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In a phage 𝜆 genetic switch model, bistable dynamical behavior can be destroyed due to the bifurcation caused by inappropriately
chosen model parameters. Since the values of many parameters with biological significance often cannot be accurately acquired, it
is thus of fundamental importance to analyze how and to which extent the system dynamics is influenced by model parameters,
especially those parameters pertaining to binding energies. In this paper, we apply a Jacobian method to investigate the relation
between bifurcation and parameter uncertainties on a phage 𝜆 OR model. By introducing bistable range as a measure of system
robustness, we find that RNApolymerase binding energies have theminimumbistable ranges among all the binding energies, which
implies that the uncertainties on these parameters tend to demolish the bistability more easily. Moreover, parameters describing
mutual prohibition between proteins Cro and CI have finite bistable ranges, whereas those describing self-prohibition have infinity
bistable ranges. Hence, the former are more sensitive to parameter uncertainties than the latter. These results help to understand
the influence of parameter uncertainties on the bifurcation and thus bistability.

1. Introduction

Bistability is a salient feature of phage 𝜆 genetic switch.
Mathematical models with a number of parameters have
been established to describe its bistable behavior. However,
parameter variation in phage 𝜆 model may considerably
change the system dynamics. Therefore, in the case when
the model parameters are not precisely known, it is useful
to study the influence of parameter uncertainty on system
dynamics.

Since 1980s, researchers have developed several models
for phage 𝜆 genetic switch. Reference [1] proposed a quan-
titative model for phage 𝜆 according to the principles of
statistical thermodynamics. The model by [2] included two
variables, that is, concentrations of proteins CI and Cro.
Reference [3] extended this model and pointed out the
discrepancy between experimental and theoretical results.
Moreover, models with four variables were built to include
more ingredients such as mRNA concentration in phage 𝜆
[4]. Other useful models include Markov chain model [5],

delayed reaction stochastic model [6], fuzzy logic model [7],
decision making [8], and qualitative model [9]. Based on
thesemodels, significant research progresses on phage 𝜆 have
been made [10–15].

Most of these models contain parameters that cannot be
precisely determined. For example, themodel by [2] hasmore
than 10 binding energy related parameters, each of whichmay
vary up to ±0.06 kcal/mol and thus affects system dynamics.
Nonspecific binding also introduces additional factors that
influence the system models [16]. Reference [17] developed
a model that has 13 binding energy related parameters
with uncertainty ranges around 0.5 kcal/mol. Moreover, [18]
pointed out that some parameters such as protein synthesis
rates can be changed as surrounding environment changes.
Reference [19] reported that single point mutation of DNA
leads to ±2 kcal/mol change for binding free energy. Due to
these parameter uncertainties, it is often desired to analyze
the effect of these parameters on system dynamics.

Researchers have been using sensitivity and robustness
to study the influence of parameter uncertainty. Sensitivity
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and robustness are closely related because a robust system
is not sensitive to parameter variations [20]. By using lysis
frequency as a sensitivity measure, [21] simulated a mutation
model introduced by [22] and concluded that spontaneous
switching from lysogen to lysis depends sensitively on model
parameters. By systematically perturbing binding energies
with ±1 kcal/mol, [23] concluded that lysogenic activity at
promoter 𝑃

𝑅𝑀
remains stable under this perturbation.

In this paper we investigate bifurcation by using bistable
range as a system robustness measure. In a typical case, phage
𝜆 genetic switch model has three equilibria. Two of them are
stable corresponding to the lysogenic and lytic states, and
the third one is a saddle point. When some parameters are
perturbed, it is possible that one stable equilibrium and the
saddle point coalesce, then both of them disappear, resulting
in the loss of bistable behavior. Hence, bistable region can be
defined as the parameter region in which bistable behavior
exists [18]. The bistable region for a parameter is large if the
system dynamics is not sensitive to that parameter.

We are interested in analyzing bistable ranges for binding
energy related parameters. Some other parameters such as
protein degradation rate and protein synthesis rate with
respect to gene transcription have already been proved that
their variations may lead to the loss of bistability [3, 24].
Our calculations are based on a phage 𝜆 OR model [3].
Although DNA looping formed by cooperations between
the left operators and the right operators affects the stability
of the genetic switch [25], the OR model only includes
the effects of the right operators, which are believed to
play a critical role for lysogeny maintenance [26]. We will
calculate bistable ranges for all binding energies, which are
crucial in determining the affinity that proteins bind to
phage 𝜆 genes. Furthermore, we define Z-shaped bifurcation
and calculate Jacobian matrix to study robustness. We find
out that different binding energy affects lysogeny stability
differently: some of them may destroy bistability, whereas
others have little influence on system dynamics. Therefore,
we need to precisely determine the values of those sensitive
parameters in the model because otherwise we may not get
an effective bistable switch.

2. Phage 𝜆 Modeling

We first present phage 𝜆 gene regulatory networks and then
introduce their mathematical model. Lysogeny and lysis are
two possible states for phage 𝜆. It is believed that wild-type
phage 𝜆 has quite a stable lysogenic state since lysogeny loss
rate is even lower than 10−8 per cell generation [27]. However,
certain conditions such as the exposure to UV light [28, 29],
the presence of mitomycin C [30], or the starvation of the
host cells [31] can induce phage 𝜆 from lysogeny to lysis.
Mathematical models have been built to successfully explain
stability and high efficiency of genetic switch.

The concentrations of two proteins CI and Cro can serve
as an indication of which state phage 𝜆 is in, lysogeny or
lysis. In lysogeny, the concentration of protein CI in the cell is
significantly higher than that of protein Cro, whereas in lysis,
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Figure 1: Three binding sites on a DNA segment. The sites 𝑂
𝑅
1,

𝑂
𝑅
2, and 𝑂

𝑅
3 can be bound by CI dimer, Cro dimer, or RNA

polymerase.This DNA segment consists of promoters𝑃
𝑅𝑀

and𝑃
𝑅
. If

the RNA polymerase binds to 𝑂
𝑅
3, cI gene is expressed; if the RNA

polymerase binds to𝑂
𝑅
1 and𝑂

𝑅
2, cro gene is expressed.The amount

of Cro and CI in the cell directly determines which state phage 𝜆 is
in.

