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Abstract. 
The Wiener polarity index 
	
		
			

				𝑊
			

			

				𝑃
			

		
	
 of a graph 
	
		
			

				𝐺
			

		
	
 is the number of unordered pairs of vertices 
	
		
			
				𝑢
				,
				𝑣
			

		
	
 of 
	
		
			

				𝐺
			

		
	
 such that the distance 
	
		
			

				𝑑
			

			

				𝐺
			

			
				(
				𝑢
				,
				𝑣
				)
			

		
	
 between 
	
		
			

				𝑢
			

		
	
 and 
	
		
			

				𝑣
			

		
	
 is 3. Cycle-block graph is a connected graph in which every block is a cycle. In this paper, we determine the maximum and minimum Wiener polarity index of cycle-block graphs and describe their extremal graphs; the extremal graphs of 4-uniform cactus with respect to Wiener polarity index are also discussed.
 

1. Introduction
Let 
	
		
			
				𝐺
				=
				(
				𝑉
				,
				𝐸
				)
			

		
	
 be a connected simple graph. The distance 
	
		
			

				𝑑
			

			

				𝐺
			

			
				(
				𝑢
				,
				𝑣
				)
			

		
	
 between the vertices 
	
		
			

				𝑢
			

		
	
 and 
	
		
			

				𝑣
			

		
	
 of 
	
		
			

				𝐺
			

		
	
 is defined as the length of a shortest path connecting 
	
		
			

				𝑢
			

		
	
 and 
	
		
			

				𝑣
			

		
	
. 
	
		
			

				𝑁
			

			
				𝑖
				𝐺
			

			
				(
				𝑢
				)
				=
				{
				𝑣
				∈
				𝑉
				(
				𝐺
				)
				∣
				𝑑
			

			

				𝐺
			

			
				(
				𝑢
				,
				𝑣
				)
				=
				𝑖
				}
			

		
	
 is called the 
	
		
			

				𝑖
			

		
	
th neighbor set of 
	
		
			

				𝑢
			

		
	
. 
	
		
			
				𝑑
				(
				𝑢
				)
				=
				|
				𝑁
			

			
				1
				𝐺
			

			
				(
				𝑢
				)
				|
			

		
	
 is called the degree of 
	
		
			

				𝑢
			

		
	
. If 
	
		
			
				𝑑
				(
				𝑢
				)
				=
				1
			

		
	
, then 
	
		
			

				𝑢
			

		
	
 is called a pendant vertex of 
	
		
			

				𝐺
			

		
	
. 
	
		
			

				𝐶
			

			

				𝑙
			

			
				=
				𝑢
			

			

				1
			

			

				𝑢
			

			

				2
			

			
				⋯
				𝑢
			

			

				𝑙
			

			

				𝑢
			

			

				1
			

		
	
 denotes a cycle of order 
	
		
			
				𝑙
				(
				≥
				3
				)
			

		
	
. The girth of 
	
		
			

				𝐺
			

		
	
, denoted by 
	
		
			

				𝑔
			

		
	
, is the length of the shortest cycle of 
	
		
			

				𝐺
			

		
	
.
A block of the graph 
	
		
			

				𝐺
			

		
	
 is a maximal 2-connected subgraph of 
	
		
			

				𝐺
			

		
	
. A cactus graph is a connected graph in which no edge lies in more than one cycle, such that each block of a cactus graph is either an edge or a cycle. If all blocks of a cactus 
	
		
			

				𝐺
			

		
	
 are cycles, the graph is defined as cycle-block graph. In this paper, suppose the cycle-block graph consist of 
	
		
			

				𝑛
			

		
	
 cycles, the length of the cycles may be different. If all blocks of a cactus 
	
		
			

				𝐺
			

		
	
 are cycles of the same length 
	
		
			

				𝑚
			

		
	
, the cactus is 
	
		
			

				𝑚
			

		
	
-uniform. A hexagonal cactus is a 
	
		
			

				6
			

		
	
-uniform cactus that every block of the graph is a hexagon. A vertex shared by two or more hexagons is called a cut-vertex. If each hexagon of a hexagonal cactus 
	
		
			

				𝐺
			

		
	
 has at most two cut-vertices and each cut-vertex is shared by exactly two hexagons, we say that 
	
		
			

				𝐺
			

		
	
 is a chain hexagonal cactus (see Figure 1(a)). A star cactus is a cactus consisting of 
	
		
			

				𝑛
			

		
	
 cycles, spliced together in a single vertex 
	
		
			

				𝑢
			

		
	
 (see Figure 1(b)). A star hexagonal cactus is a star cactus in which every cycle is a hexagon.
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(b)
Figure 1: A chain hexagonal cactus (a) and a star cactus graph (b).


