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Given an arbitrary prime number 𝑞, set 𝜉 = 𝑒2𝜋𝑖/𝑞.We use a clever selection of the values of 𝜉𝛼, 𝛼 = 1, 2, . . . , in order to create normal
numbers. We also use a famous result of André Weil concerning Dirichlet characters to construct a family of normal numbers.

1. Introduction and Statement of the Results

Let 𝜆(𝑛) be the Liouville function (defined by 𝜆(𝑛) :=

(−1)
Ω(𝑛), where Ω(𝑛) := ∑

𝑝
𝛼
‖𝑛
𝛼). It is well known that the

statement “∑
𝑛≤𝑥
𝜆(𝑛) = 𝑜(𝑥) as 𝑥 → ∞” is equivalent

to the Prime Number Theorem. It is conjectured that if
𝑏
1
< 𝑏

2
< ⋅ ⋅ ⋅ < 𝑏

𝑘
are arbitrary positive integers, then

∑
𝑛≤𝑥
𝜆(𝑛)𝜆(𝑛 + 𝑏

1
) ⋅ ⋅ ⋅ 𝜆(𝑛 + 𝑏

𝑘
) = 𝑜(𝑥) as 𝑥 → ∞. This

conjecture seems presently out of reach since we cannot even
prove that ∑

𝑛≤𝑥
𝜆(𝑛)𝜆(𝑛 + 1) = 𝑜(𝑥) as 𝑥 → ∞.

The Liouville function belongs to a particular class of
multiplicative functions, namely, the class M∗ of completely
multiplicative functions. Recently, Indlekofer et al. [1] con-
sidered a very special function 𝑓 ∈ M∗ constructed in the
following manner. Let ℘ stand for the set of all primes. For
each 𝑞 ∈ ℘, let 𝐶

𝑞
= {𝜉 ∈ C : 𝜉

𝑞
= 1} be the group of

complex roots of unity of order 𝑞. As 𝑝 runs through the
primes, let 𝜉

𝑝
be independent random variables distributed

uniformly on 𝐶
𝑞
. Then, let 𝑓 ∈ M∗ be defined on ℘ by

𝑓(𝑝) = 𝜉
𝑝
, so that 𝑓(𝑛) yields a random variable. In their

2011 paper, Indlekofer et al. proved that if (Ω,A, ℘) stands for
a probability space, where 𝜉

𝑝
(𝑝 ∈ ℘) are the independent

random variables, then, for almost all 𝜔 ∈ Ω, the sequence
𝛼 = 𝑓(1)𝑓(2)𝑓(3) ⋅ ⋅ ⋅ is a normal sequence over 𝐶

𝑞
(see

Definition 1 below).
Let us now consider a somewhat different setup. Let 𝑞 ≥ 2

be a fixed prime number and set𝐴
𝑞
:= {0, 1, . . . , 𝑞−1}. Given

an integer 𝑡 ≥ 1, an expression of the form 𝑖
1
𝑖
2
⋅ ⋅ ⋅ 𝑖

𝑡
, where

each 𝑖
𝑗
∈ 𝐴

𝑞
, is called a word of length 𝑡. We use the symbol

Λ to denote the empty word. Then, 𝐴𝑡
𝑞
will stand for the set

of words of length 𝑡 over 𝐴
𝑞
, while 𝐴∗

𝑞
will stand for the set

of all words over 𝐴
𝑞
regardless of their length, including the

empty word Λ. Similarly, we define 𝐶∗
𝑞
to be the set of words

over 𝐶
𝑞
regardless of their length.

Given a positive integer 𝑛, we write its 𝑞-ary expansion as

𝑛 = 𝜀
0
(𝑛) + 𝜀

1
(𝑛) 𝑞 + ⋅ ⋅ ⋅ + 𝜀

𝑡
(𝑛) 𝑞

𝑡
, (1)

where 𝜀
𝑖
(𝑛) ∈ 𝐴

𝑞
for 0 ≤ 𝑖 ≤ 𝑡 and 𝜀

𝑡
(𝑛) ̸= 0. To this

representation, we associate the word

𝑛 = 𝜀
0
(𝑛) 𝜀

1
(𝑛) ⋅ ⋅ ⋅ 𝜀

𝑡
(𝑛) ∈ 𝐴

𝑡+1

𝑞
. (2)

Definition 1. Given a sequence of integers 𝑎(1), 𝑎(2), 𝑎(3), . . .,
one will say that the concatenation of their 𝑞-ary digit
expansions 𝑎(1) 𝑎(2) 𝑎(3) ⋅ ⋅ ⋅ , denoted by Concat(𝑎(𝑛) : 𝑛 ∈
N), is a normal sequence if the number 0. 𝑎(1) 𝑎(2) 𝑎(3) ⋅ ⋅ ⋅ is
a 𝑞-normal number.

