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We apply Cartwright’s theory in integral function theory to describe the angular distribution of scattering resonances in
mathematical physics. A quantitative description on the counting function along rays in complex plane is obtained.

1. Introduction

In this paper, we study the distribution of the scattering
resonances of a certain class of elliptic operators arousing
from Schrödinger operator. We have

𝐻 := ΔR3 + 𝑉 : 𝐿
2
(R
3
) → 𝐿

2
(R
3
) , (1)

where 𝑉 ∈ C∞
0
(R3;R). Let us denote the physical plane by

P := {𝜆 ∈ C | I𝜆 > 0} . (2)

It is well-known from spectral analysis that the resolvent
operator (𝐻 − 𝜆

2
)
−1

: 𝐿
2
(R3) → 𝐻

2
(R3) is bounded in P

except for some finite set {𝜇
1
, . . . , 𝜇

𝑒
} such that {𝜇2

1
, . . . , 𝜇

2

𝑒
} are

the pure point spectrum of 𝐻. The resolvent (𝐻 − 𝜆
2
)
−1 can

be meromorphically extended fromP to C as an operator:

𝑅 (𝜆) := (𝐻 − 𝜆
2
)
−1

: 𝐿
2

comp (R
3
) → 𝐻

2

loc (R
3
) (3)

with poles of finite rank. All such meromorphic poles in
C are called resolvent resonances in mathematical physics
literature. There are scattering theories in more generalized
formalism.We refer to [1–3]. Let all of themeromorphic poles
of 𝑅(𝜆) be denoted as

R := {𝜇
1
, . . . , 𝜇

𝑒
, 𝜆
1
, 𝜆
2
, . . .} (4)

repeated according to the multiplicity such that the only
accumulation point is at infinity. The possible infinite set
{𝜆
1
, 𝜆
2
, . . .} is in the lower half complex plane.

The resolvent operator 𝑅(𝜆) defines a scattering matrix

𝑆 (𝜆) : 𝐿
2
(S
2
) → 𝐿

2
(S
2
) , (5)

which is of the form 𝐼 + 𝐴(𝜆), where 𝐴(𝜆) is of trace class
depending meromorphically on 𝜆 ∈ C. The poles are called
the scattering resonances which share the same multiplicity
at each pole as resolvent resonances. It is a subject of great
interest in mathematical physics to describe the scattering
resonances approximately inside a disc of radius 𝑟 or in
certain region in complex plane C. Therefore, we count the
poles of the meromorphically defined scattering determinant
det 𝑆(𝜆).

In any case, we consider the determinant

𝑠 (𝜆) := det 𝑆 (𝜆) (6)

satisfying the following properties [1–4]:

(P.1) 𝑠(−𝜆) = 𝑠(𝜆) = 1/𝑠(𝜆);
(P.2) the point set R and |𝑠(𝜆)| is symmetric about
the imaginary axis;
(P.3) there is no pole on the real axis except possibly
a double pole at 𝜆 = 0;
(P.4) there are only exceptionally finitely many poles
{𝜇
1
, . . . , 𝜇

𝑒
} in C+ := {I𝑧 > 0}; infinitely many poles

in C− := {I𝑧 < 0};
(P.5) the functional determinant 𝑠(𝜆) is of order 3, the
number of space dimension.
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The growth estimate on 𝑠(𝜆) has only upper bound as proved
in [2] which is an optimal upper bound. The actual lower
bound is unknown to the author. (P.5) is the most nontrivial
hypothesis.

Let us define

s (𝜆) := 𝑧
𝑚0

𝑒

∏

𝑗=1

𝜆 − 𝜇
𝑗

𝜆 − 𝜇
𝑗

𝑠 (𝜆) , (7)

where 0 ≤ 𝑚
0
≤ 2 is chosen minimally such that s(𝜆) has no

zero at 𝑧 = 0. Surely, s(𝜆) is a regular function of order three
in C
+

:= {I𝑧 ≥ 0}. Because of (P.1), the zeros of s(𝜆) are
substitutes in the study of poles of 𝑠(𝜆) in C− := {I𝑧 < 0}.