Table 1: Parameter values for our model.

Δ𝐺
1𝑐
= −12.0 kcal/mol† Δ𝐺

2𝑐
= −10.8 kcal/mol†

Δ𝐺
3𝑐
= −13.4 kcal/mol† Δ𝐺

1𝑟
= −12.5 kcal/mol‡

Δ𝐺
2𝑟
= −10.5 kcal/mol‡ Δ𝐺

3𝑟
= −9.5 kcal/mol‡

Δ𝐺
12𝑟

= −2.7 kcal/mol‡ Δ𝐺
23𝑟

= −2.9 kcal/mol‡

Δ𝐺
𝑅12

= −12.5 kcal/mol† Δ𝐺
𝑅3
= −11.5 kcal/mol†

𝐾
𝑟
= 5.56 × 10

−9M† 𝐾
𝑐
= 3.26 × 10

−7M†

𝑁RNAP = 3.0 × 10
−8M§

𝜇
1
= 2.0 × 10

−2min−1†

𝜇
2
= 3.6 × 10

−2min−1† 𝑅 = 1.99 cal/(mol⋅K)
𝑇 = 310K 𝑘 = 1/11

¶

†denotes the parameter values from [14], ‡from [32], §from [21], and ¶from
[3].

protein Cro dominates the cell. The amount of CI and Cro
thus implies which state phage 𝜆 is in.

Figure 1 illustrates the gene segment regulating cro and
cI gene expression. Three binding sites 𝑂

𝑅
1, 𝑂
𝑅
2, and 𝑂

𝑅
3

control the expression of two kinds of regulatory proteins.
The 𝑃

𝑅𝑀
promoter covers the whole binding site 𝑂

𝑅
3 and

part of 𝑂
𝑅
2, controlling cI gene expression. When RNA

polymerase (RNAP) binds to the site𝑂
𝑅
3, the gene expression

is on, resulting in the production of protein CI. The 𝑃
𝑅

promoter covers all of 𝑂
𝑅
1 and part of 𝑂

𝑅
2, controlling

cro expression. When RNAP binds to sites 𝑂
𝑅
1 and 𝑂

𝑅
2

simultaneously, the 𝑐𝑟𝑜 gene expression is on. The binding
sites may be occupied by either Cro or CI protein. Usually
Cro and CI first form their dimers so that they are able to
bind to 𝑂

𝑅
1, 𝑂
𝑅
2, and 𝑂

𝑅
3, prohibiting the gene expressions

on these sites.
Several phage 𝜆 models have been established based on

this regulating mechanism. In this paper we adopt the well-
known two-dimensionalORmodel stated in [3]with updated
parameter values given in Table 1. This model involves three
𝑂
𝑅
gene binding sites, which are believed to be the most

critical factors for the stability of genetic switch [33]. This
two-dimensional model is in line with the general biological
switch model for two-gene networks [34]. To keep it simple,
we eliminate the effects from other activities in the cell, such
as nonspecific binding [16, 17], stochastic gene expression
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[35], and intrinsic and extrinsic noises [36]. The model is
described by the following system equations:

𝑑𝑁
𝑟

𝑑𝑡
= 𝐴
1
𝑓
𝑟
− 𝜇
1
𝑁
𝑟
,

𝑑𝑁
𝑐

𝑑𝑡
= 𝐴
2
𝑓
𝑐
− 𝜇
2
𝑁
𝑐
,

(1)

where

𝑓
𝑟
= 𝑃
28
+ 𝑃
29
+ 𝑃
30
+ 𝑃
40
,

𝑓
𝑐
=

33

∑

𝑖=31

𝑃
𝑖
+ 𝑘(

40

∑

𝑗=34

𝑃
𝑗
) ,

(2)

𝑃
𝑠
=

exp (−Δ𝐺
𝑠
/𝑅𝑇)𝑁

𝑖(𝑠)

𝑟2
𝑁
𝑗(𝑠)

𝑐2
𝑁
𝑘(𝑠)

RNAP

∑
40

𝑚=1
exp (−Δ𝐺

𝑚
/𝑅𝑇)𝑁

𝑖(𝑚)

𝑟2
𝑁
𝑗(𝑚)

𝑐2
𝑁
𝑘(𝑚)

RNAP

,

(𝑠 = 1, 2, . . . , 40) .

(3)

The subscript 𝑠 corresponds to 40 binding configurations
shown in Table 2. The conventions between CI dimer (𝑁

𝑟2
),

Cro dimer (𝑁
𝑐2
), and their monomers (𝑁

𝑟
and𝑁

𝑐
) are

𝑁
𝑟2
=
1

2
𝑁
𝑟
+
1

8
𝐾
𝑟
−
1

8
√𝐾2
𝑟
+ 8𝑁
𝑟
𝐾
𝑟
,

𝑁
𝑐2
=
1

2
𝑁
𝑐
+
1

8
𝐾
𝑐
−
1

8
√𝐾2
𝑐
+ 8𝑁
𝑐
𝐾
𝑐
.