It can be proved using a theorem of Halász (see [2]) that
if 𝑓 ∈ M∗ is defined on the primes 𝑝 by 𝑓(𝑝) = 𝜉

𝑎
(𝑎 ̸= 0),

then ∑
𝑛≤𝑥
𝑓(𝑛) = 𝑜(𝑥) as 𝑥 → ∞.

Now, given 𝑢
0
, 𝑢
1
, . . . , 𝑢

ℓ−1
∈ 𝐴

𝑞
, let 𝑄(𝑛) := ∏ℓ−1

𝑗=0
(𝑛 +

𝑗)
𝑢
𝑗 . We believe that if max

𝑗∈{0,1,...,ℓ−1}
𝑢
𝑗
> 0, then

∑

𝑛≤𝑥

𝑓 (𝑄 (𝑛)) = 𝑜 (𝑥) as 𝑥 → ∞. (3)
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If this was true, it would follow that

Concat (𝑓 (𝑛) : 𝑛 ∈ N) is a normal sequence over 𝐶
𝑞
.

(4)

We cannot prove (3), but we can prove the following. Let
𝑞 ∈ ℘ and set 𝜉 := 𝑒

2𝜋𝑖/𝑞. Furthermore set 𝑥
𝑘
= 2

𝑘 and
𝑦
𝑘
= 𝑥

1/√𝑘

𝑘
for 𝑘 = 1, 2, . . .. Then, consider the sequence of

completely multiplicative functions 𝑓
𝑘
, 𝑘 = 1, 2, . . ., defined

on the primes 𝑝 by

𝑓
𝑘
(𝑝) = {

𝜉 if 𝑘 ≤ 𝑝 ≤ 𝑦
𝑘
,

1 if 𝑝 < 𝑘 or 𝑝 > 𝑦
𝑘
.

(5)

Then, set
𝜂
𝑘
:= 𝑓

𝑘
(𝑥
𝑘
) 𝑓
𝑘
(𝑥
𝑘
+ 1) 𝑓

𝑘
(𝑥
𝑘
+ 2) ⋅ ⋅ ⋅ 𝑓

𝑘
(𝑥
𝑘+1
− 1)

(𝑘 ∈ N) ,

𝜃 := Concat (𝜂
𝑘
: 𝑘 ∈ N) .

(6)

Theorem 2. The sequence 𝜃 is a normal sequence over 𝐶
𝑞
.

We now use a famous result of André Weil to construct a
large family of normal numbers.

Let 𝑞 be a fixed prime and set 𝜉 := 𝑒2𝜋𝑖/𝑞 and 𝜉
𝑎
:= 𝑒

2𝜋𝑖𝑎/𝑞
=

𝜉
𝑎. Recall that 𝐶

𝑞
stands for the group of complex roots of

unity of order 𝑞; that is,

𝐶
𝑞
= {𝜍 ∈ C : 𝜍

𝑞
= 1} = {𝜉

𝑎
: 𝑎 = 0, 1, . . . , 𝑞 − 1} . (7)

Let 𝑝 ∈ ℘ be such that 𝑞 | 𝑝 − 1. Moreover, let 𝜒
𝑝
be

a Dirichlet character modulo 𝑝 of order 𝑞, meaning that the
smallest positive integer 𝑡 for which 𝜒𝑡

𝑝
= 𝜒

0
is 𝑞. (Here 𝜒

0

stands for the principal character.)
Let 𝑢

0
, 𝑢
1
, . . . , 𝑢

𝑘−1
∈ 𝐴

𝑞
. Consider the polynomial

𝐹 (𝑧) = 𝐹
𝑢
0
,...,𝑢
𝑘−1

(𝑧) =

𝑘−1

∏

𝑗=0

(𝑧 + 𝑗)
𝑢
𝑗 (8)

and assume that its degree is at least 1, that is, that there exists
one 𝑗 ∈ {0, . . . , 𝑘 − 1} for which 𝑢