As suggested by (P.4), there are infinitely many zeros of
s(𝜆) inC+. We will use Cartwright’s theory [5–10] to describe
the zeros of s(𝜆)more precisely.We state the following result.

Theorem 1. Let 𝑛(𝑟, 𝛼, 𝛽, s) be the number of the zeros of s(𝜆)
inside the sector 𝛼 ≤ arg 𝜆 ≤ 𝛽 and |𝜆| ≤ 𝑟. Let ℎ(𝜃)
be the generalized indicator function of s(𝜆) with respect to
proximate order 𝜌(𝑟). We assume the properties (P.1) to (P.5).
Then, s(𝜆) is of completely regular growth in [0, 𝜋] and the
following asymptotics hold:

𝑛 (𝑟, 0,
𝜋

3
− 𝜖, s) ∼ 0𝑟

3(𝑟)
+ ⋅ ⋅ ⋅ , as 𝑟 → ∞; (8)

𝑛 (𝑟,
𝜋

3
− 𝜖,

𝜋

3
+ 𝜖, s) ∼

1

2𝜋
[ℎ (

𝜋

6
) + ℎ (

𝜋

2
)] 𝑟
3(𝑟)

+ ⋅ ⋅ ⋅ ,

as 𝑟 → ∞;

(9)

𝑛 (𝑟,
𝜋

3
+ 𝜖,

2𝜋

3
− 𝜖, s) ∼ 0𝑟

3(𝑟)
+ ⋅ ⋅ ⋅ , as 𝑟 → ∞;

(10)

𝑛 (𝑟,
2𝜋

3
−𝜖,

2𝜋

3
+𝜖, s)∼

1

2𝜋
[ℎ (

𝜋

2
)+ℎ (

5𝜋

6
)] 𝑟
3(𝑟)

+⋅ ⋅ ⋅ ,

as 𝑟 → ∞;

(11)

𝑛 (𝑟,
2𝜋

3
+ 𝜖, 𝜋, s) ∼ 0𝑟

3(𝑟)
+ ⋅ ⋅ ⋅ , as 𝑟 → ∞. (12)

The definition of a proximate order 𝜌(𝑟) of a regular
function is to be given in Definition 3 and we define the
generalized indicator function ℎ(𝜃) in Definition 4. The con-
nection of Cartwright’s theory to the location of resonances
is firstly mentioned in [11] and followed by [12, 13]. In [11,
page 278], Zworski studied the resonances using the theory of
zeros of certain Fourier transform developed by Cartwright
and Titchmarsh. In [13, page 269], Froese computed the
indicator function in one dimensional potential scattering
and used the fundamental theorem on the distribution of
the zeros of a function of completely regular growth [9, page
152] to prove his results. In [12], this fundamental theorem is
applied to study the location of resonances in sectors. In this
paper, we study the indicator function and then the density
function for the scattering resonances.

The existence of infinitely many resonances is known in
several settings. See [1, 3, 4, 12]. In particular, we previously
have lower bound [4] that

lim
𝑟→∞

𝑛 (𝑟, 0, 2𝜋, 𝑠)

𝑟
> 0. (13)

2. Cartwright’s Theory

We collect many classic theorems from [5–10, 14] in this
section. Readers who are familiar with the references may
skip it.

