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In distributed software and hardware environments, ensuring proper operation of software is a challenge. The complexity of
distributed systems increases the number of integration faults resulting from configuration errors in the distribution of components.
Therefore, the main contribution of this work is a change in perspective, where integration faults (in the context of mistakes in
distribution of components) are prevented rather than being dealt with through postmortem approaches. To this purpose, this
paper proposes a preventive, low cost,minimally intrusive, and reusable approach.The generation of hash tags and a built-in version
control for the application are at the core of the solution. Prior to deployment, the tag generator creates a list of components along
with their respective tags, which will be a part of the deployment package. During production and execution of the application,
on demand, the version control compares the tag list with the components of the user station and shows the discrepancies. The
approach was applied to a complex application of a large company and was proven to be successful by avoiding integration faults
and reducing the diagnosis time by 65%.

1. Introduction

Thefield of software configurationmanagement (SCM) seeks
to control the changes in artifacts at different stages1 during
the software life cycle [1]. It is considered to be important for
any software product [2] and is critical for dynamic software
development environments, in which applications evolve at a
high rate.

SCM solutions provide tools to control and share artifacts
for parallel development and track changes and indicate
version conflicts [1, 2]. However, in essence, these solutions
support the developmental stages until the delivery of the
artifacts in production. In general, they provide powerful
tools to manage tasks during the software development
process; however, this control is incomplete for artifacts in
distributed production environments [3].

In this scenario, distributed applications become more
susceptible to faults because once they are promoted to
the production stage (commonly, a component repository),

the application components still need to be deployed on the
server network and the user’s workstations. Errors in the
preparation of such component distribution are propagated
[4] from one to 𝑛 number of machines (other servers or
stations of the network) and so forth.As an aggravating factor,
faults in distributed systems are difficult to debug [5] because
of the limitations in gathering, organizing, and interpreting
the system’s behavior [6].

In a study by Yin et al. [7] on the historical database of a
large company (a corporation with thousands of customers)
and on four other open source tools, the configuration of
the system was at the root of 27% of application faults
reported by users. Out of this 27%, up to 70% of faults were
caused by parameter inconsistencies and 30% were caused
by integration faults between components (i.e., up to 8.1%
of the total faults). Patterson et al. [8] reported that user
configuration errors cause over 50% of software faults.

The cause of minor configuration errors in an application
may require a significant effort to diagnose [9]. In addition,
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finding solutions to problems in production that impact the
business is urgent [10], and errors of this nature are not only
high in number [7, 8, 11, 12] but are also prevalent [7, 12].

Therefore, we highlight the following motivations for this
study: (i) the statement by Yin et al. [7] that integration faults
are not adequately addressed in the literature; (ii) frequent
faults in a complex distributed client/server application of a
company in the financial sector, resulting from integration
faults between software components.

The following are the contributions of this work: (i) a
change in perspective regarding the treatment of integra-
tion faults, in the context of mistakes in distribution of
components in the production environments, proposing a
preventive, cost effective, reusable, and minimally intrusive
approach for the projects; (ii) the formalization and investi-
gation of a type of fault that is not addressed in the literature
[7]; (iii) an empirical evaluation through a case study, which
demonstrates the feasibility of the approach.

We organize the paper as follows. Section 2 presents the
theoretical foundation and formalizes the problem. Section 3
describes the proposed approach and Section 4 presents a
case study. Section 5 discusses the related works, and finally
Section 6 presents the conclusions and future work.

2. Theoretical Foundation
and Formalization of the Problem

2.1. Definitions and Properties2. Among the possible descrip-
tions, a component is a reusable and independent software
unit that (i) interacts with other components through an
interface and (ii) may be coupled to other components to
form larger units [13].

Definition 1 (application). An application 𝐴 consists of a
number of components:

𝐴 = {𝐶
1
, . . . , 𝐶

𝑛
} , ∀𝐶

𝑖
(1 ≤ 𝑖 ≤ 𝑛) . (1)

Definition 2 (interface). Through an interface 𝐼, each compo-
nent can provide operations through 𝑛 input and/or output
parameters [14]:

𝐼 (𝐶
𝑖
) = {⌀,Par

1
, . . . ,Par

𝑛
} , ∀Par

𝑖
(0 ≤ 𝑖 ≤ 𝑛) . (2)

Definition 3a (version). When evolve3 is considered in a
development environment, each component of set𝐶may have
𝑗 versions, where one assumes that version is a nonnegative
integer:

𝑉 (𝐶
𝑖
) = {V

1
, . . . , V

𝑗
) , ∀V

𝑖
(1 ≤ 𝑖 ≤ 𝑗) . (3)

When mentioning a particular version of a component,
we use the expression𝑉(𝐶

𝑖
)
𝑥
, where 𝑥 is the version number.

In our context, in a production environment, a particular
component may belong to just one specific version at time
𝐶
𝑖
∈ {V
𝑗
}, which is usually the latest version.

Definition 3b (𝑛 versions and interface divergence). The
different versions 𝑉(𝐶

𝑖
)
1
to 𝑉(𝐶

𝑖
)
𝑗
of a component may

have a different 𝐼(𝐶
𝑖
), depending on the type of modification

performed that resulted in each version.

Definition 4 (reference). When using the operations of other
components, each component 𝐶 makes a reference R to zero
or 𝑛 components of the same set, where each referenced
component has a particular version:

𝑅 (𝐶
𝑖
) = {⌀,𝑉 (𝐶

1
)
1
, . . . , 𝑉 (𝐶

𝑛
)
𝑗
} ,

∀𝑉 (𝐶
𝑖
)
𝑘
(1 ≤ 𝑘 ≤ 𝑚) .