The Wiener polarity index of 
	
		
			

				𝐺
			

		
	
, denoted by 
	
		
			

				𝑊
			

			

				𝑃
			

			
				(
				𝐺
				)
			

		
	
, is the number of unordered vertex pairs of distance 3. It was first used in a linear formula to calculate the boiling points 
	
		
			

				𝑡
			

			

				𝐵
			

		
	
 of paraffin [1]: 
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			

				𝑡
			

			

				𝐵
			

			
				=
				𝑎
				𝑊
				(
				𝐺
				)
				+
				𝑏
				𝑊
			

			

				𝑃
			

			
				(
				𝐺
				)
				+
				𝑐
				,
			

		
	

					where 
	
		
			
				𝑎
				,
				𝑏
				,
				𝑐
			

		
	
 are constants for a given isomeric group.
The Wiener polarity index became popular recently, and many mathematical properties and its chemical applications were discovered [2–6]. In this line, Du et al. [2] characterized the minimum and maximum Wiener polarity index among all trees of order 
	
		
			

				𝑛
			

		
	
, and Deng [3] determined the largest Wiener polarity indices among all chemical trees of order 
	
		
			

				𝑛
			

		
	
. M. H. Liu and B. L. Liu [4] determined the first two smallest Wiener polarity indices among all unicyclic graphs of order 
	
		
			

				𝑛
			

		
	
. Hou et al. [5] determined the maximum Wiener polarity index of unicyclic graphs. Behmarama et al. [6] computed the Wiener polarity index of hexagonal cacti. To know more about cactus graph one can research [7, 8].
In this paper, we discuss the extremal graphs of Wiener polarity index of cycle-block graphs with 
	
		
			
				𝑔
				≥
				5
			

		
	
 and 4-uniform cactus.
2. The Extremal Graphs of Wiener Polarity Index of Cycle-Block Graphs with 
	
		
			
				𝑔
				≥
				5
			

		
	

In this section, we characterize the maximum and minimum Wiener polarity index of the cycle-block graphs with 
	
		
			
				𝑔
				≥
				5
			

		
	
.
Suppose that 
	
		
			

				𝐺
			

			

				1
			

		
	
 and 
	
		
			

				𝐺
			

			

				2
			

		
	
 are two connected graphs. The graph obtained by identifying a chosen vertex of 
	
		
			

				𝐺
			

			

				1
			

		
	
 and another of 
	
		
			

				𝐺
			

			

				2
			

		
	
 is called the coalescence of 
	
		
			

				𝐺
			

			

				1
			

		
	
 and 
	
		
			

				𝐺
			

			

				2
			

		
	
, denoted by 
	
		
			

				𝐺
			

			

				1
			

			
				∘
				𝐺
			

			

				2
			

		
	
. The vertex identifying 
	
		
			

				𝐺
			

			

				1
			

		
	
 and 
	
		
			

				𝐺
			

			

				2
			

		
	
 is called the coalescence vertex. The cycle-block graph which consist of 
	
		
			

				𝑛
			

		
	
 cycles 
	
		
			

				𝐶
			

			

				1
			

			
				,
				𝐶
			

			

				2
			

			
				,
				…
				,
				𝐶
			

			

				𝑛
			

		
	
 can be seen as the coalescence of cycles by 
	
		
			
				𝑛
				−
				1
			

		
	
 times, 
	
		
			
				𝐺
				≅
				𝐶
			

			

				1
			

			
				∘
				𝐶
			

			

				2
			

			
				∘
				⋯
				∘
				𝐶
			

			

				𝑛
			

		
	
.
Lemma 1.  Let 
	
		
			

				𝐺
			

			

				1
			

		
	
 and 
	
		
			

				𝐺
			

			

				2
			

		
	
 be two connected graphs; suppose that 
	
		
			

				𝑣
			

			

				0
			

		
	
 is the coalescence vertex of 
	
		
			

				𝐺
			

			

				1
			

			
				∘
				𝐺
			

			

				2
			

		
	
. Then 
	
		
			

				𝑊
			

			

				𝑃
			

			
				(
				𝐺
			

			

