right)+\left(f_{k}(m)-\xi^{d}\right) P_{d}^{\prime}\left(f_{k}(m)\right)=q \overline{f_{k}(m)} \tag{18}
\end{equation*}
$$

where \bar{z} stands for the complex conjugate of z.
We then have

$$
P_{d}\left(f_{k}(m)\right)= \begin{cases}q \overline{f_{k}(m)} & \text { if } f_{k}(m)=\xi^{d} \tag{19}\\ 0 & \text { if } f_{k}(m) \neq \xi^{d}\end{cases}
$$

Write the polynomial P_{d} as $P_{d}(m)=\sum_{u=0}^{q-1} e_{u}(d) m^{u}$, so that $P_{d}(0)=\bar{\xi}^{d}$; that is, $e_{0}(d)=\bar{\xi}^{d}$. We then have

$$
\begin{align*}
P_{a_{0}} & \left(f_{k}(n)\right) \cdots P_{a_{\ell-1}}\left(f_{k}(n+\ell-1)\right) \\
& =\prod_{h=0}^{\ell-1}\left\{\sum_{u_{h}=0}^{q-1} e_{u_{h}}\left(a_{h}\right) f_{k}^{u_{h}}(n+h)\right\} \tag{20}\\
& =\sum_{u_{0}, \ldots, u_{\ell-1} \in A_{q}} A\left(u_{0}, \ldots, u_{\ell-1}\right) f_{k}\left(\prod_{j=0}^{\ell-1}(n+j)^{u_{j}}\right),
\end{align*}
$$

where $A\left(u_{0}, \ldots, u_{\ell-1}\right)=e_{u_{0}}\left(a_{0}\right) \cdots e_{u_{\ell-1}}\left(a_{\ell-1}\right)$, with $A(0, \ldots$, $0)=\bar{\xi}^{a_{0}+\cdots+a_{\ell-1}}$.

With integers x, y such that $x_{k} \leq x<x+y \leq x_{k+1}-\ell$, we now sum both sides of (20) for $n=x, \ldots, x+y$, and we then obtain that

$$
\begin{align*}
& q^{\ell} \prod_{j=0}^{\ell-1} \bar{\xi}^{a_{j}} \cdot M\left([x, x+y] \mid\left(a_{0}, \ldots, a_{\ell-1}\right)\right) \\
& =y \prod_{j=0}^{\ell-1} \bar{\xi}^{a_{j}}+\sum_{\substack{u_{0}, \ldots, u_{\ell-1} \in A_{q} \\
\left(u_{0}, \ldots, u_{\ell-1}\right) \neq(0, \ldots, 0)}} A\left(u_{0}, \ldots, u_{\ell-1}\right) \tag{21}\\
& \quad \times \sum_{n=x}^{x+y} f_{k}\left(\prod_{j=0}^{\ell-1}(n+j)^{u_{j}}\right)
\end{align*}
$$

Setting

$$
\begin{equation*}
Q(n)=\prod_{j=0}^{\ell-1}(n+j)^{u_{j}}, \tag{22}
\end{equation*}
$$

it remains to prove that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{1}{x_{k}} \max _{x_{k} \leq x<x+y \leq x_{k+1}-\ell}\left|\sum_{n=x}^{x+y} f_{k}(Q(n))\right|=0 \tag{23}
\end{equation*}
$$

To prove this, we proceed using standard techniques. Let $\rho(\delta)$ stand for the number of solutions of the congruence $Q(n) \equiv 0(\bmod \delta)$, in which case we have $\rho\left(p^{\alpha}\right)=\rho(p)$ for all primes $p>k$ and integers $\alpha \geq 1$. Now define the completely multiplicative function g_{k} implicitly by the relation

$$
\begin{equation*}
f_{k}(m)=\sum_{d \mid m} g_{k}(d) \tag{24}
\end{equation*}
$$

thus implying, in light of (5), that

$$
g_{k}(p)=f_{k}(p)-1= \begin{cases}0 & \text { if } p<k \text { or } p>y_{k} \tag{25}\\ \xi-1 & \text { if } k \leq p \leq y_{k}\end{cases}
$$

It follows that

$$
\begin{align*}
\sum_{n \in[x, x+y]} f_{k}(Q(n)) & =\sum_{n \in[x, x+y] \delta \mid Q(n)} \sum_{k}(\delta) \\
& =\sum_{\delta} g_{k}(\delta) \sum_{\substack{n \in[x, x+y] \\
Q(n) \equiv 0(\bmod \delta)}} 1 \tag{26}\\
& =y \sum_{\delta} \frac{g_{k}(\delta) \rho(\delta)}{\delta}+o(1) .
\end{align*}
$$

from β. But if $\chi(n) \cdots \chi(n+\ell-1)=\beta$, then

$$
\begin{equation*}
f_{\beta}(n)=\prod_{j=0}^{\ell-1} \prod_{\substack{\xi \in C_{q} \\ \xi \neq \xi_{e_{j}}}}\left(\xi_{e_{j}}-\xi\right) . \tag{31}
\end{equation*}
$$

