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We propose an approach to design of an algebraic signature analyzer that can be used formixed-signal systems testing.The analyzer
does not contain carry propagating circuitry, which improves its performance as well as fault tolerance. The common design
technique of a signature analyzer for mixed-signal systems is based on the rules of an arithmetic finite field. The application of this
technique to the systems with an arbitrary radix is a challenging task and the devices designed possess high hardware complexity.
The proposed technique is simple and applicable to systems of any size and radix. The hardware complexity is low. The technique
can also be used in arithmetic/algebraic coding and cryptography.

1. Introduction

Signature analysis has beenwidely used for digital andmixed-
signal systems testing [1–12]. Mixed-signal systems consist of
both digital and analog circuits; however the signature anal-
ysis method is only applicable to the subset of these systems
that have digital outputs (such as analog-to-digital converters,
measurement instruments, etc.). Signature analysis can be
employed as an external test solution or can be embedded
into the system under test. In the built-in implementation, a
circuit under test (CUT) of digital or mixed-signal nature is
fed by test stimuli, while the output responses are compacted
by a signature analyzer (SA), as illustrated in Figure 1. The
actual signature is compared against the fault-free circuit’s
signature and a pass/fail decision is made. A signature of a
fault-free circuit is referred to as a reference signature. If the
CUT is of a digital nature, the SA essentially constitutes a
circuit that computes an algebraic remainder. The reference
signature has only one, punctual value, and the decision
making circuit consists of a simple digital comparator. If
the CUT is of a mixed-signal nature, the SA computes
an arithmetic residue. In this case, the reference signature
becomes an interval value and the decision making circuit
uses a window comparator.

Design methods for an algebraic signature analyzer
have been well developed in error-control coding [13]. A
remainder calculating circuit for an arbitrary base (binary
or nonbinary) can be readily designed for a digital CUT of
any size. In contrast, it is much harder to design a residue
calculating circuit, specifically for a nonbinary base [14]. Fur-
thermore, due to the presence of carry propagating circuitry,
the implementation complexity and error vulnerability of
the residue calculating circuit are higher compared to the
remainder calculating circuit.

We propose an approach to design of an algebraic sig-
nature analyzer that can be used for mixed-signal systems
testing. Due to an algebraic nature, the analyzer does not
contain carry propagating circuitry. This helps to improve its
error immunity, as well as performance.

2. A Conventional Signature Analyzer

An algebraic signature analyzer is designed on the basis of a
polynomial division circuit, as shown in Figure 2 [3, 13, 15].
This circuit divides the incoming sequence of nonbinary
symbols (digits), 𝑎

𝑚−1
, . . . , 𝑎

1
, 𝑎
0
, treated as a polynomial:

𝑎 (𝑦) = 𝑎
𝑚−1

𝑦
𝑚−1

+ ⋅ ⋅ ⋅ + 𝑎
1
𝑦 + 𝑎
0

(1)
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Figure 1: Built-in signature analysis of a circuit under test.
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Figure 2: A 𝑡-stage polynomial division circuit.

by the polynomial

𝑝 (𝑦) = 𝑝
𝑡
𝑦
𝑡

+ ⋅ ⋅ ⋅ + 𝑝
1
𝑦 + 𝑝
0
, 𝑡 ≪ 𝑚. (2)

The remainder

𝑠 (𝑦) = 𝑠
𝑡−1

𝑦
𝑡−1

+ ⋅ ⋅ ⋅ + 𝑠
1
𝑦 + 𝑠
0

(3)

constitutes a CUT signature.
Each digit, 𝑎

𝑖
, 0 ≤ 𝑖 ≤ 𝑚 − 1, consists 𝑛 bits and is

considered to be an element of the field 𝐺𝐹(2
𝑛

). The degree
of the polynomial (2), or the number of stages, 𝑡, in Figure 2,
depends on the desired probability of undetected error in
the sequence of incoming digits. For long sequences with
independent errors, this probability is estimated as 𝑃

𝑛𝑑
≈

2
−𝑡𝑛. In practice, 𝑛 ≥ 8 and even for the one-stage circuit,
𝑃
𝑛𝑑

≤ 2
−(1×8)

= 0.0039, which is quite low. Therefore, a
multiple-input signature analyzer normally contains only one
stage. Such an analyzer is presented in Figure 3 [14], where 𝛼
is a primitive element of the field 𝐺𝐹(2