				1
			

			
				∘
				𝐺
			

			

				2
			

			
				)
				=
				𝑊
			

			

				𝑃
			

			
				(
				𝐺
			

			

				1
			

			
				)
				+
				𝑊
			

			

				𝑃
			

			
				(
				𝐺
			

			

				2
			

			
				∑
				)
				+
			

			
				2
				𝑘
				=
				1
			

			
				|
				𝑁
			

			
				𝑘
				𝐺
			

			

				1
			

			
				(
				𝑣
			

			

				0
			

			
				)
				|
				|
				𝑁
			

			
				𝐺
				3
				−
				𝑘
			

			

				2
			

			
				(
				𝑣
			

			

				0
			

			
				)
				|
			

		
	
.
Proof. Suppose that 
	
		
			
				𝑢
				,
				𝑣
				∈
				𝑉
				(
				𝐺
			

			

				1
			

			
				∘
				𝐺
			

			

				2
			

			

				)
			

		
	
 and 
	
		
			

				𝑑
			

			

				𝐺
			

			

				1
			

			
				∘
				𝐺
			

			

				2
			

			
				(
				𝑢
				,
				𝑣
				)
				=
				3
			

		
	
. Then,
							
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			
				|
				|
				
				(
				𝑢
				,
				𝑣
				)
				∣
				𝑑
			

			

				𝐺
			

			

				1
			

			
				∘
				𝐺
			

			

				2
			

			
				
				𝐺
				(
				𝑢
				,
				𝑣
				)
				=
				3
				,
				𝑢
				,
				𝑣
				∈
				𝑉
			

			

				𝑖
			

			
				|
				|
				
				
				=
				𝑊
			

			

				𝑃
			

			
				
				𝐺
			

			

				𝑖
			

			
				
				,
				|
				|
				
				𝑖
				=
				1
				,
				2
				,
				(
				𝑢
				,
				𝑣
				)
				∣
				𝑑
			

			

				𝐺
			

			

				1
			

			
				∘
				𝐺
			

			

				2
			

			
				
				𝐺
				(
				𝑢
				,
				𝑣
				)
				=
				3
				,
				𝑢
				∈
				𝑉
			

			

				1
			

			
				
				
				𝐺
				,
				𝑣
				∈
				𝑉
			

			

				2
			

			
				|
				|
				=
				
				
			

			

				2
			

			

				
			

			
				𝑘
				=
				1
			

			
				|
				|
				|
				𝑁
			

			
				𝑘
				𝐺
			

			

				1
			

			
				
				𝑣
			

			

				0
			

			
				
				|
				|
				|
				|
				|
				|
				𝑁
			

			
				𝐺
				3
				−
				𝑘
			

			

				2
			

			
				
				𝑣
			

			

				0
			

			
				
				|
				|
				|
				.
			

		
	

						By the definition of Wiener polarity index, the result holds.
Theorem 2.  Let 
	
		
			

				𝐺
			

		
	
 be a cycle-block graph with 
	
		
			
				𝑔
				≥
				5
			

		
	
 and let 
	
		
			

				𝐺
			

		
	
 be consisting of 
	
		
			

				𝑛
			

		
	
 cycles 
	
		
			

				𝐶
			

			

				1
			

			
				,
				𝐶
			

			

				2
			

			
				,
				…
				,
				𝐶
			

			

				𝑛
			

		
	
. Then 
							
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			

				𝑊
			

			

				𝑃
			

			
				(
				𝐺
				)
				≤
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑊
			

			

				𝑃
			

			
				
				𝐶
			

			

				𝑖
			

			
				
				⎛
				⎜
				⎜
				⎜
				⎝
				𝑛
				2
				⎞
				⎟
				⎟
				⎟
				⎠
				;
				+
				8
			

		
	

						the equality holds if and only if 
	
		
			
				𝐺
				≅
				𝐺
			

			

				∗
			

		
	
, where 
	
		
			

				𝐺
			

			

				∗
			

		
	
 is a star cactus graph.
Proof. Let 
	
		
			

				𝐺
			

		
	
 be a cycle-block graph with 
	
		
			
				𝑔
				≥
				5
			

		
	
. Here we apply induction to 
	
		
			

				𝑛
			

		
	
.When 
	
		
			
				𝑘
				=
				2
			

		
	
, the graph is determined uniquely. By Lemma 1 and elementary computation, we have 
	