Since, for each $j=0, \ldots, \ell-1$,

$$
\begin{equation*}
\left.\frac{d}{d x}\left(x^{q}-1\right)\right|_{x=\xi_{e_{j}}}=q \xi_{e_{j}}^{q-1}=q \overline{\xi_{e_{j}}}, \tag{32}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
f_{\beta}(n)=q^{\ell}\left(\overline{\xi_{e_{0}} \cdots \xi_{e_{\ell-1}}}\right), \tag{33}
\end{equation*}
$$

where again \bar{z} stands for the complex conjugate of z. Hence, letting $M_{p}(\beta)$ stand for the number of occurrences of β as a subword in the word Γ_{p}, we have

$$
\begin{equation*}
\overline{\xi_{e_{0}} \cdots \xi_{e_{\ell-1}}} q^{\ell} M_{p}(\beta)=\sum_{n=1}^{p-\ell} f_{\beta}(n) . \tag{34}
\end{equation*}
$$

Now $f_{\beta}(n)$ can be written as

$$
\begin{equation*}
f_{\beta}(n)=\sum_{\left(u_{0}, \ldots, u_{\ell-1}\right) \in A_{q}^{e}} A\left(u_{0}, \ldots, u_{\ell-1}\right) \chi\left(F_{u_{0}, \ldots, u_{\ell-1}}(n)\right), \tag{35}
\end{equation*}
$$

where

$$
\begin{align*}
F_{u_{0}, \ldots, u_{\ell-1}}(n) & =\prod_{j=0}^{\ell-1}(n+j)^{u_{j}} \tag{36}\\
A(0, \ldots, 0) & =\overline{\xi_{e_{0}}} \ldots \overline{\xi_{e_{\ell-1}}}
\end{align*}
$$

Thus taking into account (8), the Weil inequality (10), and the above relations (34) and (35), we obtain that

$$
\begin{align*}
& \left|\overline{\xi_{e_{0}} \ldots \xi_{e_{\ell-1}}}\left(q^{\ell} M_{p}(\beta)-(p-\ell)\right)\right| \\
& \leq \sum_{\substack{\left(u_{0}, \ldots, u_{\ell-1}\right) \in A_{q}^{\ell} \\
\left(u_{0}, \ldots, u_{\ell-1}\right) \neq(0, \ldots, 0)}}\left|A\left(u_{0}, \ldots, u_{\ell-1}\right)\right| \\
& \quad \cdot\left|\sum_{n=1}^{p-\ell} \chi \chi\left(F_{u_{0}, \ldots, u_{\ell-1}}(n)\right)\right| \tag{37}\\
& \leq \quad \sum_{\substack{\left(u_{0}, \ldots, u_{\ell-1}\right) \in A_{q}^{\ell} \\
\left(u_{0}, \ldots, u_{\ell-1}\right) \neq(0, \ldots, 0)}}\left|A\left(u_{0}, \ldots, u_{\ell-1}\right)\right| \\
& \quad \cdot((\ell-1) \sqrt{p}+\ell) \\
& \leq \\
& c_{1}(\ell) \sqrt{p} .
\end{align*}
$$

We have thus shown that

$$
\begin{equation*}
\left|M_{p}(\beta)-\frac{p-\ell}{q^{\ell}}\right| \leq c(\ell) \sqrt{p}, \tag{38}
\end{equation*}
$$

thus completing the proof of Theorem 3.

Conflict of Interests

The authors of this paper certify that they have no conflict of interests.

Acknowledgments

Jean Marie De Koninck was supported in part by a grant from NSERC. Imre Kátai was supported by the Hungarian and Vietnamese TET 10-1-2011-0645.

References

[1] K.-H. Indlekofer, I. Kátai, and O. Klesov, "Renewal theorems for some weighted renewal functions," Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae. Sectio Computatorica, vol. 34, pp. 179-194, 2011.
[2] G. Halász, "Über die Mittelwerte multiplikativer zahlentheoretischer Funktionen," Acta Mathematica Academiae Scientiarum Hungaricae, vol. 19, pp. 365-403, 1968.
[3] A. Weil, "On some exponential sums," Proceedings of the National Academy of Sciences of the United States of America, vol. 34, pp. 204-207, 1948.
[4] H. Iwaniec and E. Kowalski, Analytic Number Theory, vol. 53 of American Mathematical Society Colloquium Publications, American Mathematical Society, Providence, RI, USA, 2004.

Advances in Operations Research $-$

The Scientific World Journal

Advances in
Decision Sciences
= -

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Mathematical Problems in Engineering

Journal of Function Spaces
$\underline{=}$

International Journal of Differential Equations 5