Definition 2. Let 𝑓(𝑧) be a regular function in arg 𝑧 ∈ [𝛼, 𝛽].
Let

𝑀
𝑓
(𝑟) := max

𝛼≤arg 𝑧≤𝛽


𝑓 (𝑟𝑒
𝑖𝜃
)

. (14)

We say 𝑓(𝑧) is a function of finite order if there exists a
positive constant 𝑘 such that the inequality

𝑀
𝑓
(𝑟) < 𝑒

𝑟
𝑘

(15)

is valid for all sufficiently large values of 𝑟. The greatest lower
bound of such numbers 𝑘 is called the order of the function
𝑓(𝑧). By the type 𝜎

𝑓
of an entire function 𝑓(𝑧) of order 𝜌,

we mean the greatest lower bound of positive number 𝐴 for
which asymptotically we have

𝑀
𝑓
(𝑟) < 𝑒

𝐴𝑟
𝜌

. (16)

That is,

𝜎
𝑓
:= lim sup
𝑟→∞

ln𝑀
𝑓
(𝑟)

𝑟𝜌
. (17)

If 0 < 𝜎
𝑓
< ∞, then we say 𝑓(𝑧) is of normal type or mean

type.

Definition 3. Let 𝜌 ∈ R and 𝜌(𝑟) : R+ → R+. We say 𝜌(𝑟) is
a Lindelöf proximate order to 𝜌 if

𝜌 (𝑟) is real, continuous, and piecewise differentiable

for 𝑟 > 𝑙 > 0;

lim
𝑟→∞

𝜌 (𝑟) = 𝜌 ≥ 0;

lim
𝑟→∞

log𝑀
𝑓
(𝑟)

𝑟𝜌(𝑟)
= 1;

lim
𝑟→∞

𝑟𝜌

(𝑟) log 𝑟 = 0,

(18)

where 𝜌

(𝑟) is a right- or left-hand derivative wherever

different.

This is found in [8, page 54]. The following can be found
in [6, page 437] and [10, page 53].



ISRNMathematical Physics 3

Definition 4. Let 𝑓(𝑧) be a regular function of proximate
order 𝜌(𝑟) in the angle [𝜃

1
, 𝜃
2
]. The following quantity is

called the generalized indicator of the function 𝑓(𝑧):

ℎ
𝑓
(𝜃) := lim sup

𝑟→∞

ln 𝑓 (𝑟𝑒
𝑖𝜃
)


𝑟𝜌(𝑟)
, 𝜃
1
≤ 𝜃 ≤ 𝜃

2
. (19)

We say ℎ
𝑓
(𝜃) is sinusoidal at 𝜃 = 𝛼 if

ℎ
𝑓
= 𝐶 cos 𝜌 (𝜃 − 𝛾) , (20)

for some constant 𝐶 and for 𝛼 − 𝛿 ≤ 𝜃 ≤ 𝛼 + 𝛿, where
𝛿 > 0; moreover, we say a function 𝐻(𝜃) is sinusoidal or 𝜌-
trigonometric if

𝐻(𝜃) = 𝐴 cos 𝜌𝜃 + 𝐵 sin 𝜌𝜃, 𝐴, 𝐵 are constants.
(21)

Definition 5. A function 𝐾(𝜃) is called 𝜌-trigonometrically
convex on the closed interval [𝛼, 𝛽] if for 𝛼 ≤ 𝜃

1
< 𝜃
2
≤ 𝛽,

0 < 𝜃
2
− 𝜃
1
< 𝜋/𝜌, the identities

𝐾(𝜃
1
) = ℎ
1
, 𝐾 (𝜃

2
) = ℎ
2 (22)

imply the inequality

𝐾 (𝜃) ≤ 𝐻 (𝜃) , 𝜃
1
≤ 𝜃 ≤ 𝜃

2
, (23)

where𝐻(𝜃) is a 𝜌-trigonometric function such that𝐻(𝜃
1
) =

ℎ
1
, 𝐻(𝜃
2
) = ℎ

2
. For such a pair of ℎ

1
, ℎ
2
, 𝐻(𝜃) is uniquely

expressed by the formula

𝐻(𝜃) =
ℎ
1
sin 𝜌 (𝜃

2
− 𝜃) + ℎ

2
sin 𝜌 (𝜃 − 𝜃

1
)

sin 𝜌 (𝜃
2
− 𝜃
1
)

, 𝜃
1
≤ 𝜃 ≤ 𝜃

2
.