(4)

For instance, if a component𝐶
10
makes a reference to four

other components, each one of a particular version, we will
have

𝑅 (𝐶
10
) = {𝑉 (𝐶

8
)
2
, 𝑉 (𝐶

6
)
1
, 𝑉 (𝐶

23
)
9
, 𝑉 (𝐶

40
)
3
} . (5)

Property 1 (component integration consistency: CIC). The
references 𝑅 of a component 𝐶

𝑖
are consistent if the compo-

nent 𝐶
𝑖
references a version 𝑉

𝑖
of each component (𝑉(𝐶

𝑛
)
𝑗
),

and each referenced component 𝐶
𝑛
actually belongs to this

version 𝑉
𝑖
:
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𝑖
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∈ V
𝑞
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No, otherwise.

(6)

Property 2 (application integration consistency: AIC). The
integration of application 𝐴 is consistent if and only if all the
references𝑅 of its components are consistent and the versions
of 𝐶
𝑛
are also those that were expected:

AIC (𝐴) = CIC (𝑅 (𝐶
𝑖
)) ∧ CIC (𝑅 (𝐶

𝑖+1
)) ∧ CIC (𝑅 (𝐶

𝑖+𝑛
)) .

(7)

In essence, the violation of the CIC and AIC properties
may lead to two types of integration faults: syntactic and
semantic.

Definition 5a (syntactic fault: parameter passing). Compo-
nent 𝐶

𝑥
uses the services of component 𝐶

𝑦
but one of the

components belongs to a different version than that expected;
the 𝐼(𝐶

𝑦
) referenced in 𝐶

𝑥
is not the same as that in 𝐶

𝑦
.

At runtime, an application fault occurs, making the fault
detectable.

Definition 5b (semantic fault: behavioral). A component 𝐶
𝑥

uses the operations of component 𝐶
𝑦
, and component 𝐶

𝑦

or 𝐶
𝑥
has a different version than that expected; however,

the referenced 𝐼(𝐶
𝑦
) is the same in both of them. Therefore,

the component of the incorrect version will present different
behavior than that expected, returning values to 𝐼(𝐶

𝑥
) that

can also affect the behavior of the other component. In this
case, there is no explicit application fault, and the incorrect
behavior of the application may escape notice.

If the propagation of faults is not properly handled, a
syntactic fault will likely cause semantic faults to cascade.
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Figure 1: Error in the delivery of component 𝑉(𝐶
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Definition 6 (integration fault). In this work, integration
faults are defined as the syntactic and semantic type faults
mentioned above or,more specifically, as software components
that correctly and cohesively operate in the development
environment but exhibit anomalous behavior when they are
incompletely deployed to production environments.

An integration fault can cause the disruption of an
application (crashing) or unpredictable anomalous behavior
(noncrashing). The faults may be apparent by showing error
messages or behavior that is visibly wrong or not apparent,
making these faults more difficult to detect and diagnose [7].

2.2. Distribution of Components. The life cycle of a compo-
nent consists of three phases: (i) design, when the component
is designed and built; (ii) deployment, when the binary of the
component is delivered to the environment for execution;
and (iii) execution, when the binary of the component is
instantiated and executed [13, 15].

During the deployment phase, a set 𝑍 of certain versions
of components,𝑉(𝐶

1
)
1
⋅ ⋅ ⋅ 𝑉(𝐶

𝑛
)
𝑗
, is delivered to 𝑝machines

𝑀:

𝐼 = {[𝑍,𝑀
1
] ⋅ ⋅ ⋅ [𝑍,𝑀

𝑝
]} , ∀𝑀

𝑖
(1 ≤ 𝑖 ≤ 𝑝) . (8)

Usually, in a development environment, 𝑛 source code
files are compiled generating 𝑛 components, which are then
deployed in a production environment (Figure 1). In the
case of errors in the deployment phase, as shown in the
example presented in Figure 1 where at time 𝑛 the delivery
of component 𝑉(𝐶

2
)
2
is not realized in production, syntactic

and/or semantic faults will occur in the execution phase of
component 𝐶

1
and/or 𝐶

2
.

In general, a distributed application consists of compo-
nents in different languages, patterns, and platforms. The
components synchronously or asynchronously communicate
with each other through different standards and protocols.

The set of components usually has high granularity (com-
monly ranging in hundreds). Therefore, this is a scenario in
which the components will only have confirmation regarding
the effectiveness of integration at runtime, even if they a
priori reference the 𝐼(𝐶

𝑖
) of the components with which they

communicate.
Figure 2 illustrates a scenario where an application is

composed of 𝑛 components and where these are distributed
in a productive environment with 𝑛 stations and 𝑛 networks.
Thus, the deployment task is more complex, likelihood of
errors during the delivery of modules in production tends
to increase, and both the syntactic and semantic faults will
potentially be more frequent.

2.3. Monitoring and Diagnosis of Faults. The actions related
to software faults in production can be classified into (but
not limited to) two types: monitoring and diagnosis. Moni-
toring observes the behavior of the software in a production
environment. Diagnosis investigates the root cause of a fault
in production and gathers information for planning and
implementing corrections.

Amonitor is a tool used to observe the activities of a sys-
tem, which usually evaluates performance, gathers statistics,
and/or identifies problems [16].Therefore, the act ofmonitor-
ing employs monitors to evaluate the behavior of a system in
a production environment. Usually, the objective is to assess
its suitability to previously specified requirements, providing
information to pinpoint opportunities for improvement and
for diagnosing the cause of faults.