𝑗
̸= 0. Further set

𝑆
𝑢
0
,...,𝑢
𝑘−1

(𝜒
𝑝
) = ∑

𝑛(mod 𝑝)
𝜒
𝑝
(𝐹
𝑢
0
,...,𝑢
𝑘−1

(𝑛)) . (9)

According to a 1948 result of Weil [3],

𝑆
𝑢
0
,...,𝑢
𝑘−1

(𝜒
𝑝
)

≤ (𝑘 − 1)√𝑝. (10)

For a proof, see Proposition 12.11 (page 331) in the book of
Iwaniec and Kowalski [4].

We can prove the following.

Theorem 3. Let 𝑝
1
< 𝑝

2
< ⋅ ⋅ ⋅ be an infinite set of primes

such that 𝑞 | 𝑝
𝑗
− 1 for all 𝑗 ∈ N. For each 𝑗 ∈ N, let 𝜒

𝑝
𝑗

be a
character modulo 𝑝

𝑗
of order 𝑞. Further set

Γ
𝑝
= 𝜒

𝑝
(1) 𝜒

𝑝
(2) ⋅ ⋅ ⋅ 𝜒

𝑝
(𝑝 − 1) (𝑝 = 𝑝

1
, 𝑝
2
, . . .) , (11)

𝜂 := Γ
𝑝
1

Γ
𝑝
2

⋅ ⋅ ⋅ . (12)

Then 𝜂 is a normal sequence over 𝐶
𝑞
.

As an immediate consequence of this theorem, we have
the following corollary.

Corollary 4. Let 𝜑 : 𝐶
𝑞
→ 𝐴

𝑞
be defined by 𝜑(𝜉

𝑎
) = 𝑎.

Extend the function 𝜑 to 𝜑 : 𝐶∗
𝑞
→ 𝐴

∗

𝑞
by 𝜑(𝛼𝛽) = 𝜑(𝛼)𝜑(𝛽).

Let

𝜑 (𝜂) = 𝜑 (Γ
𝑝
1

) 𝜑 (Γ
𝑝
2

) ⋅ ⋅ ⋅ (13)

and consider the 𝑞-ary expansion of the real number

𝜅 = 0, 𝜑 (Γ
𝑝
1

) 𝜑 (Γ
𝑝
2

) ⋅ ⋅ ⋅ . (14)

Then 𝜅 is a normal number in base 𝑞.

Example 5. Choosing 𝑞 = 3 and {𝑝
1
, 𝑝
2
, 𝑝
3
, . . .} = {7, 13,

19, . . .} as the set of primes 𝑝
𝑗
≡ 1 (mod 3), then, the num-

ber 𝜂 defined by (12) is normal sequence over {0, 𝑒2𝜋𝑖/3, 𝑒4𝜋𝑖/3}
while 𝜅 defined by (14) is a ternary normal number.

2. Proof of Theorem 2

Let ℓ be a fixed positive integer. Let 𝑎
0
, 𝑎
1
, . . . , 𝑎

ℓ−1
∈ 𝐴

𝑞
.

Recall the notation 𝜉 = 𝑒2𝜋𝑖/𝑞. Given a positive integer 𝑘, let
𝑥, 𝑦 be such that 𝑥

𝑘
≤ 𝑥 < 𝑥+𝑦 ≤ 𝑥

𝑘+1
−ℓ.Wewill now count

the number𝑀([𝑥, 𝑥+𝑦] | (𝑎
0
, . . . , 𝑎

ℓ−1
))of those 𝑛 ∈ [𝑥, 𝑥+𝑦]

for which 𝑓
𝑘
(𝑛 + 𝑗) = 𝜉

𝑎
𝑗 (𝑗 = 0, . . . , ℓ − 1) holds.