𝑛

), that is, a root of a
primitive polynomial 𝑔(𝑥) = 𝑔

𝑛−1
𝑥
𝑛−1

+ ⋅ ⋅ ⋅ + 𝑔
1
𝑥 + 𝑔
0
. Each

element of the field can be represented by a power of 𝛼. Let
𝛼
𝑖 be the incoming digit and 𝛼

𝑗 the content of the analyzer.
Then, each operational cycle of the analyzer is described by
the expression

𝛼
𝑗

𝛼 ⊕ 𝛼
𝑖

= 𝛼
𝑘

. (4)

Without a loss of generality, we will consider a 3-bit
signature register (𝑛 = 3), with 𝛼 being a primitive element of
𝐺𝐹(2
3

), in particular a root of a primitive polynomial 𝑔(𝑥) =
𝑥
3

+ 𝑥 + 1. Then, a symbolic scheme of Figure 3 will transfer
to the logic level circuit of Figure 4, where

𝛼
𝑙

= 𝑎
(𝑙)

2
𝑥
2

+ 𝑎
(𝑙)

1
𝑥 + 𝑎
(𝑙)

0
, 𝑎
(𝑙)

𝑖
∈ {0, 1} ,

0 ≤ 𝑖 ≤ 2, 0 ≤ 𝑙 ≤ 6.

(5)

This expression indicates the relationship between the
power and vector representations of a field element, as
reflected in Table 1 (where 𝑥 = 𝛼).

If the preliminary “cleared” analyzer receives, for exam-
ple, the following sequence of 3-bit output responses from

+

×

𝛼k
𝛼j

𝛼i

𝛼

Figure 3: A symbolic presentation of a one-stage algebraic signature
analyzer.
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Figure 4: A logic level presentation of the algebraic 3-input signa-
ture analyzer.

Table 1:Three representations for the elements of𝐺𝐹(23) generated
by 𝑔(𝑥) = 𝑥

3

+ 𝑥 + 1. Here 𝑔(𝛼) = 0.

Power Polynomial Vector
representation representation representation
𝛼
𝑙

𝑎
(𝑙)

2
𝛼
2 + 𝑎

(𝑙)

1
𝛼
1 + 𝑎

(𝑙)

0
𝛼
0

𝑎
(𝑙)

2
𝑎
(𝑙)

1
𝑎
(𝑙)

0

0 0 0 0 0
𝛼
0

𝛼
0 0 0 1

𝛼
1

𝛼
1 0 1 0

𝛼
2

𝛼
2 1 0 0

𝛼
3

𝛼
1 + 𝛼

0 0 1 1
𝛼
4

𝛼
2 + 𝛼

1 1 1 0
𝛼
5

𝛼
2 + 𝛼

1 + 𝛼
0 1 1 1

𝛼
6

𝛼
2 + 𝛼

0 1 0 1

a digital CUT, 𝛼5, 𝛼6, 𝛼4, 𝛼2, 𝛼1, 𝛼0, then after the 6th shift
its content will become

(((((0 ⋅ 𝛼 + 𝛼
5

) 𝛼 + 𝛼
6

) 𝛼 + 𝛼
4

) 𝛼 + 𝛼
2

) 𝛼 + 𝛼
1

) 𝛼 + 𝛼
0

=𝛼.

(6)

The power representation of the field element, 𝛼, corre-
sponds to the vector representation, 010, which is the actual
signature of the CUT.

In contrast to a digital CUT, the output responses of a
mixed-signal CUT are distorted even in a fault-free case.
Small permissible variations in the responses cause a signif-
icant deviation of the final signature. For example, if in the
above sequence of output responses the least significant bit
in the first response changes from 1 to 0 (i.e., the vector 111
changes to 110, or power 𝛼5 changes to 𝛼

4), then the actual
signaturewill change from010 to 101 (or from𝛼 to𝛼6 in power
form).

Apparently, the conventional SA represented in Figures 3
and 4 cannot be employed for mixed-signal circuits testing.