(24)

In particular, we have

ℎ
𝑓
(𝜃) + ℎ

𝑓
(𝜃 +

𝜋

𝜌
) ≥ 0, (25)

wherever itmakes sense.Wemust emphasize that a sinusoidal
function𝐻(𝜃) assuming ℎ

1
, ℎ
2
at 0 < 𝜃

2
−𝜃
1
< 𝜋/𝜌 is uniquely

determined. See [10, pages 53-54].

Theorem 6. Let 𝑓(𝑧) be a holomorphic function and satisfy
(16) inside an angle. Then, its indicator function ℎ

𝑓
(𝜃) with

respect order 𝜌 is a continuous and 𝜌-trigonometrically convex
function inside the angle.

Definition 7. Let 𝑓(𝑧) be an integral function of proximate
order 𝜌(𝑟). We use

𝑛 (𝑟, 𝛼, 𝛽, 𝑓) (26)

to denote the number of the zeros of 𝑓(𝑧) inside the sector
with angle [𝛼, 𝛽] and 0 < 𝑙 < |𝑧| ≤ 𝑟; we define the density
function of index 𝜌(𝑟):

Δ
𝑓
(𝛼, 𝛽) := lim sup

𝑟→∞

𝑛 (𝑟, 𝛼, 𝛽, 𝑓)

𝑟𝜌(𝑟)
. (27)

Definition 8. An entire function𝑓(𝑧) of proximate order 𝜌(𝑟)
is said to be of completely regular growth if there is some
zero relative measure set 𝐸

0
such that when 𝑟 → ∞ outside

𝐸
0
, the function ℎ

𝑓,𝑟
(𝜃) = ln |𝑓(𝑟𝑒𝑖𝜃)|/𝑟𝜌(𝑟) tends to ℎ

𝑓
(𝜃)

uniformly.

We review Cartwright’s theory for entire functions of
finite order.

Definition 9. Let 𝑓(𝑧) be a regular function of proximate
order 𝜌(𝑟) of type 𝜎

𝑓
in angle [𝛼, 𝛽]. We say arg 𝑧 = 𝛾 is a

direction of Borel of approximate order 𝜌(𝑟) of 𝑓(𝑧) if

lim
𝑟→∞

𝑛 (𝑟, 𝛾 − 𝜖, 𝛾 + 𝜖, 𝑓 − 𝑎)

𝑟𝜌(𝑟)
= 𝜂 (𝜖) > 0,

∀𝜖 > 0, 𝛼 < 𝛾 < 𝛽,

(28)

and for all values 𝑎, except perhaps one.

If 0 < 𝜎
𝑓
< ∞, then we say arg 𝑧 = 𝛾 is a direction of

Borel of maximum kind.
We review the followingCartwright theorem [5, page 504,

Theorem A; page 507, Theorem V] or, more generally, as in
[9, page 155]. However, one should notice the typography in
the corollary on page 155. The density of the zero set inside
an open angle with a sinusoidal indicator function is zero.
We will examine the condition for a direction of Borel has
an exceptional value or not.

Theorem 10. Suppose that 𝑓(𝑧) is an integral function of
proximate order 𝜌(𝑟), where 𝜌 > 1, and that

ℎ (𝜃) = ℎ (0) cos 𝜃𝜌, |𝜃| ≤
𝜋

2𝜌
. (29)

Then, for any 𝛿 > 0,

lim
𝑟→∞

𝑛 (𝑟, −𝜋/2𝜌 + 𝛿, 𝜋/2𝜌 − 𝛿, 𝑓)

𝑟𝜌(𝑟)
= 0. (30)

In particular, 𝑓(𝑧) has no direction of Borel of proximate order
𝜌(𝑟) inside |𝜃| < 𝜋/2𝜌.