Consider the polynomial

𝑃
𝑑
(𝑥) =

𝑥
𝑞
− 1

𝑥 − 𝜉𝑑
=

𝑞−1

∏

ℎ=0

ℎ ̸= 𝑑

(𝑥 − 𝜉
ℎ
) , (15)

so that in particular

(𝑥 − 𝜉
𝑑
) 𝑃

𝑑
(𝑥) = 𝑥

𝑞
− 1. (16)

Taking the derivatives on both sides of the above equation
yields

𝑃
𝑑
(𝑥) + (𝑥 − 𝜉

𝑑
) 𝑃



𝑑
(𝑥) = 𝑞𝑥

𝑞−1
. (17)

Thus,

𝑃
𝑑
(𝑓
𝑘
(𝑚)) + (𝑓

𝑘
(𝑚) − 𝜉

𝑑
) 𝑃



𝑑
(𝑓
𝑘
(𝑚)) = 𝑞𝑓

𝑘
(𝑚), (18)

where 𝑧 stands for the complex conjugate of 𝑧.
We then have

𝑃
𝑑
(𝑓
𝑘
(𝑚)) = {

𝑞𝑓
𝑘
(𝑚) if 𝑓

𝑘
(𝑚) = 𝜉

𝑑
,

0 if 𝑓
𝑘
(𝑚) ̸= 𝜉

𝑑
.

(19)

Write the polynomial 𝑃
𝑑
as 𝑃

𝑑
(𝑚) = ∑

𝑞−1

𝑢=0
𝑒
𝑢
(𝑑)𝑚

𝑢, so
that 𝑃

𝑑
(0) = 𝜉

𝑑

; that is, 𝑒
0
(𝑑) = 𝜉

𝑑

. We then have

𝑃
𝑎
0

(𝑓
𝑘
(𝑛)) ⋅ ⋅ ⋅ 𝑃

𝑎
ℓ−1

(𝑓
𝑘
(𝑛 + ℓ − 1))

=

ℓ−1

∏

ℎ=0

{

𝑞−1

∑

𝑢
ℎ
=0

𝑒
𝑢
ℎ

(𝑎
ℎ
) 𝑓

𝑢
ℎ

𝑘
(𝑛 + ℎ)}

= ∑

𝑢
0
,...,𝑢
ℓ−1
∈𝐴
𝑞

𝐴 (𝑢
0
, . . . , 𝑢

ℓ−1
) 𝑓
𝑘
(

ℓ−1

∏

𝑗=0

(𝑛 + 𝑗)
𝑢
𝑗

) ,

(20)
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where 𝐴(𝑢
0
, . . . , 𝑢

ℓ−1
) = 𝑒

𝑢
0

(𝑎
0
) ⋅ ⋅ ⋅ 𝑒

𝑢
ℓ−1

(𝑎
ℓ−1
), with 𝐴(0, . . . ,

0) = 𝜉
𝑎
0
+⋅⋅⋅+𝑎

ℓ−1 .
With integers 𝑥, 𝑦 such that 𝑥

𝑘
≤ 𝑥 < 𝑥 + 𝑦 ≤ 𝑥

𝑘+1
− ℓ,

we now sum both sides of (20) for 𝑛 = 𝑥, . . . , 𝑥 + 𝑦, and we
then obtain that

𝑞
ℓ

ℓ−1

∏

𝑗=0

𝜉
𝑎
𝑗

⋅ 𝑀 ([𝑥, 𝑥 + 𝑦] | (𝑎
0
, . . . , 𝑎

ℓ−1
))

= 𝑦

ℓ−1

∏

𝑗=0

𝜉
𝑎
𝑗

+ ∑

𝑢
0
,...,𝑢
ℓ−1
∈𝐴
𝑞

(𝑢
0
,...,𝑢
ℓ−1
) ̸= (0,...,0)

𝐴 (𝑢
0
, . . . , 𝑢

ℓ−1
)

×

𝑥+𝑦

∑

𝑛=𝑥

𝑓
𝑘
(

ℓ−1

∏

𝑗=0

(𝑛 + 𝑗)
𝑢
𝑗

) .