		
			

				𝑊
			

			

				𝑃
			

			
				∑
				(
				𝐺
				)
				=
			

			
				2
				𝑖
				=
				1
			

			

				𝑊
			

			

				𝑃
			

			
				(
				𝐶
			

			

				𝑖
			

			
				)
				+
				8
			

		
	
.When 
	
		
			
				𝑘
				=
				3
			

		
	
, there are three cycles 
	
		
			

				𝐶
			

			

				1
			

		
	
, 
	
		
			

				𝐶
			

			

				2
			

		
	
, and 
	
		
			

				𝐶
			

			

				3
			

		
	
. The graph 
	
		
			

				𝐺
			

		
	
 is obtained from 
	
		
			

				𝐶
			

			

				1
			

			
				∘
				𝐶
			

			

				2
			

		
	
 by attaching a new cycle 
	
		
			

				𝐶
			

			

				3
			

		
	
 to 
	
		
			

				𝐶
			

			

				1
			

			
				∘
				𝐶
			

			

				2
			

		
	
. There are three ways to attach the cycle 
	
		
			

				𝐶
			

			

				3
			

		
	
. Here we suppose that 
	
		
			

				𝑣
			

			

				0
			

		
	
 is the coalescence vertex of 
	
		
			

				𝐶
			

			

				1
			

			
				∘
				𝐶
			

			

				2
			

		
	
 and 
	
		
			

				𝑣
			

			

				1
			

		
	
 is the new coalescence vertex of 
	
		
			

				𝐶
			

			

				1
			

			
				∘
				𝐶
			

			

				2
			

			
				∘
				𝐶
			

			

				3
			

		
	
.By Lemma 1 and elementary computation, we have
							
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			

				𝑊
			

			

				𝑃
			

			
				⎧
				⎪
				⎪
				⎪
				⎪
				⎨
				⎪
				⎪
				⎪
				⎪
				⎩
				(
				𝐺
				)
				=
			

			

				3
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑊
			

			

				𝑃
			

			
				
				𝐶
			

			

				𝑖
			

			
				
				
				3
				2
				
				
				𝑣
				+
				8
				,
				𝑑
			

			

				0
			

			
				,
				𝑣
			

			

				1
			

			
				
				=
				0
				,
			

			

				3
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑊
			

			

				𝑃
			

			
				
				𝐶
			

			

				𝑖
			

			
				
				
				𝑣
				+
				2
				0
				,
				𝑑
			

			

				0
			

			
				,
				𝑣
			

			

				1
			

			
				
				=
				1
				,
			

			

				3
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑊
			

			

				𝑃
			

			
				
				𝐶
			

			

				𝑖
			

			
				
				
				𝑣
				+
				1
				6
				,
				𝑑
			

			

				0
			

			
				,
				𝑣
			

			

				1
			

			
				
				≥
				2
				,
			

		
	

						where 
	
		
			
				𝑑
				(
				𝑣
			

			

				0
			

			
				,
				𝑣
			

			

				1
			

			
				)
				=
				0
			

		
	
 implies that 
	
		
			

				𝐺
			

		
	
 is the star cactus graph. From the result of the three cases, it holds for the result.Now suppose that the assertion holds for 
	
		
			
				𝑘
				=
				𝑛
				−
				1
			

		
	
. Next we prove that the result holds for 
	
		
			
				𝑘
				=
				𝑛
			

		
	
.Suppose that 
	
		
			

				𝑣
			

			

				0
			

		
	
 is the coalescence vertex of 
	
		
			

				𝐶
			

			

				1
			

			
				∘
				𝐶
			

			

				2
			

			
				∘
				⋯
				∘
				𝐶
			

			
				𝑛
				−
				1
			

		
	
 and 
	
		
			

				𝑣
			

			

				1
			

		
	
 is the coalescence vertex of 
	
		
			

				𝐶
			

			

				1
			

			
				∘
				𝐶
			

			

				2
			

			
				∘
				⋯
				∘
				𝐶
			

			

				𝑛
			

		
	
. Three cases occur 
							
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			

				𝑊
			

			

				𝑃
			

			
				⎧
				⎪
				⎪
				⎪
				⎪
				⎨
				⎪
				⎪
				⎪
				⎪
				⎩
				(
				𝐺
				)
				=
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑊
			

			

				𝑃
			

			
				
				𝐶
			

			

				𝑖
			

			
				