There is another theorem for the nonexistence of direc-
tion of Borel. See [14, page 201].

Theorem 11. Let 𝛾 ∈ (𝛼, 𝛽) and ℎ(𝜃) ≤ 0 for all 𝜃 ∈ (𝛼, 𝛽),
then 𝛾 is not a direction of Borel for which with respect to 𝜌(𝑟).

Theorem 12. If 𝑓(𝑧) is of finite proximate order 𝜌(𝑟) for 𝛼 ≤

arg 𝑧 ≤ 𝛽, |𝑧| ≥ 𝑙, where 𝛽 − 𝛼 > 𝜋/𝜌, then there is at least one
direction of Borel of maximum kind for which 𝛼 < arg 𝑧 < 𝛽.

This is stated the same as in [6, page 425]. We state the
following fundamental theorem in [9, page 152].

Theorem 13. If a holomorphic function 𝐹(𝑧) of order 𝜌(𝑟) has
completely regular growth within an angle (𝜃

1
, 𝜃
2
), then for all
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values 𝜗, 𝜃 such that 𝜃
1
< 𝜗 < 𝜃 < 𝜃

2
, except possibly for a

denumerable set, the following limit exists:

1

2𝜋𝜌
𝑠
𝐹
(𝜗, 𝜃) = lim

𝑟→∞

𝑛 (𝑟, 𝜗, 𝜃, 𝐹)

𝑟𝜌(𝑟)
, (31)

where

𝑠
𝐹
(𝜗, 𝜃) = ℎ



F (𝜃) − ℎ


F (𝜗) + 𝜌
2
∫

𝜃

𝜗

ℎ
𝐹
(𝜑) 𝑑𝜑. (32)

The exceptional denumerable set can only consist of points for
which ℎF(𝜃 + 0) ̸= ℎ



F(𝜃 − 0).

Wemay find ℎ(𝜃) by the following lemma in [9, page 464].

Lemma 14. Let 𝑓(𝑧) be a holomorphic function of proximate
order 𝜌(𝑟) inside the angle | arg 𝑧| ≤ 𝛼, 0 < 𝛼 ≤ 𝜋/2𝜌 and let
ℎ(±𝛼) = ℎ(0) cos 𝜌𝛼. Then, ℎ(𝜃) = ℎ(0) cos 𝜌𝜃, −𝛼 ≤ 𝜃 ≤ 𝛼.

3. Proof of Theorem 1

Using assumption (P.5), we have 𝜌 = 3. We useTheorem 6 to
have that

ℎ (𝜃) ≤ 𝐶 cos 𝜌 (𝜃 − 𝜋

2
) =: 𝐻 (𝜃) , for some 𝐶;

ℎ (𝜃
𝑗
) = 𝐻(𝜃

𝑗
) , 𝑗 = 1, 2,

(33)

where 𝜋/2 − 𝜋/2𝜌 ≤ 𝜃
1
< 𝜃
2
≤ 𝜋/2 + 𝜋/2𝜌 and 0 < 𝜃

2
− 𝜃
1
<

𝜋/𝜌. Because of the continuity of ℎ(𝜃),

ℎ (𝜃) ≤ 𝐶 cos 3 (𝜃 − 𝜋

2
) , 𝜃 ∈ [

𝜋

3
,
2𝜋

3
] . (34)

By the symmetry of |s(𝜆)| along the imaginary axis, its
indicator function ℎ(𝜃) has a local minimum or maximum at
𝜃 = 𝜋/2. We use the 𝜌-trigonometric convexity of ℎ(𝜃) in [9,
page 56] which implies that

ℎ (𝜃) ≥ ℎ (
𝜋

2
) cos 3 (𝜃 − 𝜋

2
) , ∀𝜃 ∈ [

𝜋

3
,
2𝜋

3
] . (35)

Therefore, (34) and (35) imply that

ℎ (
𝜋

3
) = ℎ (

2𝜋

3
) = 0. (36)

We apply the Lemma 14 to obtain

ℎ (𝜃) = ℎ (
𝜋

2
) cos 3 (𝜃 − 𝜋

2
) , ∀𝜃 ∈ [

𝜋

3
,
2𝜋

3
] .

