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This study proposes damage detection algorithms for multistory shear structures that only need the first two or three natural
frequencies. The methods are able to determine the location and severity of damage on the basis of damage location indices (DLI)
and damage quantification indices (DQI) consisting of the changes in the first few squared natural frequencies of the undamaged
and damaged states.The damage is assumed to be represented by a reduction in stiffness.This stiffness reduction causes a shift in the
natural frequencies of the structure.Theuncertainty associatedwith system identificationmethods for obtaining natural frequencies
is also carefully considered.Themethods are accurate and cost-effectivemeans only requiring the changes in the natural frequencies.

1. Introduction

Structural health monitoring (SHM) systems are garnering
attention as a way of maintaining building structures subject
to natural hazards such as large earthquakes and strong
winds [1]. SHM systems play an important role in assessing
the health of a structure because they can determine the
location and the severity of damage. The obstacle we often
face when installing an SHM system in a building is the
trade-off between the numbers of sensors and the accuracy
of damage detection. A large number of sensors are costly
and entail a large effort for wiring and installation. Such
complicated and expensive SHM systems are not feasible for
most buildings [2]. Therefore, a good SHM system should
have few sensors yet obtaining enough information about the
health of a structure.

Doebling et al. [3] graded SHM systems into four levels of
ability, as follows:

(i) Level 1: determining that damage is present in the
structure;

(ii) Level 2: determination of the location of the damage;
(iii) Level 3: quantification of the severity of the damage;
(iv) Level 4: prediction of the remaining service life of the

structure.

The first three levels are most often related to structural
dynamic testing andmodeling issues. Level 4 is not addressed
in the structural vibration ormodal analysis literature.Hence,
most of damage detection methods aim to classify damage
into the first three levels.

Damage detection algorithms based on the modal prop-
erties of a structure, such as modal frequencies, mode
shapes, curvature mode shapes, and modal flexibilities, have
been studied in the SHM field for decades. However, most
algorithms have difficulties in identifying the precise location
and magnitude of the damage. Their accuracy and reliability
are not considered sufficient, if not completely inadequate [2].
The key to making a successful damage detection method is
thus using a few modal properties of a structure to identify
Levels 1, 2, and 3.

Zhao and DeWolf [4] presented a sensitivity study com-
paring the use of natural frequencies, mode shapes, and
modal flexibilities for monitoring. Based on the fact that
natural frequencies are sensitive indicators of structural
integrity, the relationship between frequency changes and
structural damage was discussed in a review by Salawu [5].
These studies showed that sensitivity analysis of the natural
frequencies can be a valuable tool in SHM.

A damage detectionmethod based on natural frequencies
only needs two vibration sensors (or even one acceleration
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sensor) to obtain the modal frequencies. It is known that,
of the various characteristics, the natural frequencies are the
least contaminated by measurement noise and can generally
be measured with good accuracy [6]. Messina et al. [7]
suggested a standard error of 0.15% as a benchmark figure
for natural frequencies measured in the laboratory with the
impulse hammer technique. Some researches [8–14] have
achieved a standard deviation of less than 1% for the first few
modes of natural frequencies. This low level of error suggests
that a damage detection method using only information on
the natural frequencies would have acceptable accuracy.

Although many previous studies concluded that the fre-
quency cannot provide spatial information about structural
changes, multiple frequency shifts may provide spatial infor-
mation about structural damage in situations where many
natural frequencies can be measured [15]. However, there
are only a few natural frequencies that can be measured in
most buildings.Therefore, a natural frequency based method
would need to work with only a few frequencies if it were to
be practical.

The purpose of this study is to devise a damage detection
method to identify the existence, location, and amount of

damage to multistory shear structures by using new damage
indices consisting of the changes in the first two or three
natural frequencies.

2. Sensitivity of Squared Natural Frequency
Changes to Structural Damage

A multistory shear structure (𝑁-story) can be modeled as
a one-dimensional lumped mass shear model, as shown in
Figure 1. Most of the damage to a structure, such as cracks,
fatigue, corrosion, and loosening of bolted joints, manifests
itself as a stiffness reduction.