(21)

Setting

𝑄 (𝑛) =

ℓ−1

∏

𝑗=0

(𝑛 + 𝑗)
𝑢
𝑗

, (22)

it remains to prove that

lim
𝑘→∞

1

𝑥
𝑘

max
𝑥
𝑘
≤𝑥<𝑥+𝑦≤𝑥

𝑘+1
−ℓ



𝑥+𝑦

∑

𝑛=𝑥

𝑓
𝑘
(𝑄 (𝑛))



= 0. (23)

To prove this, we proceed using standard techniques. Let
𝜌(𝛿) stand for the number of solutions of the congruence
𝑄(𝑛) ≡ 0 (mod 𝛿), in which case we have 𝜌(𝑝𝛼) = 𝜌(𝑝)

for all primes 𝑝 > 𝑘 and integers 𝛼 ≥ 1. Now define
the completely multiplicative function 𝑔

𝑘
implicitly by the

relation

𝑓
𝑘
(𝑚) = ∑

𝑑|𝑚

𝑔
𝑘
(𝑑) , (24)

thus implying, in light of (5), that

𝑔
𝑘
(𝑝) = 𝑓

𝑘
(𝑝) − 1 = {

0 if 𝑝 < 𝑘 or 𝑝 > 𝑦
𝑘
,

𝜉 − 1 if 𝑘 ≤ 𝑝 ≤ 𝑦
𝑘
.

(25)

It follows that

∑

𝑛∈[𝑥,𝑥+𝑦]

𝑓
𝑘
(𝑄 (𝑛)) = ∑

𝑛∈[𝑥,𝑥+𝑦]

∑

𝛿|𝑄(𝑛)

𝑔
𝑘
(𝛿)

= ∑

𝛿

𝑔
𝑘
(𝛿) ∑

𝑛∈[𝑥,𝑥+𝑦]

𝑄(𝑛)≡0 ( mod 𝛿)

1

= 𝑦∑

𝛿

𝑔
𝑘
(𝛿) 𝜌 (𝛿)

𝛿
+ 𝑜 (1) .

(26)

Now, observe that since 𝑔
𝑘
(𝑝
𝛼
) = 𝑓

𝑘
(𝑝
𝛼
) − 𝑓

𝑘
(𝑝
𝛼−1
) =

𝜉
𝛼−1
(𝜉 − 1), it follows that

∑

𝛿

𝑔
𝑘
(𝛿) 𝜌 (𝛿)

𝛿

= ∏

𝑝

(1 +
𝑔
𝑘
(𝑝) 𝜌 (𝑝)

𝑝
+
𝑔
𝑘
(𝑝
2
) 𝜌 (𝑝

2
)

𝑝2
+ ⋅ ⋅ ⋅ )

= ∏

𝑘≤𝑝≤𝑦
𝑘

(1 +
𝜌 (𝑝) (𝜉 − 1)

𝑝
(1 +

𝜉

𝑝
+
𝜉
2

𝑝2
+ ⋅ ⋅ ⋅ ))

= ∏

𝑘≤𝑝≤𝑦
𝑘

(1 +
𝜌 (𝑝) (𝜉 − 1)

𝑝
⋅

1

1 − 𝜉/𝑝
)

= ∏

𝑘≤𝑝≤𝑦
𝑘

(1 +
𝜌 (𝑝) (𝜉 − 1)

𝑝 − 𝜉
)

= exp
{

{

{

𝜌 (𝑝) (𝜉 − 1) ∑

𝑘≤𝑝≤𝑦
𝑘

1

𝑝
+ 𝑂 (1)

}

}

}

.

(27)

But, sinceR(𝜉 − 1) < 0, we have

exp
{

{

{

𝜌 (𝑝) (𝜉 − 1) ∑

𝑘≤𝑝≤𝑦
𝑘

1

𝑝
+ 𝑂 (1)

}

}

}

→ 0 as 𝑘 → ∞.

(28)

Hence, combining (28) with (27) and (26), we obtain (23).
We have thus established that

𝑀([𝑥, 𝑥 + 𝑦] | (𝑎
0
, . . . , 𝑎

ℓ−1
)) −

𝑦

𝑞ℓ
= 𝑜 (𝑥

𝑘
) (𝑘 → ∞) ,

(29)

which completes the proof of Theorem 2.

3. Proof of Theorem 3

As we will see, the proof of Theorem 3 is essentially a
consequence of Weil’s result (10).