In the known methods, output responses of mixed-
signal circuits are compacted by a circuit referred to as a
modulo adder (or accumulator, or digital integrator) [4–8].
It should be noted that a modulo adder is a special case of
a residue computing circuit [14]. A residue computing circuit
is represented in Figure 5. Here 𝑎

𝑗
is the current content of
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Figure 5: A symbolic presentation of a one-stage arithmetic signa-
ture analyzer.

the register, 𝑎
𝑖
is the incoming (arithmetic) symbol, and 𝑏

is the base of the system. This circuit divides the incoming
sequence of symbols, 𝑎

𝑚−1
, . . . , 𝑎

1
, 𝑎
0
, treated as a number:

𝑎 = 𝑎
𝑚−1

𝑏
𝑚−1

+ ⋅ ⋅ ⋅ + 𝑎
1
𝑏 + 𝑎
0

(7)

by the modulus

𝑝 = 𝑝
𝑡−1

𝑏
𝑡−1

+ ⋅ ⋅ ⋅ + 𝑝
1
𝑏 + 𝑝
0
, 𝑡 ≪ 𝑚. (8)

As in the case with the algebraic SA, we consider a single-
stage device; that is, 𝑡 = 1, 𝑝 = 𝑝

0
< 𝑏 = 2

𝑛, where 𝑛 is
the number of bits occupied by the symbol. The residue, 𝑠

0
,

constitutes a signature.
An operational cycle of the circuit in Figure 5 can be

described by the expression

𝑎
𝑗
𝑏 + 𝑎
𝑖
= 𝑎
+

𝑗
(mod𝑝) . (9)

Although the circuits of Figures 3 and 5 look similar,
their implementation is quite different. In general case,
the designing procedure for the arithmetic circuits is more
complicated and their hardware complexity is greater.

As an example, Figure 6 represents the circuit that
computes a modulo 5 residue of the incoming sequence of
3-bit symbols treated as an octal number [14]. Here 𝑎

𝑖
is the

incoming octal digit and 𝐶 is a combinational circuit which
generates the following next state signals:

𝑐
2
= 𝑎
𝑗

0
𝑎
𝑗

1
𝑎
𝑖

0
𝑎
𝑖

1
𝑎
𝑖

2
+ 𝑎
𝑗

1
(𝑎
𝑗

0
𝑎
𝑖

1
⊕ 𝑎
𝑖

2
+ 𝑎
𝑗

0
𝑎
𝑖

0
𝑎
𝑖

2
) ,

𝑐
1
= 𝑎
𝑗

2
𝑎
𝑖

2
(𝑎
𝑖

0
+ 𝑎
𝑖

1
) + 𝑎
𝑗

2
𝑎
𝑖

2
(𝑎
𝑗

0
𝑎
𝑖

0
+ 𝑎
𝑗

1
𝑎
𝑖

1
)

+ 𝑎
𝑗

1
(𝑎
𝑗

0
+ 𝑎
𝑖

2
) + 𝑎
𝑗

0
(𝑎
𝑖

1
⊕ 𝑎
𝑖

2
) ,

𝑐
0
= 𝑎
𝑗

0
𝑎
𝑖

1
(𝑎
𝑗

1
⊕ 𝑎
𝑖

2
) + 𝑎
𝑗

1
𝑎
𝑖

2
(𝑎
𝑗

0
+ 𝑎
𝑖

0
𝑎
𝑖

1
)

+ 𝑎
𝑗

2
+ 𝑎
𝑗

1
𝑎
𝑖

2
(𝑎
𝑗

0
𝑎
𝑖

1
+ 𝑎
𝑖

0
𝑎
𝑖

1
+ 𝑎
𝑗

0
𝑎
𝑖

0
) .

(10)

Each shift of this circuit implements the operation 𝑎
𝑗
×8+

𝑎
𝑖
(mod 5).
In addition to high hardware complexity, the arithmetic

compactor contains carry propagating circuitry (shown in
red color in Figure 6) that delays the operation and aggravates
the effect of a single fault.

Below, we design an algebraic circuit that can be
employed for mixed-signal data compaction. It does not
contain carry propagating circuitry.
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Figure 6: A 3-input arithmetic compactor.

3. A Novel Approach

Polynomial (1) in conjunction with the reference signature
can be considered as a code word of the code whose minimal
distance is defined by the 𝑔(𝑥). The distance here is the Ham-
ming distance. This distance characterizes algebraic error-
detecting properties of the code and is not convenient for
arithmetic errors that occur in mixed-signal systems. Indeed,
a small permissible deviation of the data to be compacted
causes the reference signature to span the entire space. Under
these conditions, the decisionmaking circuit in Figure 1 must
be able to compare the actual signature with the entire set
of possible reference signatures. This increases the analyzer
complexity.