				
				𝑛
				2
				
				
				𝑣
				+
				8
				,
				𝑑
			

			

				0
			

			
				,
				𝑣
			

			

				1
			

			
				
				=
				0
				,
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑊
			

			

				𝑃
			

			
				
				𝐶
			

			

				𝑖
			

			
				
				
				2
				
				
				𝑣
				+
				8
				𝑛
				−
				1
				+
				4
				𝑛
				,
				𝑑
			

			

				0
			

			
				,
				𝑣
			

			

				1
			

			
				
				=
				1
				,
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑊
			

			

				𝑃
			

			
				
				𝐶
			

			

				𝑖
			

			
				
				
				2
				
				
				𝑣
				+
				8
				𝑛
				−
				1
				+
				8
				,
				𝑑
			

			

				0
			

			
				,
				𝑣
			

			

				1
			

			
				
				≥
				2
				,
			

		
	

						where 
	
		
			
				𝑑
				(
				𝑣
			

			

				0
			

			
				,
				𝑣
			

			

				1
			

			
				)
				=
				0
			

		
	
; it implies that 
	
		
			

				𝐺
			

		
	
 is the star cactus graph. Obviously, the star cactus graph has the maximum Wiener polarity index of cycle-block graphs with 
	
		
			
				𝑔
				≥
				5
			

		
	
. This completes the proof.
Let 
	
		
			

				𝔾
			

		
	
 be a graph set that consists of the cycle-block graphs of 
	
		
			

				𝑛
			

		
	
 cycles with 
	
		
			
				𝑛
				−
				1
			

		
	
 cut-vertices and the distance between any cut-vertices being greater than 1. By a similar method with Theorem 2, we have Theorem 3; the proof is in the Appendix.
Theorem 3.  Let 
	
		
			

				𝐺
			

		
	
 be a cycle-block graph with 
	
		
			
				𝑔
				≥
				5
			

		
	
 and let 
	
		
			

				𝐺
			

		
	
 be consisting of 
	
		
			

				𝑛
			

		
	
 cycles 
	
		
			

				𝐶
			

			

				1
			

			
				,
				𝐶
			

			

				2
			

			
				,
				…
				,
				𝐶
			

			

				𝑛
			

		
	
. Then 
							
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			

				𝑊
			

			

				𝑃
			

			
				(
				𝐺
				)
				≥
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑊
			

			

				𝑃
			

			
				
				𝐶
			

			

				𝑖
			

			
				
				+
				8
				(
				𝑛
				−
				1
				)
				;
			

		
	

						the equality holds if and only if 
	
		
			
				𝐺
				∈
				𝔾
			

		
	
.
Remark 4. By Theorems 2 and 3, we know that the cycle-block graph with maximum Wiener polarity index is determined uniquely while the cycle-block graph with minimum Wiener polarity index is not.For some types of hexagonal cacti which represent common chemical structures, as an extension, we obtain the 
	
		
			

				6
			

		
	
-uniform cactus with the maximum and minimum Wiener polarity index.
Corollary 5.  Let 
	
		
			

				𝐺
			

		
	
 be 
	
		
			

				6
			

		
	
-uniform cactus with 
	
		
			

				𝑛
			

		
	
 hexagons. Then 
	
		
			
				1
				1
				𝑛
				−
				8
				≤
				𝑊
			

			

				𝑃
			

			
				(
				𝐺
				)
				≤
				4
				𝑛
			

			

				2
			

			
				−
				𝑛
			

		
	
; the first equality holds if and only if there are 
	
		
			
				𝑛
				−
				1
			

		
	
 different cut-vertices in 
	
		
			

				𝐺
			

		
	
 and distance between any two vertices is greater than 1; the second equality holds if and only if 
	
		
			

				𝐺
			

		
	
 is a star hexagonal cactus graph.
3. The Extremal Graphs of Wiener Polarity Index of 4-Uniform Cactus
The case of 
	
		
			

				4
			

		
	
-uniform cactus’ extremal graphs is different from the cycle-block graphs with 
	
		
			
				𝑔
				≥
				5
			

		
	
 and more complex. Let 
	
		
			

				𝑄
			

			

				𝑛
			

			
				(
				𝑖
				,
				𝑗
				,
				𝑡
				,
				𝑤
				)
			

		
	
 be a graph obtained from a quadrilateral 
	
		
			

				𝐶
			

			

				4
			

			
				=
				𝑣
			

			

				1
			

			