Let ℓ be a fixed positive integer. Fix a prime 𝑝 and let
𝛽 = 𝜉

𝑒
0

⋅ ⋅ ⋅ 𝜉
𝑒
ℓ−1

be any word belonging to 𝐶ℓ
𝑞
. Consider the

expression

𝑓
𝛽
(𝑛) =

ℓ−1

∏

𝑗=0

∏

𝜉∈𝐶
𝑞

𝜉 ̸= 𝜉
𝑒
𝑗

(𝜒
𝑝
(𝑛 + 𝑗) − 𝜉) .

(30)

Observe that𝑓
𝛽
(𝑛) = 0 if 𝜒(𝑛) ⋅ ⋅ ⋅ 𝜒(𝑛+ℓ−1) ∈ 𝐶ℓ

𝑞
is different

from 𝛽. But if 𝜒(𝑛) ⋅ ⋅ ⋅ 𝜒(𝑛 + ℓ − 1) = 𝛽, then

𝑓
𝛽
(𝑛) =

ℓ−1

∏

𝑗=0

∏

𝜉∈𝐶
𝑞

𝜉 ̸= 𝜉
𝑒
𝑗

(𝜉
𝑒
𝑗

− 𝜉) .
(31)
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Since, for each 𝑗 = 0, . . . , ℓ − 1,

𝑑

𝑑𝑥
(𝑥
𝑞
− 1)

𝑥=𝜉
𝑒
𝑗

= 𝑞𝜉
𝑞−1

𝑒
𝑗

= 𝑞𝜉
𝑒
𝑗

, (32)

it follows that

𝑓
𝛽
(𝑛) = 𝑞

ℓ
(𝜉
𝑒
0

⋅ ⋅ ⋅ 𝜉
𝑒
ℓ−1

) , (33)

where again 𝑧 stands for the complex conjugate of 𝑧. Hence,
letting𝑀

𝑝
(𝛽) stand for the number of occurrences of 𝛽 as a

subword in the word Γ
𝑝
, we have

𝜉
𝑒
0

⋅ ⋅ ⋅ 𝜉
𝑒
ℓ−1

𝑞
ℓ
𝑀
𝑝
(𝛽) =

𝑝−ℓ

∑

𝑛=1

𝑓
𝛽
(𝑛) . (34)

Now 𝑓
𝛽
(𝑛) can be written as

𝑓
𝛽
(𝑛) = ∑

(𝑢
0
,...,𝑢
ℓ−1
)∈𝐴
ℓ

𝑞

𝐴 (𝑢
0
, . . . , 𝑢

ℓ−1
) 𝜒 (𝐹

𝑢
0
,...,𝑢
ℓ−1

(𝑛)) ,

(35)

where

𝐹
𝑢
0
,...,𝑢
ℓ−1

(𝑛) =

ℓ−1

∏

𝑗=0

(𝑛 + 𝑗)
𝑢
𝑗

,

𝐴 (0, . . . , 0) = 𝜉
𝑒
0

⋅ ⋅ ⋅ 𝜉
𝑒
ℓ−1

.

(36)

Thus taking into account (8), theWeil inequality (10), and the
above relations (34) and (35), we obtain that


𝜉
𝑒
0

⋅ ⋅ ⋅ 𝜉
𝑒
ℓ−1

(𝑞
ℓ
𝑀
𝑝
(𝛽) − (𝑝 − ℓ))



≤ ∑

(𝑢
0
,...,𝑢
ℓ−1
)∈𝐴
ℓ

𝑞

(𝑢
0
,...,𝑢
ℓ−1
) ̸= (0,...,0)

𝐴 (𝑢0, . . . , 𝑢ℓ−1)


⋅



𝑝−ℓ

∑

𝑛=1

𝜒 (𝐹
𝑢
0
,...,𝑢
ℓ−1

(𝑛))



≤ ∑

(𝑢
0
,...,𝑢
ℓ−1
)∈𝐴
ℓ

𝑞

(𝑢
0
,...,𝑢
ℓ−1
) ̸= (0,...,0)

𝐴 (𝑢0, . . . , 𝑢ℓ−1)


⋅ ((ℓ − 1)√𝑝 + ℓ)

≤ 𝑐
1
(ℓ)√𝑝.

(37)

We have thus shown that

𝑀
𝑝
(𝛽) −

𝑝 − ℓ

𝑞ℓ


≤ 𝑐 (ℓ)√𝑝, (38)

thus completing the proof of Theorem 3.
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