To decrease the complexity, an arithmetic SA treats the
sequence of output responses from a mixed-signal circuit
as a number (7). In conjunction with the reference residue,
this is considered as a code word of an arithmetic error-
control code. The properties of this code depend on the
arithmetic minimal distance which in turn depends on the
modulus 𝑝. The arithmetic residue calculating analyzer does
not search the entire space, since the space of arithmetic
reference signatures is now contiguous. Tomake a decision, it
employs a window comparator. This simplifies the circuitry.
However, the hardware complexity of the arithmetic SA can
still be quite high, as it was illustrated above.

In the rest of this paper, we will show how to design an
algebraic SA, which generates a contiguous space of algebraic
reference signatures.

In order to be contiguous, the space of signatures must
be ordered. A signature can be represented in the vector or
power forms.We will use the power exponent as the criterion
for ordering the signature set. The distance between two
vectors (signatures) will be evaluated as the arithmetic dif-
ference between the corresponding exponents. For example,
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Figure 7: A symbolic form of an algebraic SA for a mixed-signal
CUT.

the distance between the signatures 010 and 101 will be 5,
because the exponents of powers 𝛼6 and 𝛼 differ by 5. We
can interpret these exponents as output responses of amixed-
signal CUT, since they possess arithmetic properties. At the
same time, the corresponding vectors (signatures) possess
algebraic properties. Therefore, arithmetic data is mapped
into algebraic data. Figure 7 represents the circuit which
performs the mapping and computes an algebraic signature.

The circuit of Figure 7 can be obtained from the circuit of
Figure 3 by the following transform:

𝛼
𝑗

𝛼
𝑖

= (𝛼
𝑗

𝛼) 𝛼
𝑖−1

= (𝛼
𝑗

𝛼)

𝛼
𝑖−1

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

(1 + 𝛼
𝑘

)

= 𝛼
𝑗

𝛼 + 𝛼
𝑗+1+𝑘

= 𝛼
𝑗

𝛼 + 𝛼
𝑙

.

(11)

Since the finite field 𝐺𝐹(2
𝑛

) is closed and errors are
independent, this mapping will not change the probability of
undetected error.

The logic level implementation of the circuit of Figure 7
is more complex compared to the circuit of Figure 3, but it is
less complex than that of the circuit of Figure 5.

Prior to designing the circuit, we have to make a few
observations.

The first observation is that

𝛼
𝑗

𝛼
𝑖

= (⋅ ⋅ ⋅ (𝛼
𝑗

𝛼) 𝛼 ⋅ ⋅ ⋅ ) 𝛼
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑖

. (12)

Let us denote an output response from a mixed-signal
CUT by 𝑖. The second observation is that the response 𝑖

can be considered as an exponent of the power, that is, 𝛼𝑖.
Essentially, thismeans that the arithmetic values 𝑖 aremapped
into algebraic values 𝛼𝑖.

Based on these observations, we can design a signature
analyzer in the way shown in Figure 8. Here 𝛼 is a primitive
element of a finite field𝐺𝐹(2𝑛); 𝑛 coincideswith the bit-length
of the output responses. The lower and upper inputs of the
multiplexer in Figure 8 are connected together, since 𝛼2

𝑛
−1

=

𝛼
0 in 𝐺𝐹(2

𝑛

).
Considering the case when the analyzer is fed by 3-bit

data, its more detailed implementation will have the form of
Figure 9.

Here the buses consist of 3 lines, as indicated by the
appropriate number. The initial content of the SA before the
shift is 𝛼𝑗, or 𝑎

2
𝑥
2

+ 𝑎
1
𝑥 + 𝑎

0
in the polynomial form (we

have omitted the superscripts for the sake of simplicity). The
notations 𝑎

𝑘
and 𝑎

+

𝑘
, where index 𝑘 can be one of 0, 1, and 2,

indicate the present and next states, respectively.

MUX

i

0

i

1

𝛼𝛼𝛼

×××
𝛼j+2

𝑛−2
𝛼j+i𝛼j+i

𝛼j
𝛼j+1 𝛼j+0

2n − 1
2n − 2

· · ·· · ·

...

...

Figure 8: A more detailed symbolic form of the SA.
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i

++++++

Figure 9: A register transfer level implementation of the SA.