				𝑣
			

			

				2
			

			

				𝑣
			

			

				3
			

			

				𝑣
			

			

				4
			

			

				𝑣
			

			

				1
			

		
	
 by attaching 
	
		
			

				𝑖
			

		
	
, 
	
		
			

				𝑗
			

		
	
, 
	
		
			

				𝑡
			

		
	
, and 
	
		
			

				𝑤
			

		
	
 quadrilaterals to vertices 
	
		
			

				𝑣
			

			

				1
			

		
	
, 
	
		
			

				𝑣
			

			

				2
			

		
	
, 
	
		
			

				𝑣
			

			

				3
			

		
	
, and 
	
		
			

				𝑣
			

			

				4
			

		
	
, respectively, where 
	
		
			
				𝑖
				+
				𝑗
				+
				𝑡
				+
				𝑤
				+
				1
				=
				𝑛
			

		
	
 (see Figure 2).



































































	
		
	


	
		
	


	
		
	


	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
			
		
	


	
		
			
		
	


	
		
			
		
	


	
		
			
		
	

Figure 2: The graph of 
	
		
			

				𝑄
			

			

				𝑛
			

			
				(
				𝑖
				,
				𝑗
				,
				𝑘
				,
				𝜔
				)
			

		
	
.


Theorem 6.  Suppose that 
	
		
			

				𝐺
			

		
	
 is 4-uniform with 
	
		
			
				𝑛
				(
				≥
				2
				)
			

		
	
 quadrilaterals. Then 
							
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			

				𝑊
			

			

				𝑃
			

			
				(
				𝐺
				)
				≤
				2
				𝑛
			

			

				2
			

			
				−
				2
				𝑛
				;
			

		
	

						the equality holds if and only if 
	
		
			
				𝐺
				≅
				𝑄
			

			

				𝑛
			

			
				(
				𝑖
				,
				𝑗
				,
				0
				,
				0
				)
			

		
	
, where 
	
		
			
				𝑖
				≥
				0
				,
				𝑗
				=
				𝑛
				−
				1
				−
				𝑖
			

		
	
.
Proof. We apply induction to 
	
		
			

				𝑛
			

		
	
.When 
	
		
			
				𝑘
				=
				2
			

		
	
, 
	
		
			

				𝐺
			

		
	
 is unique. By Lemma 1, we have 
	
		
			

				𝑊
			

			

				𝑃
			

			
				(
				𝐺
				)
				=
				4
			

		
	
; the result follows.When 
	
		
			
				𝑘
				=
				3
			

		
	
, we have 
							
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			

				𝑊
			

			

				𝑃
			

			
				⎧
				⎪
				⎨
				⎪
				⎩
				(
				𝐺
				)
				=
				1
				2
				,
				𝐺
				≅
				𝑄
			

			

				3
			

			
				(
				2
				,
				0
				,
				0
				,
				0
				)
				,
				1
				2
				,
				𝐺
				≅
				𝑄
			

			

				3
			

			
				(
				1
				,
				1
				,
				0
				,
				0
				)
				,
				8
				,
				𝐺
				≅
				𝑄
			

			

				3
			

			
				(
				1
				,
				0
				,
				1
				,
				0
				)
				;
			

		
	

						the result holds.Suppose that the result holds for 
	
		
			
				𝑘
				=
				𝑛
				−
				1
			

		
	
. When 
	
		
			
				𝑘
				=
				𝑛
			

		
	
, there is a new quadrilateral to be attached to 
	
		
			

				𝑄
			

			
				𝑛
				−
				1
			

			
				(
				𝑖
				,
				𝑗
				,
				0
				,
				0
				)
			

		
	
, where 
	
		
			
				𝑗
				=
				𝑛
				−
				2
				−
				𝑖
				,
				𝑖
				≥
				0
			

		
	
. Without loss of generality, suppose that 
	
		
			
				𝑖
				>
				0
			

		
	
; there are two cases to be discussed concerning of the variable parameters of 
	
		
			

				𝑗
			

		
	
.C ase   1   
	
		
			
				(
				𝑗
				=
				0
				)
			

		
	
. It is a star quadrilateral cactus. Three new graphs 
	
		
			

				𝑄
			

			

				𝑛
			

			
				(
				𝑛
				−
				1
				,
				0
				,
				0
				,
				0
				)
			

		
	
, 
	
		
			

				𝑄
			

			