The characteristic equation for such a structure is written
as

[K − 𝜔
2
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M] 0
𝑟
= 0, (1)
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andM is the mass matrix (𝑁 ×𝑁),
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Solving (1) in the manner of (8) in [15], the general
expression for the 𝑖th story stiffness can be obtained as
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where 𝜙
𝑖𝑟
and 𝜙

(𝑖−1)𝑟
are the 𝑟th mode shapes at the 𝑖th and

(𝑖 − 1)th stories, respectively.
In addition, the squared natural circular frequency of the

𝑟th mode is expressed in [2] as follows:

𝜔
2

𝑟
=

𝐾
𝑟

𝑀
𝑟

=
𝜙
𝑇

𝑟
K𝜙
𝑟

𝜙
𝑇

𝑟
M𝜙
𝑟

, (5)

where 𝜔
𝑟
is the 𝑟th natural circular frequency, 𝐾

𝑟
is the 𝑟th

modal stiffness, 𝑀
𝑟
is the 𝑟th modal mass, K and M are the

stiffness and mass matrices, and 𝜙
𝑟
is the 𝑟th mode shape

vector.
Although the yielded structure is undamaged and may

also have reduced stiffness sometime later, in this study,
we will assume that the structural damage can be directly
expressed as a stiffness reduction and that the structural mass
remains unchanged. The difference between the squared
natural frequencies of the 𝑟th mode of the undamaged
structure and the same structure with damage to the 𝑖th story
is expressed as
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where the subscript (𝑖) denotes the 𝑖th damaged story state.
Here, 𝜔

𝑟
and 𝜔

𝑟(𝑖)
are the 𝑟th frequencies of the undam-

aged and 𝑖th story damaged state, K
𝑖
is the global stiffness

matrix with the stiffness reduction considered to be a reflec-
tion of damage to the 𝑖th story, and is the 𝑟th mode shape
vector of the 𝑖th damaged story state.

In [16], Morita et al. gave an equation to obtain the dif-
ference in the squared natural frequency of the 𝑟th mode in
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(6) by neglecting the difference in mode shape arising from
damage. That difference becomes
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where ΔK
𝑖
is the change in the stiffness matrix with the

𝑖th damaged story. When the 𝑖th story stiffness is reduced,
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where Δ𝑘
𝑖
is the change in stiffness of the 𝑖th story.

The squared natural frequency change ratio is determined
by dividing both sides of (7) by 𝜔2

𝑟
:
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whereΔ𝑘
𝑖
is the change in stiffness of the 𝑖th story and 𝜙

𝑖𝑟
and
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are the 𝑟th mode shapes at the 𝑖th and (𝑖 − 1)th story.
From (11), Δ𝑘
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is the extent of damage to the 𝑖th story and
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2 depends on the location of the 𝑖th damaged

story. As damage normally causes a decrease in the natural
frequencies, Δ(𝑟)

𝑖
is positive when damage occurs. This fre-

quency change ratio Δ(𝑟)
𝑖
may vary depending on the damage

location and quantification. Note that, for each natural
frequency, there are some locations where the frequency is
most sensitive to the damage, while there are other locations
where the damage has little influence on the frequency.

Similarly, the frequency change ratio of the 𝑠thmode,Δ(𝑠)
𝑖
,
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Δ
(𝑠)

𝑖
=

1

𝜙
𝑇

𝑠
K𝜙
𝑠

Δ𝑘
𝑖
(𝜙
𝑖𝑠
− 𝜙
(𝑖−1)𝑠

)
2

. (12)

The sum of these changes is

Δ
(𝑟)

𝑖
+ Δ
(𝑠)

𝑖
= Δ𝑘
𝑖
[

1

𝜙
𝑇

𝑟
K𝜙
𝑟

(𝜙
𝑖𝑟
− 𝜙
(𝑖−1)𝑟

)
2

+
1

𝜙
𝑇

𝑠
K𝜙
𝑠

(𝜙
𝑖𝑠
− 𝜙
(𝑖−1)𝑠

)
2

] .