(4)

From (1)–(4),𝑁
𝑟
,𝑁
𝑐
represent concentrations of proteins

CI and Cro. The parameters 𝐴
1
and 𝐴

2
are synthesis rates of

CI and Cro, respectively; 𝜇
1
and 𝜇

2
are the overall rates that

decrease protein concentration, which are caused by normal
protein degradation and cell growth [37].The function 𝑓

𝑟
(or

𝑓
𝑐
) represents the overall probability that the 𝑃

𝑅
(or 𝑃
𝑅𝑀

)
promoter is occupied by RNAP. 𝑃

𝑠
is the probability that

𝑠th configuration occurs, and Δ𝐺
𝑠
is the total binding energy

needed for this configuration. The exponents 𝑖(𝑠), 𝑗(𝑠), and
𝑘(𝑠) represent the numbers of CI dimers, Cro dimers, and
RNAP at 𝑠th configuration, respectively. Δ𝐺

𝑠
is calculated

by summing up the needed single binding energies listed in
Table 1, including cooperation energy. For example, Δ𝐺

5
=

Δ𝐺
12𝑟

+Δ𝐺
1𝑟
+Δ𝐺
2𝑟
. The left right arrows in Table 2 indicate

the cooperations. 𝑘 is the coefficient for positive feedback.
When CI dimer binds to 𝑂

𝑅
2, positive feedback makes the

transcription of cI gene more efficient, hence promotes its
expression. 𝐾

𝑟
, 𝐾
𝑐
are dissociation constants for CI and Cro

proteins, respectively. 𝑅 represents the universal gas constant
and 𝑇 the absolute temperature.

3. Bifurcation in Phage 𝜆

The model used in this paper is two-dimensional nonlinear
ordinary differential equations. To get all the equilibria, we set
the left hand side of (1) to zero and solve the transcendental
equations. It can be found that in general the model has three
equilibria. However, the number of equilibria may vary due
to bifurcation under parameter variation. In phage 𝜆 model,

Table 2: 40 Binding configurations for the three sites.

𝑠 𝑂
𝑅
3 𝑂

𝑅
2 𝑂

𝑅
1

1
2 CI2
3 CI2
4 CI2
5 CI2↔ CI2
6 CI2 CI2
7 CI2↔ CI2
8 CI2↔ CI2↔ CI2
9 Cro2
10 Cro2
11 Cro2
12 Cro2 Cro2
13 Cro2 Cro2
14 Cro2 Cro2
15 Cro2 Cro2 Cro2
16 Cro2 CI2
17 Cro2 CI2
18 Cro2 Cro2 CI2
19 Cro2 CI2
20 CI2 Cro2
21 Cro2 CI2 Cro2
22 CI2 Cro2
23 CI2 Cro2
24 CI2 Cro2 Cro2
25 Cro2 CI2↔ CI2
26 CI2 Cro2 CI2
27 CI2↔ CI2 Cro2
28 RNAP
29 CI2 RNAP
30 Cro2 RNAP
31 RNAP CI2
32 RNAP CI2↔ CI2
33 RNAP CI2 Cro2
34 RNAP
35 RNAP CI2
36 RNAP Cro2
37 RNAP Cro2
38 RNAP Cro2 CI2
39 RNAP Cro2 Cro2
40 RNAP RNAP

frequently occurring is the saddle node bifurcation, whose
precise mathematical definition is given as follows [38].

Definition 1 (saddle node bifurcation). A saddle node bifur-
cation in dynamical system takes place when two equilibrium
points coalesce and disappear.

In (1), two parameters 𝐴
1
and 𝐴

2
are not specified

in Table 1. They represent proportional constants relating
the transcription initiation rate to the absolute rate of CI and
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Figure 2: Saddle node bifurcation with the variation of Cro
synthesis rate 𝐴

2
. This is a schematic plot and not drawn to scale.

Cro protein synthesis [3]. We use Figure 2 to illustrate Z-
shaped bifurcation with the variation of 𝐴

2
. Set 𝐴

1
= 8 ×

10
−9M/min and divide the whole plane into three regions

as shown in Figure 2, labeled by A, B, and C. Initially, when
the value of 𝐴

2
is small in region A, for example, 𝐴

2
≈

5×10
−9M/min, there exists only one stable point and thus one

single curve segment for both 𝑁
𝑟
and 𝑁

𝑐
. At the boundary

of regions A and B, saddle node bifurcation occurs: 𝐴
2

increases to region B, for example, a typical value 𝐴
2
≈

5 × 10
−8M/min, and two new equilibria (one saddle and

one stable equilibrium) emerge, resulting in three equilibria.
Note that this is a saddle node bifurcation with the reversed
direction, in comparison to Definition 1.

At the boundary of regions B and C, saddle node
bifurcation takes place again, leading to the vanishing of
two equilibria (one saddle point and one stable equilibrium).
In region C, say 𝐴

2
≈ 5 × 10

−7M/min, only one stable
equilibrium remains. We notice the motion of the saddle
point. When the saddle point shows up at the boundary of
regions A and B, the lysis stable equilibrium appears as well.
As parameter𝐴

2
increases, the saddle pointmoves toward the

lysogen stable point and finallymergeswith it at the boundary
of regions B and C. Two successive bifurcations form a Z-
shaped curve are shown in Figure 2.

We have not yet specified the boundaries between these
regions quantitatively. Next we solve the values of the bound-
aries by using the Jacobian method. Let us first introduce the
following two theorems [38].

Theorem 2 (Hartman-Grobman Theorem). If the Jacobian
of the nonlinear system �̇� = 𝑔(𝑥) at equilibrium, namely
𝐽(𝑥
0
), has no zero or purely imaginary eigenvalues, then the

phase trajectory of the system �̇� = 𝑔(𝑥) resembles that of the
linearized system �̇� = 𝐽(𝑥

0
)𝑧 near 𝑥

0
if none of the eigenvalues

of 𝐽(𝑥
0
) are on the 𝑗𝜔 axis.

For a given equilibrium 𝑥
0
, in most cases, we can

determine its dynamical behavior qualitatively by calculating
its Jacobian matrix 𝐽(𝑥

0
). For a two-dimensional system, its

Jacobian matrix can be calculated as

𝐽 =

[
[
[
[

[

𝜕𝑔
1

𝜕𝑁
𝑟

𝜕𝑔
1

𝜕𝑁
𝑐

𝜕𝑔
2

𝜕𝑁
𝑟

𝜕𝑔
2

𝜕𝑁
𝑐

]
]
]
]

]

. (5)

The following theorem gives the necessary conditions for
the critical point that bifurcation occurs [38].