				𝑛
			

			
				(
				𝑛
				−
				2
				,
				1
				,
				0
				,
				0
				)
			

		
	
, and 
	
		
			

				𝑄
			

			

				𝑛
			

			
				(
				𝑛
				−
				2
				,
				0
				,
				1
				,
				0
				)
			

		
	
 are obtained by three different ways to attach a quadrilateral to 
	
		
			

				𝑄
			

			
				𝑛
				−
				1
			

			
				(
				𝑛
				−
				2
				,
				0
				,
				0
				,
				0
				)
			

		
	
.By elementary computation and Lemma 1, we have 
							
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			

				𝑊
			

			

				𝑃
			

			
				⎧
				⎪
				⎪
				⎪
				⎪
				⎪
				⎪
				⎨
				⎪
				⎪
				⎪
				⎪
				⎪
				⎪
				⎩
				(
				𝐺
				)
				=
				2
				(
				𝑛
				−
				1
				)
			

			

				2
			

			
				2
				−
				2
				(
				𝑛
				−
				1
				)
				+
				2
				×
				(
				𝑛
				−
				1
				)
				+
				1
				×
				2
				(
				𝑛
				−
				1
				)
				,
				(
				𝑛
				−
				1
				)
			

			

				2
			

			
				−
				2
				(
				𝑛
				−
				1
				)
				+
				2
				×
				(
				2
				(
				𝑛
				−
				2
				)
				+
				1
				)
				+
				1
				×
				2
				,
				2
				(
				𝑛
				−
				1
				)
			

			

				2
			

			
				=
				⎧
				⎪
				⎨
				⎪
				⎩
				−
				2
				(
				𝑛
				−
				1
				)
				+
				2
				×
				1
				+
				1
				×
				2
				,
				2
				𝑛
			

			

				2
			

			
				−
				2
				𝑛
				,
				𝐺
				≅
				𝑄
			

			

				𝑛
			

			
				(
				𝑛
				−
				1
				,
				0
				,
				0
				,
				0
				)
				,
				2
				𝑛
			

			

				2
			

			
				−
				2
				𝑛
				,
				𝐺
				≅
				𝑄
			

			

				𝑛
			

			
				(
				𝑛
				−
				2
				,
				1
				,
				0
				,
				0
				)
				,
				2
				𝑛
			

			

				2
			

			
				−
				6
				𝑛
				+
				8
				,
				𝐺
				≅
				𝑄
			

			

				𝑛
			

			
				(
				𝑛
				−
				2
				,
				0
				,
				1
				,
				0
				)
				.
			

		
	

						For these three subcases, the result follows.Case   2   
	
		
			
				(
				𝑗
				>
				0
				)
			

		
	
. There are also three subcases to attach a new quadrilateral to 
	
		
			

				𝑄
			

			
				𝑛
				−
				1
			

			
				(
				𝑖
				,
				𝑗
				,
				0
				,
				0
				)
			

		
	
.Subcase  1.   
	
		
			
				𝐺
				≅
				𝑄
			

			

				𝑛
			

			
				(
				𝑖
				+
				1
				,
				𝑗
				,
				0
				,
				0
				)
			

		
	
 or 
	
		
			
				𝐺
				≅
				𝑄
			

			

				𝑛
			

			
				(
				𝑖
				,
				𝑗
				+
				1
				,
				0
				,
				0
				)
			

		
	
.We only prove the case 
	
		
			
				𝐺
				≅
				𝑄
			

			

				𝑛
			

			
				(
				𝑖
				+
				1
				,
				𝑗
				,
				0
				,
				0
				)
			

		
	
. 
	
		
			
				𝐺
				≅
				𝑄
			

			

				𝑛
			

			
				(
				𝑖
				,
				𝑗
				+
				1
				,
				0
				,
				0
				)
			

		
	
 can be proved similarly. By elementary computation and Lemma 1, we have 
							
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			

				𝑊
			

			

				𝑃
			

			
				
				𝑄
			

			

				𝑛
			

			
				
				(
				𝑖
				+
				1
				,
				𝑗
				,
				0
				,
				0
				)
				=
				2
				(
				𝑛
				−
				1
				)
			

			

				2
			

			
				−
				2
				(
				𝑛
				−
				1
				)
				+
				2
				×
				(
				𝑖
				+
				1
				+
				2
				𝑗
				)
				+
				1
				×
				2
				(
				𝑖
				+
				1
				)
				=
				2
				𝑛
			

			

				2
			

			
				−
				2
				𝑛
				.
			