There are different approaches to diagnose software faults.
Source code instrumentation aims to gather information dur-
ing the execution of the application. Commonly, the results
of running the instrumented source code are expressed as
log files with context information on the execution of a
component. This method is often used to perform fault
diagnoses [10]. The major advantage of instrumentation is
the collection of specific information that is of real interest in
solving the problem. On the other hand, it can require con-
siderable effort in implementation and a constant assessment
of what is relevant and necessary for instrumentation, which
implies that coverage may not be complete. In addition, the
instrumented code tends to pollute the original source code,
complicating its readability, and the instrumentation of the
distributed systems tends to require more effort [6].

Core dumps (commonly generated by operating systems
or utility tools) are widely used for fault analyses in software
[10]. However, this method captures the current state of the
application, only in the cases of faults that cause disruption,
and provides no information regarding run history (critical
for diagnosis) [10].

In runtime debugging, the development environment of
the programming language (or another tool) is used to evalu-
ate the application in real time, linearly observing the system
state and behavior.Themajor drawbacks of this technique are
the challenge of debugging using an environment as similar
as possible to the one used in production and the fact that
the debugger itself influences the behavior of the system (a
problem known as heisenbug in an anecdotal reference to
Heisenberg’s uncertainty principle) [12, 17].
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Figure 2: Distributed applications with high granularity components.

Integration faults can be identified by any of the above-
mentioned techniques; however, in general, these methods
are applied in postmortem4 diagnostic tools (see Section 5).

3. An Approach to Prevent Integration Faults:
Tagging and Built-In Version Control

The following issues are key in the prevention of integration
faults: (a) how to identify a violation of AIC and take action
before the faults occur; (b) how to identify, before even
assessing the application as a whole, whether a component
𝐶
𝑖
of the production environment belongs to an expected

version𝑉
𝑗
of the components that reference it (CICproperty).

3.1. Verifying the Identity of a Component. On the Windows
platform, DLL-type files (dynamic link library) accept a
definition of a string-type attribute called version (e.g., 1.0.1),
which can eventually be accessed by other software compo-
nents. However, because this version attribute is dependent
on control by developers, this process is not feasible to
extended changes [18], and the use of this principle is not
applicable to other types of software components (text, XML,
and other files). There is a similar limitation in the Library
Interface Versioning in Unix Systems (manual process) [18].

Evaluating the date, time, and file size to assess the version
is not feasible because these are transient and ambiguous

attributes (files with the same attributes may not be identical
in content and vice versa).

Another possible way to assess whether a component is of
the expected versionwould be to instrument each component
with information of the referenced component and to assess
whether the available component is indeed the expected
one at runtime. However, such an implementation would be
intrusive and would require constant changes in source code
as the components are changed [18].

Therefore, we suggest applying an analogy between com-
ponents and messages. Consider the example where point 𝐴
transmits a message of size 𝑥 to point 𝐵. The message header
may then include such information as length in the bytes of
the message; however, this is not sufficient to assess whether
the message that left 𝐴 is the same one that arrived at 𝐵.
Markers that indicate the beginning and end are also weak
because the content of themessage could be corrupted during
transmission.

Hash functions are widely used in messaging systems,
especially in computer networking.They are applied to ensure
the completeness and authenticity of a given message during
transmission. They are also widely used in data organization
and access (databases), operating systems, and compilers
[19]. A hash results from the transformation of an arbitrary
string of size 𝑛 into a sequence of characters with fixed
size using a dispersion algorithm [20]. When 𝐴 sends a
message, it includes the hash of themessage.When 𝐵 receives
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themessage, it generates the hash of the receivedmessage and
verifies it with the hash received from𝐴. If both the hashes are
equal, the received message is complete; that is, it is the same
message sent by 𝐴.

Similarly, it is possible to derive a tag for a software
component using a hash-generating algorithm and ascertain
the identity5 of the component at a later moment [21].

3.2. Solution Design. At the macro level, the proposed
approach consists of three stages (Figure 3).

Stage 1: Preparing the Package. The developer packages the
modules to be delivered to the production environment.
Therefore, the components that make up the deployment
package are separated into an apportioned area. In this
context, package means an abstract word. This package
could be a simple zip file or some more elaborated archive
using an SCM tool. The most important thing is that the
package is composed only of components that are evolving
(new components or newer versions of old components).
Therefore, the developermust have control over these evolved
components during the testing and validation cycle.

Stage 2: Generating the Inventory. Once the package has
been prepared, a service of the version control reads the
package components on demand and generates an inventory
list, called HashInventory.xml (see Section 3.2.1). This newer
version of HashInventory.xml should be merged with the
latest version of HashInventory.xml. In this manner, we will
have a final version of HashInventory.xml with evolved and
unnaltered components.

Stage 3: Running in Production (Execution). At the begin-
ning of the production run, the application triggers a pre-
runtime monitoring of version control. This, in turn, con-
trasts the components of the station with HashInven-
tory.xml and generates alerts regarding possible discrepancies
(see Section 3.2.2).

Instead of adapting the application components, as dis-
cussed in Section 3.1, we propose the building of a standalone
component (coupled to the application), called version control
that is capable of the following.

(1) Generating tags: the version control generates a tag
for each application component that unequivocally
represents the current version of the component and
this set of tags is called inventory and receives
a numeric attribute called inventory version that
increases for each deployment.

(2) Assigning/querying the online version of the inven-
tory: it makes (i) a service that saves the online inven-
tory version on an external entity6 and (ii) a service
that queries the online inventory version on the exter-
nal entity available.

(3) Conducting prerunmonitoring: it evaluates the appli-
cation components in production by (i) verifying
whether the components of the station/server are
specified in the inventory; (ii) comparing inven-
tory version and online inventory version; (iii) alert-
ing and saving information regarding any discrepan-
cies in a run log file.