Theorem 3. For any nonlinear system �̇� = 𝑔(𝑧, 𝜇), the system
goes through a saddle node bifurcation at 𝑧 = 𝑧

†, 𝜇 = 𝜇
† only

if the following relations are satisfied:

𝑔 (𝑧
†
, 𝜇
†
) = 0, (6)



𝜕𝑔

𝜕𝑧
(𝑧
†
, 𝜇
†
)


= 0. (7)

From (6), 𝑧† is an equilibrium point. In a planar system,
(7) is the determinant of system Jacobian. When the deter-
minant of Jacobian matrix vanishes, at least one eigenvalue
is zero. Jacobian is a characterization of planar system
dynamics. For variation of parameter 𝐴

2
, the system in (1)

can be rewritten as

𝑑𝑁
𝑟

𝑑𝑡
= 𝑔
1
(𝑁
𝑐
, 𝑁
𝑟
, 𝐴
2
) ,

𝑑𝑁
𝑐

𝑑𝑡
= 𝑔
2
(𝑁
𝑐
, 𝑁
𝑟
, 𝐴
2
) .

(8)

From Theorems 2 and 3, for a given 𝐴
2
, the Jacobian matrix

is evaluated at equilibrium points 𝑁†
𝑐
and 𝑁

†

𝑟
. These two

equilibrium points can be represented as a function of 𝐴
2
as

shown in Figure 2.
ByTheorem 3,we know that the bifurcation appearswhen

Jacobian has a zero eigenvalue. From Figure 3, we can obtain
the approximate values of critical points by checking the
points of the eigenvalue curves crossing zero line. These
values are 5.6 × 10−9M/min and 3.4 × 10−7M/min.

To determine the stability of an equilibrium point, we
calculate the eigenvalue of the Jacobian matrix. Figure 3 plots
the eigenvalues as a function of 𝐴

2
. The Jacobian matrix

can be calculated analytically (see the Appendix for details).
By solving the value of 𝐴

2
that makes the determinant of

the Jacobian matrix vanish, we get the critical value of 𝐴
2

at which bifurcation occurs. When 𝐴
2
is small (less than

5.6 × 10
−9M/min in Figure 3), there are only two negative

eigenvalues corresponding to one equilibrium point. This
equilibrium is thus stable [38].

As 𝐴
2
exceeds 5.6 × 10

−9M/min, we have the case
when there are three equilibria and correspondingly six
eigenvalues. Among these three equilibria, two are stable
and the third is unstable (saddle point). This is because
positive eigenvalue appears at saddle point (see dash-dot
line in Figure 3). For a two-dimensional linear system, if the
Jacobian has one positive and one negative eigenvalues at the
equilibrium, the equilibrium is a saddle point. If𝐴

2
continues

increasing, only one equilibrium point is left (𝐴
2
greater than

3.4 × 10
−7M/min in this case), and both of its eigenvalues

are negative. The curves in Figure 3 have two intersections
with zero eigenvalue, which indicates that the eigenvalues of
Jacobian vanish twice, forming a Z-shaped bifurcation.
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Figure 3: Jacobian eigenvalues at equilibria. The figure shows how
the eigenvalues of Jacobian at equilibria change with 𝐴

1
fixed at

8 × 10
−9M/min and 𝐴

2
varying. The solid line (black) shows

the eigenvalues of lysis equilibrium. The dashed line (blue) is for
lysogeny equilibrium. The dot-dashed line (red) is for saddle.

4. Bifurcation Analysis of Binding
Energy Uncertainty

In this section, we will analyze bifurcation for Δ𝐺’s by
using the Jacobian method. In Table 1, the symbol Δ𝐺 with
subscripts such as Δ𝐺

1𝑟
and Δ𝐺

2𝑐
represents Gibbs free

energy required for CI or Cro dimers to bind to the OR
sites. Because of the difficulty in determining the precise
values of the binding energy, it is useful to study how the
equilibria change as these Gibbs free binding energies vary. In
this section, we set synthesis rates 𝐴

1
and 𝐴

2
at appropriate

values, 𝐴
1
= 8 × 10

−9M/min and 𝐴
2
= 5 × 10

−8M/min. To
calculate the equilibria, we set the left hand side of (1) to zero
and obtain the expression of𝑁

𝑟
and𝑁

𝑐
as functions of Δ𝐺’s:

𝑁
∗

𝑟
= 𝑓
1
(Δ𝐺
1𝑐
, Δ𝐺
2𝑐
, . . . , Δ𝐺

𝑅3
) ,

𝑁
∗

𝑐
= 𝑓
2
(Δ𝐺
1𝑐
, Δ𝐺
2𝑐
, . . . , Δ𝐺

𝑅3
) ,

(9)

where 𝑁∗
𝑟
and 𝑁∗

𝑐
are the concentrations of proteins CI and

Cro at the equilibrium point. Once (9) is obtained, we can
determine the quantitative behavior around equilibria when
changing Δ𝐺’s. The relative sensitivities are given by

𝑆
𝑁
𝑟

(Δ𝐺
𝑠
) =

𝜕𝑓
1

𝜕Δ𝐺
𝑠

,

𝑆
𝑁
𝑐

(Δ𝐺
𝑠
) =

𝜕𝑓
2

𝜕Δ𝐺
𝑠

,

(10)

where the subscript 𝑠 ∈ {1𝑟, 2𝑟, . . . , 𝑅12, 𝑅3}. Since the system
equilibria cannot be analytically solved, we may apply the

numerical procedure to calculate (10) as a measure of param-
eter sensitivity. As to the study on system robustness, the
Jacobianmethod can be used to study bifurcation introduced
by parameter variation.