(37)

Once again we can apply Lemma 14 to the intervals [0, 𝜋/3]
and [2𝜋/3, 𝜋]. The equalities

ℎ (0) = ℎ (
𝜋

3
) = ℎ (

2𝜋

3
) = ℎ (𝜋) = 0 (38)

imply that

ℎ (𝜃) =

{{{{{{{

{{{{{{{

{

−ℎ(
𝜋

6
) cos 3 (𝜃 − 𝜋

2
) , for 𝜃 ∈ [0, 𝜋

3
] ;

ℎ (
𝜋

2
) cos 3 (𝜃 − 𝜋

2
) , for 𝜃 ∈ [𝜋

3
,
2𝜋

3
] ;

−ℎ (
𝜋

6
) cos 3 (𝜃 − 𝜋

2
) , for 𝜃 ∈ [2𝜋

3
, 𝜋] .

(39)

Therefore, s(𝜆) is of completely regular growth in (0, 𝜋/3),
(𝜋/3, 2𝜋/3), and (2𝜋/3, 𝜋) and, hence, in (0, 𝜋) by applying
directly from Definition 8. In general, from 𝜌-trigonometric
convexity (25), one has

ℎ (
𝜋

2
) + ℎ (

𝜋

6
) ≥ 0. (40)

We apply Theorem 10 with indicator (39) in (0, 𝜋/3), (𝜋/3,
2𝜋/3), and (2𝜋/3, 𝜋), respectively.The set of zeros of s(𝜆) is of
density zero there. This proves the asymptotics (8), (10), and
(12).

Let us discuss the following four possible types of con-
junction in (39):

ℎ (
𝜋

2
) > 0, ℎ (

𝜋

6
) > 0; (41)

ℎ (
𝜋

2
) > 0, ℎ (

𝜋

6
) ≤ 0; (42)

ℎ (
𝜋

2
) ≤ 0, ℎ (

𝜋

6
) > 0; (43)

ℎ (
𝜋

2
) ≤ 0, ℎ (

𝜋

6
) ≤ 0. (44)

For the case (44), we conclude that ℎ(𝜃) ≤ 0, for 𝜃 ∈ [0, 𝜋], by
(39). However, Theorems 12 and 11 exclude this case.

For the case (41), (42), and (43), we apply Theorem 10,
which suggests that 0, 𝜋/3, 2𝜋/3, 𝜋 are the only four possible
directions of Borel. Now we apply the formula (32):

𝑠 (
𝜋

6
,
𝜋

2
) = ℎ

(
𝜋

2
) − ℎ

(
𝜋

6
) + 9∫

𝜋/2

𝜋/6

ℎ (𝜑) 𝑑𝜑

= 9∫

𝜋/2

𝜋/6

ℎ (𝜑) 𝑑𝜑

= 3 [ℎ (
𝜋

6
) + ℎ (

𝜋

2
)] ; 𝑠 (

𝜋

2
,
5𝜋

6
)

= 3 [ℎ (
𝜋

2
) + ℎ (

5𝜋

6
)] .

(45)

Therefore,

lim
𝑟→∞

𝑛 (𝑟, 𝜋/6, 𝜋/2, s)

𝑟3(𝑟)
=

1

2𝜋
[ℎ (

𝜋

6
) + ℎ (

𝜋

2
)] ;

lim
𝑟→∞

𝑛 (𝑟, 𝜋/2, 5𝜋/6, s)

𝑟3(𝑟)
=

1

2𝜋
[ℎ (

𝜋

2
) + ℎ (

5𝜋

6
)] .

(46)

This proves (9) and (11).
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