(13)

Thus, the ratio of the changes in the two natural frequen-
cies of the 𝑟th and 𝑠th modes can be written as
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From (4), we can use the 𝑟th mode or 𝑠th mode to obtain
the stiffness of the 𝑖th story:
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Substituting (17) into (15), we get
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This ratio depends on the location of damage 𝑖 and the
number of degrees of freedom, in the following coefficient:
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3. Proposed Approach to Damage Detection

Let us formulate a simple algorithm for detecting structural
damage, its location, and its amount. Note that the existence
of damage is determined by a change in the first two or three
natural frequencies. In previous, some researches [8–14] have
achieved a standard deviation of less than 1% for the first few
modes of natural frequencies. In particular, we assume that
the squared natural frequencies have a standard deviation
of 1% and damage has occurred when the squared natural
frequency changes by 2% or more.

3.1. Damage Location Indices. The previous section derived
the ratio of the changes in two squared natural frequencies
of the 𝑟th and 𝑠th modes. Like (18), this value depends on
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Figure 1: Simplified structural model with𝑁 degrees of freedom.

the location of the damage.The damage location index (DLI)
is defined as

DLI𝑟𝑠 =
Δ
(𝑟)

𝑖

Δ
(𝑟)

𝑖
+ Δ
(𝑠)

𝑖

. (19)

The number of obtained frequencies is usually smaller
than the number of degrees of freedom 𝑁. When two of the
first two or three frequencies are used, the DLI values are
written as DLI12, DLI23, and so on:
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The DLI12 value depends on the number of damaged
stories 𝑖, and it can be used as a damage location indicator in
the 𝑁-story shear structure. When taller building has many
stories, DLI23 and/or DLI34 and so forth, can be used in
addition to DLI12 to detect the damaged story.

3.2. Uncertainty of Damage Location Indices. The modal
parameters are often sensitive to various environmental
conditions such as temperature, humidity, and excitation
amplitude. The effect of environmental conditions or exci-
tation amplitude is treated as “noise” in a simulation, so we
should obtain a confidence interval on themodal parameters.

Denoting by 𝜎
𝜔
2 the standard deviation of the squared

natural frequency, we will discuss the reliability of our
method on the basis of the theory presented in [17]. We will
assume that the squared natural frequencies have a standard
deviation of 1%.

The standard deviation of the difference between the
squared natural frequencies is
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Moreover, the standard deviation of the changes in the 𝑟th
frequency Δ(𝑟) is given by
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The standard deviation of the changes in the 𝑠th fre-
quency 𝜎

Δ
(𝑠) is calculated similarly to 𝜎

Δ
(𝑟) in (22).

The standard deviation of the sum of the changes in the
first two frequencies is
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The standard deviation of the DLI can be calculated as
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Statistically, we expect the DLI to be reliable within
⟨DLI ± 2𝜎DLI⟩. Hence, the confidence interval is 95%, and the
DLI can identify the damage location in a shear structurewith
satisfactory reliability.

3.3. Damage Quantification Indices. Now let us formulate a
simple damage quantification technique. The change in the
natural frequency can be used to interpolate the amount of
damage at the detected location [18]. Equation (11) also shows
that the change in the natural frequency is proportional to
the stiffness reduction. In addition, Zhao andDeWolf [4] said
that the change in natural frequency has a different sensitivity
level for each location. That is, some stories show less of
change in the natural frequency when the damage occurs. As
[18], we can use the first frequency change Δ(1) to interpolate
the extent of damage. However, these values are too small
for some free-end stories that are less sensitive to damage.
Similarly, the second frequency change Δ

(2) also has less
sensitive locations. In these cases, it is difficult to interpolate
the extent of damage from the change in only one frequency.

The DLI defined in Section 3.1 was used to detect the
location of a damaged story in the shear structure. Normally,
DLI12 is composed of the changes in the first two or three
natural frequencies. Equation (7) in [16] can be used to
approximate the extent of damage from the change in any
one of the obtained frequencies. A more reliable value can be
found by averaging the estimates of all of the modes used in
the analysis.

Because the sensitivity to a stiffness reduction depends on
the modes, it would be a good idea to introduce the following
averagingmethod.The damage quantification index (DQI) is
defined by the changes in the first two or three frequencies
that were used to determine the damaged story:

DQI =
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where Δ𝑘
(𝑗)

𝑖
is the stiffness reduction of the damaged story

𝑖th, interpolated by the change in square frequency of the 𝑗th
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mode (Δ
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), and 𝑤
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is obtained from 𝜎
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in (22)
and the standard deviation of DQI, (𝜎DQI ), is also calculated.