Since there are ten differentΔ𝐺s, we divide them into four
groups:

(1) Δ𝐺
1𝑟
, Δ𝐺
2𝑟
, and Δ𝐺

3𝑟
: binding free energies of CI;

(2) Δ𝐺
1𝑐
, Δ𝐺
2𝑐
, and Δ𝐺

3𝑐
: binding free energies of Cro;

(3) Δ𝐺
12𝑟

and Δ𝐺
23𝑟

: the cooperation between proteins
CI’s if both 𝑂

𝑅
1 and 𝑂

𝑅
2, or 𝑂

𝑅
2 and 𝑂

𝑅
3 are bound

by CI dimers;
(4) Δ𝐺

𝑅12
and Δ𝐺

𝑅3
: RNAP binding energies.

We then study each of these four groups.

4.1. Δ𝐺
1𝑟
, Δ𝐺
2𝑟
, and Δ𝐺

3𝑟
. We systematically perturb the

values of Δ𝐺
1𝑟
, Δ𝐺
2𝑟
, and Δ𝐺

3𝑟
to investigate their impact

on the system dynamics. Two proper robustness measures
are the range of parameters in which lysogeny exists (stable
range), and inwhich bistable dynamics exists (bistable range).
In stable range, it is possible to keep phage 𝜆 dormant and
integrate into the gene of the host. On the other hand, bistable
range defines the parameter range to keep bistability and the
maximal uncertainty tolerance. In this case, it implies that
the system favors dynamics with two stable equilibria and a
saddle. Further, if the stochastic force is strong enough, phage
𝜆 can switch from the lysogenic stable point to the lytic stable
point even without the parameter changes.

Figures 4(a)–4(c) illustrate the impact of Δ𝐺
1𝑟
, Δ𝐺
2𝑟
, and

Δ𝐺
3𝑟

variations. We set parameter values as in Table 1 and
find out all the equilibria when varying oneΔ𝐺

𝑠
. We find that

the energy Δ𝐺
3𝑟
does not show Z-shaped bifurcation, while

the other two parameters Δ𝐺
1𝑟
and Δ𝐺

2𝑟
show quite similar

behaviors since Figures 4(a) and 4(b) are almost identically
the same.The result is not surprising because Δ𝐺

1𝑟
and Δ𝐺

2𝑟

play similar roles in system dynamics. These two parameters
determine the likelihood that CI dimer binds to sites 𝑂

𝑅
1

and 𝑂
𝑅
2. When either of the two sites is occupied by protein

dimers, the expression of 𝑐𝑟𝑜 gene is prohibited, resulting in
lysogenic state.Nonetheless, the parameterΔ𝐺

3𝑟
indicates the

likelihood of CI dimer binding to the site𝑂
𝑅
3. If the absolute

value of Δ𝐺
3𝑟
is too large, it is easy for CI dimer to bind to

𝑂
𝑅
3; thus, cI gene expression is prohibited, resulting in lysis.

If the absolute value ofΔ𝐺
3𝑟
is small, the Z-shaped bifurcation

vanishes. In this case, cI gene expression is not prohibited, but
it has no influence on cro gene expression. Bistable behavior
always exists when Δ𝐺

3𝑟
is less than its nominal value in

Table 1. Without stopping or weakening the expression of cro
gene, single lysogen stable point layout cannot be achieved
just by increasingΔ𝐺

3𝑟
. Comparedwith other parameters, the

system dynamics is more robust to Δ𝐺
3𝑟
variation.

Table 3 lists the stable range, bistable range, and the length
of bistable range for all tenΔ𝐺s. It can be shownbyTheorem 2
that one of the three equilibria is a saddle and the other two
are stable points. Jacobian matrix is also used to determine
the boundary of stable and bistable ranges according to
Theorem 3. As long as Δ𝐺

1𝑟
is less than the nominal value
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(e) Bifurcation for Δ𝐺2𝑐
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(f) Z-shaped bifurcation for Δ𝐺3𝑐

Figure 4: Movement of equilibria under parameter variation. Z-shaped bifurcation can be generated by variation of Δ𝐺
1𝑟
, Δ𝐺
2𝑟
, and Δ𝐺

3𝑐
.

All vertical axes are plotted on a log scale.

at −11.33 kcal/mol, or Δ𝐺
2𝑟

is less than −9.34 kcal/mol, the
system always has lysogenic state.They are critical bifurcation
points. For Δ𝐺

3𝑟
, however, lysogenic state always exists if it is

greater than −12.33 kcal/mol. Consequently, for CI protein, a
larger binding energy to𝑂

𝑅
1 and𝑂

𝑅
2 helps to keep the DNA

of phage 𝜆 silent in the host. The system tends to be unstable
if the values of binding energies for CI to 𝑂

𝑅
1 and 𝑂

𝑅
2

become small, thus forming Z-shaped bifurcation. Parameter
variations may lead to Z-shaped bifurcation if and only if the
bistable range is bounded.
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Table 3: Robustness measures of binding energies.

Variable Stable Range
(kcal/mol)

Bistable Range
(kcal/mol)

Length
(kcal/mol)

Δ𝐺
1𝑟 (−∞, −11.33) (−15.49, −11.33) 4.16

Δ𝐺
2𝑟 (−∞, −9.34) (−13.04, −9.34) 3.70

Δ𝐺
3𝑟 (−12.33, +∞) (−12.33, +∞) ∞

Δ𝐺
1𝑐 (−∞, +∞) (−15.14, +∞) ∞

Δ𝐺
2𝑐 (−∞, +∞) (−15.12, +∞) ∞

Δ𝐺
3𝑐 (−15.67, +∞) (−15.67, −12.24) 3.43

Δ𝐺
12𝑟 (−∞, −1.55) (−6.03, −1.55) 4.48

Δ𝐺
23𝑟 (−7.71,∞) (−7.71, +∞) ∞

Δ𝐺
𝑅12 (−13.67,∞) (−13.67, −10.86) 2.81

Δ𝐺
𝑅3 (−∞, −10.50) (−12.66, −10.50) 2.16

When the stochastic noise is strong enough, the noisemay
induce the system to lytic state.Moreover, if free energy varies
due to gene mutation, bistable behavior might be destroyed
and only one stable equilibrium is left. This is what the
mathematical model implies about the parameter influence
on the system dynamics.