In this manner, the version control component and the
HashInventory.xml are sent to the production environment
as a part of the application deployment package.

Figure 4 shows the linear flow solution.
It is important to note that in this general strategy we

do not deal directly with information about interfaces and
references. However, as cited in Section 2.1, Definition 5b,
we consider that the software components correctly and
cohesively operate in the development environment. At this
point, interfaces and references were tested and validated.

Indirectly, the approach seeks to keep the same consis-
tency of interfaces and references. To this end, the approach
evaluates if the set of components “closed” to deploy in the
development environment is the same in the production
environment.

3.2.1. Generation of the Inventory: Packaging and Tagging.
When a package is closed for deployment, on demand, the
version control component generates an automated config-
uration file called HashInventory.xml (see Figure 5). The file
contains the hash of each component7, the name and location
(folder) in which the artifact must be copied, and an attribute
called inventory version.

The attribute inventory version is included for the Hash-
Inventory.xml to serve as a unique identifier of the list (always
considering the last available update of inventory version).
When the package of components is closed for deployment,
the HashInventory.xml is sent as an integral part of the
application.

Upon deployment, the content of inventory version is
also independently assigned to the online inventory version
through a version control service. Such assigning is required
to ascertain, using prerun monitoring, that the HashInven-
tory.xml available on the production station is indeed the
latest deployed version.

3.2.2. Running in Production: Prerun Monitoring with Built-
In Version Control. Each time the application runs on the
station of a provider, version control assesses the need8 to
automatically perform the prerun monitoring.
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Figure 5: Part of the HashInventory.xml file.

On the macro level, the prerun monitoring (details in
Listing 1) performs the following steps.

(i) Station𝑥 Inventory. Hashes of the station components
are generated, contrasting them with the information
of the file HashInventory.xml (lines (11)–(23) of
Listing 1).

(ii) Station Inventory Version x Online Version. An online
service (mainframe) verifies whether the version of
HashInventory.xml on the station matches the online
version, inventory version versus online inventory
version (to assess whether the HashInventory.xml on
the station is in fact the last deployed version) (lines
(1)–(9) of Listing 1).

(iii) Alert. If there is any discrepancy, an alert is per-
manently displayed on the application’s interface in
a visible and prominent area. It informs the user
that the application version is not consistent and that
the technical department of the provider should be
contacted (lines (24)-(25) of Listing 1).

(iv) Inventory Log. A log is generated specifying the dis-
crepancies found (see Section 3.2.3) and presenting
the diagnosis for the inconsistency (lines (24)–(27) of
Listing 1).

3.2.3. Run Log File of the Prerun Monitoring. Different
mistakes may occur in the distribution of the application
from just one artifact in an incorrect version to a completely
incorrect version of the application.

Therefore, the prerun monitoring generates a log file
showing the discrepancies and specifying the following types
of alerts.

(i) Incorrect or Inconsistent Artifact Version. The hash
of the station’s artifact does not match the hash in
HashInventory.xml either because they are different
versions of the component or because the component
of the station has been corrupted.

(ii) Absence of Artifact. The artifact is contained in Hash-
Inventory.xml but is not found on the station.

(iii) Application Version Different from the Version of the
Online Services. In this case, the version of the applica-
tion that is listed in the configuration file HashInven-
tory.xml (see Figure 5, APPLICATION VERSION)
does notmatch the version indicated by an online ser-
vice containing the current version of the application.

(iv) Artifact in Incorrect Folder. Upon instantiation of a
component in C#, the application will first search for
it in the same folder as the main executable. If it is
not found in the folder, it searches the subfolders that
were previously mapped for use by the application.
Therefore, if there is an artifact 𝑥 with a correct hash
in the expected folder (e.g., \arch), there will be no
“incorrect or inconsistent” alert. However, if a copy 𝑥󸀠
of a different version is in a folder with the executable
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(01) CompOfInve← HashInventory.xml {inventory components}
(02) CompOfSta← ⌀ {components of local station)
(03) OKList← NOKList← Inexist← ⌀ {lists of artifacts}
(04) Appl OK ← FALSE
(05) if (CompOfInve.inventory version = VersionControl.inventory online version) then
(06) Appl OK← TRUE {the version is the most recent}
(07) else if
(08) Appl OK← FALSE {the version is not the most recent}
(09) end if
(10) CompOfSta = 𝐶

𝑖,...,𝑛
∀𝐶
𝑖
∈ Application of Local Statio

(11) for each node 𝑖 ∈ CompOfInve do
(12) 𝑒 ← ⌀

{return node from CompOfSta that matches with 𝑖, or ⌀}
(13) 𝑒 ←Match(𝑖, CompOfSta)
(14) if (𝑒 ̸= ⌀) then
(15) if Hash(𝑖) = Hash(𝑒) then

{add to list of correct hash artifacts}
(16) OKList.Add(CompOfSta)
(17) else if

{add to list of incorrect hash artifacts}
(18) NOKList.Add(CompOfSta)
(19) end if
(20) else if
(21) Inexist.Add(𝑖) {add to list of absence artifacts}
(22) end if
(23) end for
(24) if (Appl OK = FALSE) | (NOKList ̸= ⌀) | (Inexist ̸= ⌀) then

{there are inconsistencies—generates alert and logs}
(25) Alert() {notify the user}
(26) LogGeneration(Appl OK, OKList, NOKList, Inexist)
(27) end if

Listing 1: Pseudocode: prerun monitoring.

(the main EXE file of the application), the application
will use the artifact 𝑥󸀠 instead of 𝑥.