4. Performance of Proposed Method

A four-story shear structure was measured to show the
feasibility of the proposed method. It was modeled as a one-
dimensional lumped mass shear model, as shown in Figure 1.
The damping ratio for each mode was chosen to be 3%.
The sampling frequency 200Hz is commonly used in major
monitoring systems for real buildings. However, as we can
only need lower natural frequencies, the sampling frequency
can be as low as 50Hz provided that an appropriate antialias-
ing filter is used. In this study, the data sampling frequency
was chosen 200Hz. The excitation loading is white-noise.
Although we used white-noise in this paper, the excitation
can be any, such as winds, microtremors, and earthquakes.

The stories of the structure had the same mass, 𝑚
𝑖
=

1000 tons, but their stiffness was different: 𝑘
1
= 𝑘 = 1.3 ×

10
3MN/m, 𝑘

2
= 0.9𝑘, 𝑘

3
= 0.8𝑘, and 𝑘

4
= 0.7𝑘. The first two

natural frequencies of the undamaged structure were 1.89Hz
and 5.19Hz. Four cases of damage (damage to the 1st, 2nd,
3rd, and 4th stories) were studied.The damage was simulated
by reducing the stiffness of each story by 5%, 10%, 15%, 20%,
25%, and 30%.

Figure 2 shows the sensitivity of the changes in the first
two natural frequencies to the location of the damaged story.
From Figure 2, it can be seen that the influence of the damage
location identified by the first natural frequency decreases
on higher stories; the results mean that the first natural
frequency is the most sensitive to damage on the 1st story. By
contrast, the second natural frequency is the least sensitive to
damage on the 2nd story.

Figure 3 uses different colors to plot DLI12 values and
their confidence interval of 5% to 30% stiffness reduction for
each story.TheDLI12 values of these cases are indicated by the
bold lines in the middle of each color; their reliability band
considering 2𝜎DLI is indicated by the two thin lines above and
below each thick line (the standard deviation of the squared
natural frequencies is assumed to be 1%).

From Figure 3, we can see the following.

(i) The DLI12 values are stable at each damaged story for
any level of damage; the location of the damaged story
can be detected by examining the correlation between
the unknown data and the data of the story on which
damage was detected.

(ii) The variances of 2𝜎DLI depend on the stiffness reduc-
tion; when the reduction in stiffness is smaller, these
values become larger. So the extent of damage, as
indicated by the stiffness reduction, must be big
enough to detect the location of damage without any
mistakes.

In this simulation, two modes were enough to detect the
damaged story. After determining the location of the damage

Damaged story
1 2 3 4

0
0.05

0.1
0.15

0.2

Se
ns

iti
vi

ty
 o

f s
qu

ar
ed

na
tu

ra
l f

re
qu

en
ci

es
 (H

z)

Change in squared frequency of 2nd mode Δ(2)

(a)

1 2 3 4
0

0.05
0.1

0.15
0.2

Damaged story

5%
10%
15%

20%
25%
30%

Se
ns

iti
vi

ty
 o

f s
qu

ar
ed

na
tu

ra
l f

re
qu

en
ci

es
 (H

z)

Change in squared frequency of 1st mode Δ(1)

(b)

Figure 2: Sensitivity to changes in square natural frequencies (Δ(1)

and Δ
(2)) of 4-story structure.
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Figure 3: DLI12 values and their intervals within the range ⟨DLI ±
2𝜎DLI⟩ of 4-story structure.

by using the DLI values presented in Figure 3, the quan-
tification of damage on that story can be calculated from
the DQI definition with its standard deviation. Figure 4
compares the DQI with its uncertainty against real damage
to a 4-story structure that reduced the stiffness of each story
by 5, 15, and 25%.