A multiplier by 𝛼 in 𝐺𝐹(2
3

) is realized bearing in mind
that 𝑔(𝑥) = 𝑥

3

+ 𝑥 + 1, 𝛼 corresponds to 𝑥, and

(𝑎
2
𝑥
2

+ 𝑎
1
𝑥 + 𝑎
0
) 𝑥 mod 𝑔 (𝑥)

= (𝑎
2
𝑥
3

+ 𝑎
1
𝑥
2

+ 𝑎
0
𝑥) mod 𝑔 (𝑥)

= 𝑎
2
(𝑥 + 1) + 𝑎

1
𝑥
2

+ 𝑎
0
𝑥

= 𝑎
1
𝑥
2

+ (𝑎
2
+ 𝑎
0
) 𝑥 + 𝑎

2
.

(13)

This operation is shown by crosslines in Figure 9. The
multiplexer inputs “0” and “7” are tied together, because 𝛼7 =
𝛼
0 in the field 𝐺𝐹(2

3

).
In order to demonstrate how to use this analyzer, we

will assume that it receives only two values from a CUT, in
particular 𝑗 and 𝑖. Since the CUT is of a mixed-signal nature,
there is an unavoidable (and thereby permitted) deviation
of these values by ±1 (the greater tolerances can also be
considered).The analyzer will map the received data into𝛼𝑗±1

and 𝛼
𝑖±1, respectively. If we assume that the initial content of

the SA is 001 (versus 000 for a conventional SA), then after
the first shift the content becomes 𝛼0𝛼𝑗±1 = 𝛼

𝑗±1. After the
second shift, it changes to 𝛼

𝑗±1

𝛼
𝑖±1

= 𝛼
𝑗+𝑖±2. This expression

is derived using the interval arithmetic rules. It states that
for the fault-free CUT the actual result must match one of



VLSI Design 5

the values from the interval [𝛼𝑗+𝑖−2, 𝛼𝑗+𝑖+2], that is, one of the
following:

𝛼
𝑗+𝑖−2

, 𝛼
𝑗+𝑖−1

, 𝛼
𝑗+𝑖

, 𝛼
𝑗+𝑖+1

, 𝛼
𝑗+𝑖+2

. (14)

To further simplify the SA operation, we will assume that
instead of 𝛼0 (i.e., 001) the initial SA content is 𝛼−(𝑗+𝑖). We
will refer to this value as the seed value. Then, by the same
reasoning, the SA content after two shifts will match one of
the following powers:

𝛼
−2

, 𝛼
−1

, 𝛼
0

, 𝛼
1

, 𝛼
2

. (15)

Due to the closure property of the field𝐺𝐹(23), this power
set is equivalent to

𝛼
5

, 𝛼
6

, 𝛼
0

, 𝛼
1

, 𝛼
2

. (16)

Consequently, the decisionmaking circuit in Figure 3 will
work as follows. If the actual signature does not match any
value from set (16), the CUT is considered to be faulty. Since
these values are ordered (and surround the power 𝛼0), the
decision making circuit can employ a comparator, thereby
reducing the hardware complexity of the SA.

As in any signature analyzer, some errors in the CUT
output responses may escape detection. The aliasing rate can
be estimated as described in [16] and will coincide with the
aliasing rate of the conventional analyzer.

Example. Let us consider a 3-bit CUT, which is fed by
two input stimuli. Under the fault-free operation, the CUT
produces the output responses 𝑗 = 101 ± 1 and 𝑖 = 110 ± 1.
Therefore, the seed value will be 𝛼−(𝑗+𝑖) = 𝛼

−(5+6)

= 𝛼
−11

= 𝛼
3,

or 011 in the vector form. If the CUT is fault-free, then after
2 shifts the SA content must match one of the elements in set
(16). For example, if the actual responses are 101+1 = 110 (or
𝛼
6) and 110 + 1 = 111 (or 𝛼7) (i.e., the variations are within

the tolerance bounds), the signature will be 𝛼
3

𝛼
6

𝛼
7

= 𝛼
2

which belongs to set (16). And the decision making circuit
will generate a pass signal. The validity of such a decision is
determined by the aliasing rate.

Let us assume that a fault in the CUT has made the
following changes in the output responses: 110 → 011

(𝛼6 → 𝛼
3) and 111 → 100 (𝛼7 → 𝛼

4). Then the actual
signature will become 𝛼3𝛼3𝛼4 = 𝛼

3. This element does not
belong to set (16), so the fault is detected.

There are two distinct ways of designing the decision
making circuit depending on the optimization criteria (time
or hardware overhead).