4.2. Δ𝐺
1𝑐
, Δ𝐺
2𝑐
, and Δ𝐺

3𝑐
. The bifurcation results of Δ𝐺

1𝑐
,

Δ𝐺
2𝑐
, andΔ𝐺

3𝑐
are shown in Figures 4(d)–4(f).The equilibria

behaviors with respect toΔ𝐺
1𝑐
andΔ𝐺

2𝑐
variation are similar

to Δ𝐺
3𝑟
. Δ𝐺
1𝑐
represents the likelihood that Cro dimer binds

to site 𝑂
𝑅
1. If Cro dimer binds to site 𝑂

𝑅
1, the expression

of cro is prohibited, resulting in only one single lysogenic
stable point. When Δ𝐺

1𝑐
or Δ𝐺

2𝑐
is small, the prohibition

effect is weak, but this is not enough to drive the system
dynamics to only one single lysis stable point. Hence, bistable
layout always exists if these two parameters are small. The
influence ofΔ𝐺

3𝑐
is similar to the influence ofΔ𝐺

1𝑟
andΔ𝐺

2𝑟
.

The bistable range of Δ𝐺
3𝑐

is about 3.43 kcal/mol, which is
comparable to those of Δ𝐺

1𝑟
and Δ𝐺

2𝑟
.

The six parameters we have shown so far are the basic
binding energies. The values of Δ𝐺

3𝑟
, Δ𝐺
1𝑐
, and Δ𝐺

2𝑐
decide

the likelihood that negative feedback (i.e., self-prohibition)
happens. It is known that the sites 𝑂

𝑅
1 and 𝑂

𝑅
2 are used

to transcript and then translate protein Cro. The site 𝑂
𝑅
3

contributes to the production of protein CI. If protein CI
binds to 𝑂

𝑅
3, or Cro binds to 𝑂

𝑅
1 and 𝑂

𝑅
2, they can stop

their own transcription. Thus, we call the phenomenon neg-
ative feedback. Figure 4 shows that such negative feedback
cannot take the system to Z-shaped bifurcation.The negative
feedback occurs when the amount of Cro or CI is too large.
For instance, the binding between CI dimer and 𝑂

𝑅
3 readily

occurs when the amount of protein CI is too large. On the
other hand, Δ𝐺

1𝑟
, Δ𝐺
2𝑟
, and Δ𝐺

3𝑐
represent the likelihood

of positive feedback (i.e., mutual prohibition). For instance,
with largeΔ𝐺

3𝑐
, the binding between Cro and𝑂

𝑅
3 is favored,

stopping the expression of cI gene. If the value of Δ𝐺
3𝑟

is
small, and the negative feedback is weakened, but it is not
enough to make the system dynamics change from single
lysis equilibrium to single lysogenic equilibrium. Parameters
associated with positive feedback can show Z-shaped bifur-
cation, whereas parameters associatedwith negative feedback
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(a) Z-shaped bifurcation for Δ𝐺12𝑟
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(b) Bifurcation for Δ𝐺23𝑟

Figure 5: Z-shaped bifurcation generated by variation of 𝐺
12𝑟

and
𝐺
23𝑟
.The variation ofΔ𝐺

12𝑟
also leads to Z-shaped bifurcation, while

Δ𝐺
23𝑟

is not sensitive enough to create Z-shaped bifurcation.

cannot.Hence, the system ismore robust to negative feedback
parameters than to positive feedback parameters.

4.3. Δ𝐺
12𝑟

and Δ𝐺
23𝑟

. The parameters Δ𝐺
12𝑟

and Δ𝐺
23𝑟

determine the energy difference caused by the cooperation
of adjacent binding CI dimers. Although [32] discovered that
adjacent Cro dimers also have cooperations, we ignore this
cooperation effect since it has a small cooperation energy
and focus on CI cooperation in our analysis. Figure 5 shows
the bifurcation results for the parameters Δ𝐺

12𝑟
and Δ𝐺

23𝑟
.

The nominal values of Δ𝐺
12𝑟

and Δ𝐺
23𝑟

are close to zero.
Since protein cooperation process is an exothermic reaction,
Δ𝐺
12𝑟

and Δ𝐺
23𝑟

must be less than zero. We find out that
the variation of Δ𝐺

12𝑟
leads to Z-shaped bifurcation whereas

Δ𝐺
23𝑟

does not. The value of Δ𝐺
23𝑟

affects the expression of
both cro and cI genes, whereas Δ𝐺

12𝑟
only promotes mutual

prohibition from CI to Cro. Δ𝐺
23𝑟

with large value prohibits
the binding of RNAP to both sites𝑂

𝑅
2 and𝑂

𝑅
3, thus both 𝑐𝐼

and 𝑐𝑟𝑜 gene expressions are closed.
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(a) Z-shaped bifurcation for Δ𝐺𝑅12
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(b) Z-shaped bifurcation for Δ𝐺𝑅3

Figure 6: Z-shaped bifurcation generated by variation of 𝐺
𝑅12

and
𝐺
𝑅3
. Both of them are able to generate Z-shaped bifurcation. Their

bistable ranges are obviously smaller than any other parameters.The
appearance of “Z” shows steep slope.

Moreover, we know the length of bifurcation range for
Δ𝐺
12𝑟

is 4.48 kcal/mol, which is the maximal value among all
the finite values in Table 3. Comparedwith the influence from
other parameters, the system is relatively more robust to the
cooperation energy variations. The bistable range for Δ𝐺

12𝑟

is from −6.03 kcal/mol to −1.55 kcal/mol (Table 3). In our
model, if Δ𝐺

12𝑟
is equal to the center value at −3.79 kcal/mol,

the system is most robust to parameter uncertainty because
of maximum tolerance of uncertainty. This result is con-
sistent with the calculation by [39], where they calculated
biological behaviors in phage 𝜆 and found that cooperation
energy is −3.7 kcal/mol, in comparison to the in vitro value
−2.7 kcal/mol used in this work. The 1.0 kcal/mol difference
between these two values might be caused by the looping
effect [40]. Hence, the looping effect makes the system more
robust to Δ𝐺

12𝑟
from this point of view.