5. Application to Tall Buildings

Next, we verified ourmethod on an eight-story structure.The
damping ratio was chosen to be 3% and the data sampling
frequency was 200Hz; the excitation loading is white-noise.
Themass of each story was 1000 tons.The stiffness of the first
story was assumed to be 𝑘

1
= 𝑘 = 1.3 × 10

3MN/m, and the
stiffness of the other stories was 𝑘

2
= 0.95𝑘, 𝑘

3
= 0.9𝑘, 𝑘

4
=

0.85𝑘, 𝑘
5
= 0.8𝑘, 𝑘

6
= 0.75𝑘, 𝑘

7
= 0.7𝑘, and 𝑘

8
= 0.65𝑘.
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Table 1: Damage scenarios of eight-story structure.

Damage case
number

Location of damage
(damaged story)

Quantification of damages
(percentage of the stiffness

reduction)
1 1st 23%
2 4th 14%
3 7th 6%

The first three natural frequencies of the undamaged
structure were calculated to be 0.99, 2.82, and 4.58Hz. Table 1
summarizes these three cases in this simulation. The first
three natural frequencies were obtained from acceleration
data of the sensor on top of the simulated structure by
applying the subspace identification method described in
[19]. The resulting DLI values are displayed in Table 2.

Eight cases of damage (from the 1st to 8th story) were
simulated. For each case, the damage was simulated by
reducing the stiffness of each story from5 to 25%, and these 21
levels of damage were reflected in the changes in the natural
frequencies. The DLI12 values and their reliability band were
calculated by assuming that the squared frequency had a
standard deviation of 1% (Figure 5). There is some overlap of
the 95% confidence intervals. The DLI12 values could detect
the location of the damage in three sections of the structure.
The DLI12 values of the three damage cases are plotted as the
dash dotted lines in Figure 5.

The next step is using the 2nd and 3rd frequency changes
to get DLI23 and their reliability band. Figures 6, 7, and 8 plot
the DLI23 values.

After determining the location of the damage by using
the DLI values, the amount of damage on that story was
calculated by interpolating the DQI values.TheDLI and DQI
values together with their uncertainty in the three damage
cases are displayed as the red crosses in Figures 6 to 8.

Damage indices are dependent on the mass and stiffness
distribution. Thus, we need a prior knowledge of them
to apply our method. If design drawing is not available,
some system identification tools may be needed. This is the
limitation of this method to be applied to a real building.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

Stiffness reduction (%)
5 10 15 20 25

D
LI

1
2

va
lu

es
 an

d 
th

ei
r i

nt
er

va
ls

−0.1

Case 2 (0.95)

3rd and 4th story

Case 1 (0.51)

1st, 2nd and 5th

Case 3 (0.15)

6th, 7th and 8th

damage

story damage

story damage

Figure 5: DLI12 values and their intervals for 8-story structure.
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Figure 6: DLI23 and DQI values and their intervals for the blue
sections.

6. Conclusion

The presented method determines the location and amount
of damage to shear structures by using the changes in the first
few natural frequencies only. Natural frequencies decrease as
a result of damage and the damage indices (DLI andDQI) use
these changes to reveal the location and amount of damage.
TheDLI uses twonatural frequency changes between undam-
aged and damaged states and is stable for each damaged story.
After identifying the location of the damage, the DQI of the
damaged story is used to quantify the damage.

As we need only a few natural frequencies, two vibration
sensors are enough to obtain the modal frequencies, one on
the ground detecting an input and the other on the roof
detecting an output. If the input lasts long and the spectrum
is flat, we may identify those parameters using the output
data without input information.Thus, in such a case, only one
sensor is needed.

The uncertainty associated with system identification
methods for obtaining natural frequencies was also carefully
considered, and the confidence intervals of the DLI values
were acceptable with high accuracy. The method was also
shown to be able to detect the location of damage to tall
buildings.
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Table 2: Natural frequencies of 3 damage cases of eight-story structure.

Damage case
number

The 1st natural frequency, 𝜔
1

[Hz]
The 2nd natural frequency, 𝜔

2

[Hz]
The 3rd natural frequency, 𝜔

3

[Hz] DLI12 DLI23

1 0.97 2.75 4.47 0.51 0.52
2 0.98 2.82 4.50 0.95 0.04
3 0.99 2.76 4.49 0.15 0.55
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