4. Case Study

To evaluate the proposed approach, a solution was designed
and deployed on a real application. The context, application,
design, and deployment are discussed in the following sub-
sections.

4.1. The Application and Context. The target application of
the case study is the frontend9 of a contact center10 in the
financial industry. It was developed in C# using Visual Studio
2008 and framework.Net 3.5, designed following the MVC
(model view controller) model [22], and it has approximately
420KLOC. Because of this architecture and the heavy use of
componentization aiming at reuse, the application is highly
granulized with approximately 1,000 artifacts, including exe-
cutable, DLL, and configuration files. It is a client/server
application that communicates with application servers,
which, in turn, accesses different applications on different
platforms (Figure 6).

Client Application

application server
servicesOnline

View

Controller

Model

Server

Unix

Windows

Mainframe

Figure 6: Macro architecture of the application.

The application uses approximately 300 different online
services, most of which are synchronous but some are
asynchronous.

Deployment of the new versions of the application is
incrementally performed, delivering only the changed or new
artifacts to the production repository, where the preexisting
and unmodified artifacts must remain intact. Given that
the services of the business systems are also distributed,
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Development Validation Production

Customer company

Repository Repository

Branch 1 Branch 1Branch n Branch n

Provider 1

· · ·

· · ·

· · ·

Provider n

Figure 7: Deployment infrastructure and process.

the versions of the application components must also be syn-
chronized with the versions of the online services (Figure 6).
Otherwise, potential syntactic faults may occur.

The infrastructure that runs the application is distributed,
is composed of different network topologies and equipment,
has stations from different manufacturers and with different
settings, and usesWindows operating systems but in different
versions.

The nature of the contact center business implies that
much of the customer service is outsourced with compa-
nies (providers) being hired to provide care services using
the client/server application of the hiring company. In the
context of this particular application, there are four different
providers with 13 branches scattered in different Brazilian
states, totaling approximately 10,000 user stations.

Upon the deployment of the client/server application
in production, the company is responsible for delivering
the deployment package into a receiving repository of each
provider. In turn, each provider is responsible for distributing
application components by copying them from the receiving
repository to each station of its infrastructure (Figure 7).

For mistakes in the deployment process of the client/
server application, integration faults will occur. This inev-
itably leads to uncorrected defects, faults of existing features,
or the unavailability of new features. In extreme cases, the
application will crash. Because of the modularization of
the application, most distribution problems will not entirely
render the application dysfunctional, and sometimes the user
will not notice the problem.

There are tools11 on the market that specialize in the
automated distribution of software artifacts. However, not
every provider has such an automated process (because of
costs), and even those that possess them are liable to faults
resulting from human errors, tool failure, or the instability of
networks and hardware and software environments.

The full functioning of the application is the responsibility
of the client company (from a structural point of view).
Therefore, it is often difficult to handle incidents because it
is hard to immediately determine whether the root cause of
the problem lies with the application or with the infrastruc-
ture/station of the provider.

The department handling production incidents at the
client company and consequently the development team of
the client/server application is overburdened by application
faults caused by distribution problems that should be resolved
by the providers themselves. However, because of the lack of
technical knowledge, high employee turnover, and complex-
ity of their environments, providers end up improperly using
the client company to evaluate such faults.

Figure 8 presents a typical fault investigation where sev-
eral people are involved. The key people involved are as
follows.

User. The user is the person that serves clients by phone.

Supervisor.The supervisor is the user’s leader responsible for
service quality.
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Provider Client company

(1) The user notices a fault
and notifies a supervisor

(2) The supervisor opens a
ticket asking for support

(3) The technical staff

1 hour

(4) The war room opens a

evaluates the ticket and fixes 
the problem or (usually) 

company

(5) The developer team

ticket asking support for 
infrastructure area and/ 
or developer team

From 1
to 3 hours

From 1
to 8 hours

1 hour From 1 
to 3 hours

concludes that the 
problem is caused by an 
incorrect version of the 
application

repasses it to the client

Figure 8: An integration fault investigation.

Technical Staff. It is the team responsible for provider infras-
tructure (hardware and software).

War Room. It is the team responsible for client infrastructure,
dealing with production incidents and asking for support
from different teams of the client company.

Developer Team. It is the team responsible for client applica-
tion.

In this scenario, we applied the proposed approach in this
paper.

4.2. Planning the Case Study. The primary goal of the case
study was to apply the approach and avoid integration faults
arising from mistakes in the distribution of components.
A secondary goal was to protect the developer team from
overburden caused by incidents pointed out by providers. To
this end, the solution should (i) find inconsistencies in the
application and (ii) describe the cause of inconsistencies.

Therefore, we worked with the following research ques-
tions to the case study.

RQ1. Is it possible to find inconsistencies using the
proposed approach?
RQ2. Does the approach reduce the number of inte-
gration faults and/or the time in diagnosing and
fixing?
RQ3. Is it possible to build a cost effective and
reusable solution that causesminimal intrusion to the
application?

Regarding the method, in the study case we intended to

(1) code the solution and deploy it on different providers;
(2) monitor solution performance in production;
(3) receive feedback from providers and the developer

team; and
(4) demonstrate some real incidents from production.

4.3. Evaluation

4.3.1. Postdeployment. For five months, the solution was
gradually deployed in 13 branches of the providers.

During the first month, application faults caused by dis-
tribution errors were still reported, although the application
already displayed alerts. We adopted the procedure of always
first evaluating whether the version of the application was
consistent after receiving an error message from a station.
If that was not the case, the provider was first directed to
solve the problem of application consistency and afterward
to evaluate whether the fault persisted. After a month, the
technical departments of the providers regularly checked
whether there were integration fault alerts for the application
before reporting problems, which virtually eliminated the
undue demand placed by providers on the client company.