4.4. Δ𝐺
𝑅12

and Δ𝐺
𝑅3
. Figure 6 illustrates the influence of

Δ𝐺
𝑅3

and Δ𝐺
𝑅12

variations. From Figure 6, we find that Z-
shaped bifurcation appears for both parameters. Note that the

appearance of Z is different from the previous parameters as
discussed above. As in Table 3, the length of bistable range
forΔ𝐺

𝑅12
is 2.81 kcal/mol, and forΔ𝐺

𝑅3
is only 2.16 kcal/mol,

which is the minimum among all ten parameters.
Notice that Δ𝐺

𝑅3
and Δ𝐺

𝑅12
are the binding free energies

of RNAP to 𝑃
𝑅𝑀

promoter (𝑂
𝑅
3) and to 𝑃

𝑅
promoter (𝑂

𝑅
1

and 𝑂
𝑅
2). Because RNAP is necessary for gene expression,

the result from RNAP could be the most influential. Table 3
summarizes all the sensitivity measures for the above ten
parameters. We observe that the last two parameters have the
shortest length of bistable ranges, which implies that bistable
behavior of phage 𝜆 is more sensitive to Δ𝐺

𝑅12
and Δ𝐺

𝑅3

than any other parameters. For example, the bistable ranges of
Δ𝐺
1𝑟
and Δ𝐺

2𝑟
are around 4 kcal/mol, while those of Δ𝐺

𝑅12

and Δ𝐺
𝑅3

are less than 3 kcal/mol. Parameter uncertainties
of Δ𝐺

𝑅12
and Δ𝐺

𝑅3
most easily destroy bistable behavior.The

concentrations ofCI andCro at equilibriumpoint also change
significantly under Δ𝐺

𝑅12
or Δ𝐺

𝑅3
uncertainty.

4.5. Discussion. From the above analysis, we find that the
binding free energies to sites𝑂

𝑅
1 and𝑂

𝑅
2 have similar effects

on system dynamics. As we have shown in Table 3, the results
of Δ𝐺

1𝑟
, Δ𝐺
2𝑟
, Δ𝐺
1𝑐
, and Δ𝐺

2𝑐
are similar. This is mainly

because of the similar status for binding sites 𝑂
𝑅
1 and 𝑂

𝑅
2,

both of which control the expression of Cro protein.
Moreover, the bistable ranges have infinite length for

Δ𝐺
3𝑟
,Δ𝐺
1𝑐
,Δ𝐺
2𝑐
, andΔ𝐺

23𝑟
. All of the above four parameters

do not have Z-shaped bifurcation. When the values of those
parameters become close to zero, bistable behavior always
exists.TheparametersΔ𝐺

1𝑐
andΔ𝐺

2𝑐
can be used tomaintain

lysogenic state when they are less than a critical value because
their stable ranges do not have any limits. For example,
if we introduce gene mutation to make Δ𝐺

1𝑐
lower than

−15.14 kcal/mol, bistable behavior disappears and only one
lysogenic state is left. Consequently, the state of phage 𝜆

stabilizes at lysogeny.
As to the other six parameters with limited bistable ranges

in Table 3, their variations lead to Z-shaped bifurcations.
We are interested in why the original system seems more
sensitive to these six parameters. The free energies Δ𝐺

1𝑟
,

Δ𝐺
2𝑟
, andΔ𝐺

12𝑟
indicate the likelihood of protein CI binding

to sites 𝑂
𝑅
1 and 𝑂

𝑅
2, or the likelihood of mutual prohi-

bition occurring. Similarly, Δ𝐺
3𝑐
indicates the likelihood of

protein Cro binding to site 𝑂
𝑅
3 and also results in mutual

prohibition. Our result has shown that, compared with self-
prohibition, the mutual prohibition is more influential on
system dynamics. The binding energy uncertainty related to
mutual prohibition may lead to the loss of bistable behavior.

Note that the system dynamics of this model is even
more sensitive to the parameters Δ𝐺

𝑅12
and Δ𝐺

𝑅3
. Since

Δ𝐺
𝑅12

and Δ𝐺
𝑅3

have the minimum bistable ranges, the
uncertainties of these two parameters are more likely to
lead to the loss of bistable behavior. This is consistent with
the conclusion by [23] that perturbation of RNAP binding
energy significantly changes promoter activity, thus affecting
gene expression. The binding free energies of RNAP to cro
and cI promoters play a key role for the generation of
proteins.
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In building mathematical models for phage 𝜆 genetic
switch, it is crucial to determine the values for those param-
eters that are more sensitive to parameter uncertainties such
as Δ𝐺

𝑅12
and Δ𝐺

𝑅3
, because otherwise the system dynamics

may deviate from normal bistable behavior. Furthermore,
our results provide guidelines for the experimentalists in
laboratory on how to choose those parameters that can alter
mutations more easily.

5. Conclusion

In this paper we studied the robustness of a phage 𝜆model by
investigating its bifurcation behavior induced by parameter
uncertainties. We introduced bistable range as a measure of
robustness and then applied the Jacobianmethod to calculate
it. It can be concluded that binding energy uncertainties
may destroy bistable behavior, especially for those sensitive
parameters such as Δ𝐺

𝑅12
and Δ𝐺

𝑅3
. Moreover, parameters

describingmutual prohibition can formZ-shaped bifurcation
(i.e., Δ𝐺

1𝑟
, Δ𝐺
2𝑟
, Δ𝐺
3𝑐
, and Δ𝐺

12𝑟
), whereas parameters

describing self-prohibition (i.e., Δ𝐺
3𝑟
, Δ𝐺
1𝑐
, and Δ𝐺

2𝑐
) can-

not. Hence, system dynamics is more sensitive to mutual
prohibition parameters.