Hardware Overhead. If performance is paramount and time
overhead is not desirable, the following approach can be
employed. Let𝑚 be the number of output responses. All of the
2𝑚 + 1 𝛼-multiplier outputs (see Figure 8) that belong to set
(16) are connected to the first inputs of the 2𝑚+1 comparators
of a similar type. The second inputs of these comparators are
shared and fed by the vector 0 ⋅ ⋅ ⋅ 01. If the CUT is fault-free,
one of the comparators will produce a logic “1” signal. The
logic OR of the comparator outputs will constitute a pass/fail
signal.

n { ...

Figure 10: An 𝑛-bit comparator.

The above procedure is based on the fact that the fault-
free CUT produces one of the signatures from set (16). If the
actual signature is 𝛼0, the comparator connected directly to
the signature register produces a logic “1,” thus indicating that
the CUT is fault-free. If the actual signature is 𝛼6, then the
product 𝛼6𝛼, generated at the output of the first 𝛼-multiplier,
equals 1, which is detected by the next comparator. The
same reasoning applies to the rest of the signatures from set
(16). The logic diagram of the 𝑛-bit comparator is shown in
Figure 10.

Time Overhead. If time overhead is allowed, the hardware
complexity can be further reduced. In terms of implemen-
tation, it is more convenient to use the following seed value:
𝛼
−(𝑗+𝑖+𝑚+1), where 𝑚 is the number of output responses. For

the above example, 𝛼−(11+3) = 𝛼
0, and set (16) will transform

to

𝛼
2

, 𝛼
3

, 𝛼
4

, 𝛼
5

, 𝛼
6

. (17)

After the last output response has been shifted in, the
SA continues to shift its content 2𝑚 + 1 more times, while
the input 𝑖 is forced to 1. This ensures that the SA content
is multiplied by 𝛼 with each shift. For the above example,
2𝑚 + 1 = 5. If, within this time, the match with an element
of set (17) has been determined, the CUT is considered to be
fault-free. Otherwise, it is faulty.

If the CUT is fault-free and its output responses have
not exceeded their tolerances, then while cycling through
the states during the extra 2𝑚 + 1 shifts, the output of
the multiplexer in Figure 8 will go through the power
𝛼
0 or vector 0 ⋅ ⋅ ⋅ 01. The match with the vector 0 ⋅ ⋅ ⋅ 01

is detected by the comparator of Figure 10 connected to
the multiplexor’s output. The comparator output is actually
producing a pass/fail signal.

The implementation complexity of the circuit of Figure 8
increases significantly with the growth of the data width, 𝑛.
Therefore, this circuit can only be implemented for the output
responses with relatively low values of 𝑛. For greater values of
𝑛, we will modify the circuit of Figure 8 to the one shown
in Figure 11. The modified circuit contains binary-weighted
stages and is more economical in terms of hardware. The
complexity of the multiplier ×𝛼𝑖 is comparable with that of
the multiplier ×𝛼, whereas the number of multipliers drops
from 2

𝑛 to 𝑛. The economy increases with the growth of 𝑛.
For the case of 3-bit data, the circuit of Figure 11 transfers

to the one shown in Figure 12. This circuit operates much
in the same way. The 𝛼𝑖-multipliers structure is determined
from the following expressions:

𝑥 (𝑎
2
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2
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2
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2
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Figure 11: A binary-weighted version of the SA.
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Figure 12: A register transfer level implementation of the 3-bit SA.
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4. Experimental Results

The experimental setup to test the proposed method of sig-
nature analysis is shown in Figure 13. The setup includes the
microcontroller system board Adapt9S12D (Technological
Arts Inc.) based on Freescale’s 9S12DG128 microcontroller
and theAlteraDE2Development board based on the Cyclone
II EP2C35F672C6 field-programmable gate-array (FPGA)
device. We have selected 16 input test stimuli (voltages 𝑉in)
equally distributed over the range (0 ∼ 5.12)𝑉 and applied
them to the analog-to-digital converter (ADC) of the 9S12
microcontroller (which served as a mixed-signal system).
Each input voltage, 𝑉in, was measured by a high-precision
voltmeter and regarded as a nominal test input value.