4.3.2. Performance. The runtime of the prerun monitoring is
approximately three seconds on a typically configured station
on which the application runs (Core2Duo 3GHz processor
and 3GB of RAM). Because monitoring starts as soon as
authentication occurs (username and password), when the
user is still getting ready to begin serving customers, there
is no significant impact on time spent.

4.3.3. Diagnosing Time. We considered the worst and the
best case according to the flow presented in Figure 8 and
the feedback from the developer team and the providers.
Figure 10 presents a comparative analysis of hours dispensed
to an integration fault investigation. For the worst case, the
investigation time was reduced by 65% and for the best case
by 50%.

4.3.4. Alerting and Diagnosing Violations of CIC and AIC.
In this section, we demonstrate some real faults captured in
the production environment. These examples were reported
during the first postdeployment month.

Example 1

Fault: of mismatch type.
Kind of fault: syntactic.
Evident: yes.
Cause: the application was not deployed at the
provider and some changed services do not work
(different areas from components and services).
Violated property: AIC.
Alert showed?: yes.
Pointed inconsistence: the HashInventory.xml ver-
sion is different from the online application version.

Example 2

Fault: unexpected behavior—expected new fields do
not appear on a particular visual interface.
Kind of fault: semantic.
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Evident: yes.
Cause: a newer version of a particular component was
not deployed at the provider.
Violated property: CIC.
Alert showed?: yes.
Pointed inconsistence: incorrect version of a compo-
nent (hash different from that expected).

Example 3
Fault: application crash.
Kind of fault: semantic/syntactic.
Evident: yes.
Cause: the application was deployed but an essen-
tial configuration file was corrupted; the application
crashed before starting the prerun monitoring.
Violated property: AIC.
Alert showed?: no.
Pointed inconsistence: none.

Example 4
Fault: unexpected behavior—an expected new screen
could not be shown.
Kind of fault: semantic.
Evident: yes.
Cause: a new component was not deployed.
Violated property: CIC.
Alert showed?: yes.
Pointed inconsistence: an expected component was
not found.

Example 5
Fault: unexpected behavior—calculus is not consider-
ing a new business rule.
Kind of fault: semantic.
Evident: no.
Cause: a newer version of a particular component was
not deployed at the provider.
Violated property: CIC.
Alert showed?: yes.
Pointed inconsistence: component in an incorrect
folder.

By evaluating the information provided in the run log file
(Figure 9), the technical staff could identify the cause of the
alert and perform the necessary intervention, even without
an in-depth understanding of the application.

Considering that sometimes a fix has to be applied to
thousands of stations, this information is extremely useful
to take the action that has the least impact in the case of
problems and to redistribute only those artifacts that are
strictly necessary.

Figure 9: Part of the log archive of the prerun monitoring,
presenting different types of inconsistencies.
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Figure 10: Comparing before and after of the proposed approach.

4.3.5. Answers to Research Questions

Answer to RQ1: Is It Possible to Find Inconsistencies Using
the Proposed Approach? The answer is yes but not entirely
possible. Most kinds of inconsistencies could be found such
as no deployed application, no deployed component, and
absence of component. However, there are some cases of
application crashing where the approach is not efficient, as
demonstrated in Example 3 of Section 4.3.4.

Answer to RQ2: (a) Does the Approach Reduce the Number of
Application Faults? The answer is yes. The alert for inconsis-
tence is clearly shown in a permanently visible screen area of
the application. By fixing the problem at that time, application
faults will not occur.

The main threat to the validity of this answer is the
inability to provide a quantitative assessment of the reduction
in faults. As mentioned before, the application is used in
the environments of different companies with their own
management and control policies and without information
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Table 1: Objectives × case study.

Objectives Results are obtained in the case study.

Prevention The integration fault alert is displayed even before the faults occur. In addition, the effort to fix the
configuration is minimized because the inconsistencies are identified in the log.

Be simple and cost
effective

The development of the component for generating the inventory and prerun monitoring included around
1,200 lines of code in C# and required approximately 180 hours of work in construction and testing. The
approach does not rely on information from log files or operating systems.

Cause minimal
intrusion

The solution requires only the monitoring message at the startup of the application and the display of the
alert in the visual interface, which implies adding less than 20 lines of source code to the application.

Provide reuse Because the component version is an independent component, it can be coupled to other applications.

integration on occurrences in the production environment.
Nevertheless, three important qualitative evidences obtained
after the application of the case study support the statement
that faults were drastically reduced.

(1) All the providers were queried on the effectiveness of
the approach, and all of them replied that the alerts
regarding nonconsistent applicationsmake corrective
actions faster, more precise, and preventive.

(2) According to reports from the department respon-
sible for the development and maintenance of the
application, the number of unduly opened tickets for
review, because they are caused by version inconsis-
tence and not by defects in component development,
is currently insignificant. During rare occurrence of
such incidents, the analysis requests are promptly
rejected.

(3) The client company is planning to apply the proposed
approach to two other applications.

Answer to RQ2: (b) Does the Approach Reduce the Diagnosing
and Fixing Time? The answer is yes. This was demonstrated
in the previous section, considering the best and the worst
cases.The time dispensed to diagnose faults was considerably
reduced.

Answer to RQ3: Is It Possible to Build a Cost Effective and
Reusable Solution That Causes Minimal Intrusion to the
Application? The answer is yes. We answer this question and
demonstrate other advantages in Table 1.