There also exist other factors affecting the stability and
robustness of a phage 𝜆 model. For example, DNA looping
can promote CI expression in lysogenic state [14] and thus
help phage 𝜆 keep stable and robust [25]. Our future work
includes exploring the bifurcation and system robustness
with respect to these new factors.

Appendix

Calculation of Jacobian

From (1)–(5), we may represent system Jacobian by

𝐽 =
[
[
[

[

𝐴
1

𝜕𝑃
𝑟

𝜕𝑁
𝑟

− 𝜇
1

𝐴
1

𝜕𝑃
𝑟

𝜕𝑁
𝑐

𝐴
2

𝜕𝑃
𝑐

𝜕𝑁
𝑟

𝐴
2

𝜕𝑃
𝑐

𝜕𝑁
𝑐

− 𝜇
2

]
]
]

]

. (A.1)

Since 𝑃
𝑟
and 𝑃

𝑐
are sums of 𝑃

𝑠
, 𝑠 = 1, 2, . . . , 40, as (2) shows,

the key part to evaluate their partial derivatives in (A.1) is
𝜕𝑃
𝑠
/𝜕𝑁
𝑟
and 𝜕𝑃

𝑠
/𝜕𝑁
𝑐
. Since 𝑃

𝑠
is a function with respect to

Cro and CI dimers, we evaluate the partial derivatives by
Chain Rule:

𝜕𝑃
𝑠

𝜕𝑁
𝑟

=
𝜕𝑃
𝑠

𝜕𝑁
𝑟2

𝑑𝑁
𝑟2

𝑑𝑁
𝑟

,

𝜕𝑃
𝑠

𝜕𝑁
𝑐

=
𝜕𝑃
𝑠

𝜕𝑁
𝑐2

𝑑𝑁
𝑐2

𝑑𝑁
𝑐

,

(A.2)

Table 4: Exponents for 30 binding configurations in Table 2.

𝑠 𝑖(𝑠) 𝑗(𝑠) 𝑘(𝑠)

1 0 0 0
2 1 0 0
3 1 0 0
4 1 0 0
5 2 0 0
6 2 0 0
7 2 0 0
8 3 0 0
9 0 1 0
10 0 1 0
11 0 1 0
12 0 2 0
13 0 2 0
14 0 2 0
15 0 3 0
16 1 1 0
17 1 1 0
18 1 2 0
19 1 1 0
20 1 1 0
21 1 2 0
22 1 1 0
23 1 1 0
24 1 2 0
25 2 1 0
26 2 1 0
27 1 2 0
28 0 0 1
29 1 0 1
30 0 1 1
31 1 0 1
32 2 0 1
33 1 1 1
34 0 0 1
35 1 0 1
36 0 1 1
37 0 1 1
38 1 1 1
39 0 2 1
40 0 0 2

where

𝑑𝑁
𝑟2

𝑑𝑁
𝑟

=
1

2
(1 −

𝐾
𝑟

√𝐾2
𝑟
+ 8𝑁
𝑟
𝐾
𝑟

),

𝑑𝑁
𝑐2

𝑑𝑁
𝑐

=
1

2
(1 −

𝐾
𝑐

√𝐾2
𝑐
+ 8𝑁
𝑐
𝐾
𝑐

).

(A.3)
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Thenwe have to deal with other terms in (A.2). Note that𝑃
𝑠
is

a fractional function in (3), so we write its numerator𝐴
𝑠
and

denominator 𝐵 as

𝑀
𝑠
= exp(−

Δ𝐺
𝑠

𝑅𝑇
)𝑁
𝑖(𝑠)

𝑟2
𝑁
𝑗(𝑠)

𝑐2
𝑁
𝑘(𝑠)

RNAP, (A.4)

𝐷 =

40

∑

𝑠=1

𝑀
𝑠
. (A.5)

The partial derivatives for 𝑃
𝑠
with respect to𝑁

𝑐2
and𝑁

𝑟2
are

given by

𝜕𝑃
𝑠

𝜕𝑁
𝑟2

=
𝜕𝑀
𝑠

𝜕𝑁
𝑟2

1

𝐷
−

𝜕𝐷

𝜕𝑁
𝑟2

𝑀
𝑠

𝐷2
,

𝜕𝑃
𝑠

𝜕𝑁
𝑐2

=
𝜕𝑀
𝑠

𝜕𝑁
𝑐2

1

𝐷
−

𝜕𝐷

𝜕𝑁
𝑐2

𝑀
𝑠

𝐷2
.

(A.6)

The partial derivative of𝑀
𝑠
can be obtained as

𝜕𝑀
𝑠

𝜕𝑁
𝑟2

= 𝑖 (𝑠) exp(−
Δ𝐺
𝑠

𝑅𝑇
)𝑁
𝑖(𝑠)−1

𝑟2
𝑁
𝑗(𝑠)

𝑐2
𝑁
𝑘(𝑠)

RNAP,

𝜕𝑀
𝑠

𝜕𝑁
𝑐2

= 𝑗 (𝑠) exp (−
Δ𝐺
𝑠

𝑅𝑇
)𝑁
𝑖(𝑠)

𝑟2
𝑁
𝑗(𝑠)−1

𝑐2
𝑁
𝑘(𝑠)

RNAP.

(A.7)

The subscript 𝑠 corresponds to the 40 binding configurations.
The partial derivative of𝐷 is exactly the sum of 40𝑀

𝑠
partial

derivatives. From the above derivation, we may obtain the
Jacobian matrix analytically. This is quite helpful when we
calculate the eigenvalues of Jacobian matrix at equilibrium
points. By referencing Table 2, we may count the exponents
(i.e., 𝑖(𝑠), 𝑗(𝑠), and 𝑘(𝑠)) in (A.4) and list them in Table 4.
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