The circuit in Figure 13 operates as follows. Every time the
switch S𝜔 is closed, the system performs 8 measurements of
the same test signal and averages the result by accumulating
the sum of the eight 8-bit measurements and shifting it
right three times, which eliminates noise. The ADC transfer
characteristic is presented in Figure 14 [17]. According to
this characteristic, each conversion result for a properly
operating device can deviate from the nominal value by
±1, which is an implication of the fact that the permissible

Altera DE2
Cyclone II 2C35
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R1

Str

S
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Figure 13: The experimental setup.
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Figure 14: 9S12 ADC transfer function.

differential nonlinearity can range from −0.5 to +0.5 LSB
(see shadowed boxes in Figure 14). For example, if 𝑉in =

40mV, the conversion result can be $01, $02, or $03 (in the
worst case, the points 𝑎 and 𝑏 coincide). Therefore, each of
the thirty-two 8-bit average results contains an error of at
most ±1 count. The test stimuli have been selected equal to
the midpoints of the quantization bins, thereby increasing
the uncertainty and worsening the probability of undetected
error. If the test stimuli would have been selected at the
transition points of the characteristic, the probability of
undetected error (aliasing rate) would improve. This follows
from the observation that each conversion would result in 2

possible values as opposed to 3 possible values in the previous
case.

As soon as average values of the conversion results are
computed by the microcontroller, they are transferred to the
DE2 board. The transfer of each datum is accompanied by a
high-to-low transition of the strobe signal 𝑆𝑡𝑟. The 𝑆𝑡𝑟 signal
serves as a clock for the statemachine that implements the sig-
nature analyzer (in its 8-bit configuration). The signature,𝐷,
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Table 2: Relationship between input test stimuli and output res-
ponses.

Input voltage Output code
mV Min Nom. Max No fault Fault
80 3 4 5 3 3
400 19 20 21 21 21
720 35 36 37 37 37
1040 51 52 53 53 53
1360 67 68 69 68 70
1680 83 84 85 85 85
2000 99 100 101 99 99
2320 115 116 117 117 117
2640 131 132 133 133 133
2960 147 148 149 148 150
3280 163 164 165 165 165
3600 179 180 181 179 179
3920 195 196 197 197 197
4240 211 212 213 212 240
4560 227 228 229 229 230
4880 243 244 245 244 244

is displayed on a two-digit 7-segment display in hexadecimal
form.

Thefirst experiment was performed on the properly oper-
ating device. In the second experiment, the average results
were corrupted digitally in the microcontroller (thereby sim-
ulating random faults in the ADC) and sent to the analyzer.
The analyzer has correctly identified the faulty device.

The relationship between input voltages and output codes
is presented in Table 2. Based on this table and taking into
consideration that 𝑔(𝑥) = 𝑥

8

+𝑥
4

+𝑥
3

+𝑥
2

+1, the seed value
is calculated as follows:

4 + 20 + ⋅ ⋅ ⋅ + 244 = 1984 = 199 mod (2
8

− 1) = 199,

𝛼
−199

= 𝛼
56

= 01011101,

Seed Value = 𝛼
56

𝛼
−16

= 𝛼
40

= 01101010 = 106.

(19)

In addition to test experiments, the operation of the
analyzer (the DE2 part of the test setup) was simulated using
Altera Quartus II software. Based on the two experiments
represented in Table 2, the signatures that correspond to
fault-free and faulty ADCs are, respectively, 233 and 201 (in
decimal form). The process of calculation of these signatures
is demonstrated in Figures 15 and 16. Figures 17 and 18
represent the fault detection process. The actual final signa-
tures are shifted additionally 32 times. If the value 1 appears
in the analyzer during these shifts, the system is fault-free.
Otherwise it is faulty.

The simulation results matched the experimental results.

5. Conclusion

We examined an algebraic signature analysis method that can
be employed for mixed-signal circuits testing. We demon-
strated how to design the appropriate device.This device does

Figure 15: All output code deviations are within the tolerance
bounds.

Figure 16: Some of the output code deviations exceed the tolerance
bounds.

Figure 17: The combination “1” is detected: ADC is operating
properly.

Figure 18: The combination “1” is not detected: ADC is faulty.

not produce arithmetic carries and is therefore less prone
to errors. The absence of carry propagating circuitry also
contributes to the higher performance of the device.

The proposed scheme can also be used in arithmetic and
algebraic error-control coding, as well as cryptography.
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