4.3.6. Limitations. On the other hand, themain limitations of
the case study are as follows. (i)The visual alert indicating that
the version of the application is not consistent is presented
in a permanently visible region of the application but the
information is constrained to the station, which implies that
the user has to contact the technical department responsible
for the adjustment. Although no cases of omission from
users were reported in the case study, such behavior may
be different from that expected for other environments and
applications. (ii) Depending on the characteristics of the
application, the runtime of the prerunmonitoring can be very
burdensome.

4.3.7. Generalization. For the generalization of results,
despite the fact that only one case study was performed,
we can infer that similar client/server and distributed
applications can benefit from the approach. Although it is
reasonable to assume that the approach can be applied to
other applications, it is necessary to investigate the results
as well as the peculiarities and challenges of applications
with different features such as web services and mobile
applications.

5. Related Works

As previously mentioned, Yin et al. [7] emphasized that soft-
ware faults caused by the problems of integration between the
components are not adequately addressed in the literature.
They are instead considered in the general context of software
faults, which range from programming errors and software
defects, configuration, and distribution errors to faults caused
by the hardware and software on which the system depends.
Furthermore, traditional debugging techniques are often not
applicable to distributed systems (when they are, they are not
very effective) [6, 23].

5.1. Similar Strategies. Sundmark et al. [24] proposed the
dynamicmonitoring of component behavior for postmortem
analysis of faults in embedded systems, focusing on the
use of resources and the assessment of compliance with
nonfunctional requirements.

The framework of Lau and Ukis [25] performs mon-
itoring at the time of deployment to verify whether the
environment in which the components are being delivered
has sufficient computational resources and whether the
composition of the components presents conflicts regarding
allocation and competition for resources.

In addition to providing certain self-recovery features, the
Plush tool [3] enables the distribution and monitoring of the
components in distributed and heterogeneous environments.
On the other hand, it is a solution of considerable complexity
considering its deployment and management because it is
also a client/server application, which requires that it must
also be distributed among clients (Plush client) and servers
(Plush controller).
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Table 2: Comparison of related works.

Work Monitoring Diagnosis Postmortem Preventive Complexity
Pinpoint [23] ∙ ∙ Average
AutoBash [26] (operating system) ∙ ∙ ∙ ∙ High
Rabkin and Katz [27] ∙ ∙ Average
Plush [3] ∙ ∙ ∙ ∙ High
Araújo et al. [6] ∙ ∙ Average
ConfDiagnoser [9] ∙ ∙ High
LogEnhancer [10] ∙ ∙ Low
Sundmark et al. [24] ∙ ∙ (Conceptual)
Lau and Ukis [25] ∙ ∙ ∙ High
Proposed approach ∙ ∙ ∙ ∙ Low

5.2. Different Strategies. When we consider faults in general,
several studies are found in the literature regarding fault
diagnoses. The Pinpoint solution [23] applies data mining
techniques to detect communication faults between compo-
nents; however, it requires an instrumented middleware and
the application of data traffic monitoring (sniffering), which
violates the principles of information security.

AutoBash [26] is a set of tools that supports users in
maintaining the configuration and fault diagnosis on Linux
operating systems.

Rabkin and Katz [27] apply information flow analysis
through the static evaluation of the source code to identify the
causes of faults. However, the solution depends on situations
where the application is disrupted and requires the generation
of an evaluation log. In addition, an explicit error message
must be displayed. Araújo et al. [6] presented a solution that
is embedded in different layers of software to generate logs of
distributed applications.These logs are stored in a centralized
server and through a visual interface filters can be applied
using different criteria, extracting the information of interest.
The solution makes it easier to diagnose faults in distributed
applications because it offers an integrated overview of events
of different application layers.

LogEnhancer [10] is a tool that assists in code instru-
mentation, improving the instrumented code in existing
applications in a transparent manner. The tool performs a
static analysis of the source code, identifies instrumented
points, and searches for context information on such points
(system variables and states) to prepare a separate log if the
instrumented part of the application is executed.

More recently, the tool ConfDiagnoser [9] employed the
static analysis of the source code and statistical analysis of run
log files to infer cause and effect through similarity analyses.
Integration and parameterization faults are dealt with but
they require a detailed run log file of the application (which
may require significant changes to the application) and a
database of previously successful executions.

5.3. Discussion. Most approaches and methods described in
the related works would be effective in diagnosing and/or
detecting integration faults (directly or indirectly). The
approach of this paper, however, is preventive and proves
to be more efficient because it tackles the integration fault

problem at source and reduces the number of faults to be
diagnosed by complex and expensive methods and solutions.

Although some of the works apply similar strategies at the
macro level, with thePlush tool being themost similar [3], the
works cited in Section 5.1 differ from the present workmainly
when considering the deployment of the monitoring. In the
presentwork, there is no external entitymonitoring the nodes
(stations or servers) on which the application runs. Instead,
the solution applies a built-in monitor in the application.The
main advantage lies in larger decoupling in relation to the
infrastructure.The application can be distributed in different
environments, including different companies (as in the case
study) without the requirement to install monitors in each
segment of the infrastructure.

The works mentioned in Section 5.2, with the exception
ofAutoBash [26] (specializing in operating systems), propose
generalist solutions for fault diagnoses. They seek to address
a wider range of situations, reporting application problems
with configuration, component integration, and develop-
ment errors. However, they are mainly reactive (postmortem
evaluation) [6, 9, 10, 23, 27] and specialized [26] or they
require considerable intervention in the application with pre-
or postdevelopment [6, 9, 27]. In contrast, our solution is
preventive by design with a low cost deployment for avoiding
integration faults.

Table 2 presents a comparison between the related works
and the approach proposed in this paper.

6. Scope and Limitations of
the Proposed Approach

Theusualmethod of upgrading a component is to remove the
old version and replace it by a newer one [18].This procedure
is used for systems that do not have centralized registration
and identification services/components such as COM and
CORBA [18] (as in our case).

In our context, we do not consider different versions of
the same component on the production environment.There-
fore, this paper does not aim to deal with the versioning of
components itself but intends to identity whether a particular
component in the production environment belongs to an
expected version (usually, the latest one).The aim is to know if
a set of deployed components in a component repositorywere
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properly copied to a particular user or server station. Works
that deal withmultiple version components or services can be
found in [28–30].

The process for testing and validating third party compo-
nents (or commercial-off-the-shelf (COTS)) is an important
issue [31]. Nevertheless, in this paper we do not deal with this
issue since our focus is not on testing and validation cycle.
Furthermore, we consider that the software components
already correctly and cohesively operate in the development
environment.

On the other hand, the process to distribute software
components in large networks is a complex task. It is possible
to deal with these problems using tools from the market but
carrying a considerable cost (as mentioned in Section 4.1).
Therefore, in this paper we were focused on a cost effective
approach to deal with mistakes in distribution of software
components in production environments.

7. Conclusions and Future Work

Given the complexity of distributed applications, integra-
tion faults, particularly caused by mistakes in distribution
of components in production environments, are becoming
more frequent, representing a considerable percentage of
overall application faults. In this context, integration faults
are not properly addressed in the literature, and existing
solutions to the problem are predominantly reactive and/or
are considerably complex.

In this scenario, the approach proposed in this work
can be considered innovative because it proposes a change
in perspective, preventively treating integration faults by
checking the components consistency in the production
environment. At the core of the solution are the generation of
hash tags for software components and the implementation
of a built-in version control in the application, where the
consistency of components is periodically assessed during the
execution of the application. If an inconsistency is found, a
visual alert is displayed and a log is generated specifying the
inconsistencies to facilitate correction.

The empirical evaluation through a case study of a
complex real application demonstrated that the solution is
efficient. Virtually, the approach eliminates the occurrence
of application problems caused by mistakes in distribution
of components. Efforts to diagnose and fix were also consid-
erably reduced. Moreover, the solution has been adopted for
other applications of the target company of the case study and
is becoming a standard.

The following contributions of this work can be high-
lighted.

(i) It investigates a type of fault that is not addressed in
the literature and formalizes the problem.

(ii) It provides a change in perspective by proposing a
low cost approach to prevent integration faults, rather
than focusing on postmortem analysis.

(iii) It provides an empirical assessment through a case
study, demonstrating the feasibility of the proposed
approach.

As for future work, especially when dealing with the
previously mentioned limitations, we intend to

(i) design an online service to register monitoring alerts
(which could use a variation of the approach in [6])
and this would enable remote monitoring and the
quantification of results;

(ii) evaluate the performance of different hash-generating
algorithms;

(iii) investigate the approach in other types of applications
such as web and mobile.
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Endnotes

1. For example, development (in construction and testing),
validation (approval by the user), and production (in the
real environment of user).

2. In this section, we use a pseudo-formal notation based
on set theory to support our definitions.

3. Where we consider addition, change, or deletion of
operations as well as the changes in the internal behavior
of the component.

4. That is, it is a reactive process that waits for a failure to
occur before applying the technique and diagnosing and
correcting the problem.

5. Wang and Yu [20] have shown that there may be
collisions where the same hash sequence is generated
for different input strings. The paper was written in the
context of planned attacks and encrypted systems in
which 239 operations are necessary for the occurrence
of a collision. In our current scenario (tagging), the
probability of collisions, although still present, tends to
be extremely low [19].

6. By definition, a different location to the server or station
on which the application is being run.

7. To this end, the MD5 [32] algorithm reads the com-
ponent byte by byte, generating a 32-byte hexadecimal
string that represents the entire component.

8. Monitoring is performed in the following situations: (i)
first run of the day; (ii) each time the station changes
user; (iii) during each run, if it is the day of deployment
(see Figure 8).

9. In the present context, this refers to a unifying applica-
tion that provides several features communicating with
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different systems and platforms, making the complexity
of the communication process between applications
transparent for the user.

10. The department responsible for large scale customer
service, mostly over the phone. In our context, over a
million calls are handled each day.

11. Examples: Systems Management Server (SMS), Zen-
Works, and LANDesk.
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senśıveis ao atraso baseado em hash,” in Proceedings of the 25th
Brazilian Symposium on Computer Networks, 2007.

[20] X. Wang and H. Yu, “How to break MD5 and other hash
functions,” inAdvances in Cryptology—EUROCRYPT 2005, vol.
3494 of Lecture Notes in Computer Science, pp. 19–35, Springer,
Berlin, Germany, 2005.

[21] S. Yu, S. Zhou, L. Liu, R. Yang, and J. Luo, “Malware variants
identification based on byte frequency,” in Proceedings of the
2nd International Conference on Networks Security, Wireless
Communications and Trusted Computing (NSWCTC ’10), pp.
32–35, Wuhan, China, April 2010.

[22] M. Veit and S. Herrmann, “Model-view-controller and object
teams: a perfect match of paradigms,” in Proceedings of the 2nd
International Conference on Aspect-Oriented Software Develop-
ment, pp. 140–149, ACM, New York, NY, USA, March 2003.

[23] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer,
“Pinpoint: problem determination in large, dynamic internet
services,” in Proceedings of the International Conference on
Dependable Systems and Networks (DNS ’02), pp. 595–604, June
2002.
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