		
	
Subcase  2.   
	
		
			
				𝐺
				≅
				𝑄
			

			

				𝑛
			

			
				(
				𝑖
				,
				𝑗
				,
				1
				,
				0
				)
			

		
	
 or 
	
		
			
				𝐺
				≅
				𝑄
			

			

				𝑛
			

			
				(
				𝑖
				,
				𝑗
				,
				0
				,
				1
				)
			

		
	
.When 
	
		
			
				𝐺
				≅
				𝑄
			

			

				𝑛
			

			
				(
				𝑖
				,
				𝑗
				,
				1
				,
				0
				)
			

		
	
, by elementary computation and Lemma 1, we have
							
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			

				𝑊
			

			

				𝑃
			

			
				
				𝑄
			

			

				𝑛
			

			
				
				(
				𝑖
				,
				𝑗
				,
				1
				,
				0
				)
				=
				2
				(
				𝑛
				−
				1
				)
			

			

				2
			

			
				−
				2
				(
				𝑛
				−
				1
				)
				+
				2
				×
				(
				2
				𝑗
				+
				1
				)
				+
				1
				×
				2
				=
				2
				𝑛
			

			

				2
			

			
				−
				6
				𝑛
				+
				4
				𝑗
				+
				8
				.
			

		
	

						Similarly, 
	
		
			

				𝑊
			

			

				𝑃
			

			
				(
				𝑄
			

			

				𝑛
			

			
				(
				𝑖
				,
				𝑗
				,
				0
				,
				1
				)
				)
				=
				2
				𝑛
			

			

				2
			

			
				−
				6
				𝑛
				+
				4
				𝑖
				+
				8
			

		
	
.Subcase  3. The new quadrilateral attach to one of the 
	
		
			

				𝑖
			

		
	
 or 
	
		
			

				𝑗
			

		
	
 quadrilaterals and create a new cut-vertex different from 
	
		
			

				𝑣
			

			

				1
			

		
	
 and 
	
		
			

				𝑣
			

			

				2
			

		
	
.When a new quadrilateral is attached to one of the 
	
		
			

				𝑗
			

		
	
 quadrilaterals. The distance between the new cut-vertex and its nearest cut-vertex is 1. By elementary computation and Lemma 1, we have 
							
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			

				𝑊
			

			

				𝑃
			

			
				(
				𝐺
				)
				=
				2
				(
				𝑛
				−
				1
				)
			

			

				2
			

			
				−
				2
				(
				𝑛
				−
				1
				)
				+
				2
				×
				(
				1
				+
				2
				𝑗
				)
				+
				1
				×
				2
				=
				2
				𝑛
			

			

				2
			

			
				−
				6
				𝑛
				+
				4
				𝑗
				+
				8
				.
			

		
	

						Analogously, when the new quadrilateral is attached to one of the 
	
		
			

				𝑖
			

		
	
 quadrilaterals, we have 
	
		
			

				𝑊
			

			

				𝑃
			

			
				(
				𝐺
				)
				=
				2
				𝑛
			

			

				2
			

			
				−
				6
				𝑛
				+
				4
				𝑖
				+
				8
			

		
	
.When the distance between the new cut-vertex and its nearest cut-vertex is 2. By elementary computation and Lemma 1, we have 
							
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			

				𝑊
			

			

				𝑃
			

			
				(
				𝐺
				)
				=
				2
				(
				𝑛
				−
				1
				)
			

			

				2
			

			
				−
				2
				(
				𝑛
				−
				1
				)
				+
				2
				×
				1
				+
				1
				×
				2
				=
				2
				𝑛
			

			

				2
			

			
				−
				6
				𝑛
				+
				8
				.
			

		
	

						By the discussion of Case 2 above, for 
	
		
			
				𝑖
				>
				0
				,
				𝑗
				>
				0
			

		
	
, it is easy to verify that 
	
		
			
				2
				𝑛
			

			

				2
			

			
				−
				2
				𝑛
				>
				m
				a
				x
				{
				2
				𝑛
			

			

				2
			

			
				−
				6
				𝑛
				+
				4
				𝑖
				+
				1
				2
				,
				2
				𝑛
			

			

				2
			

			
				−
				6
				𝑛
				+
				4
				𝑗
				+
				1
				2
				,
				2
				𝑛
			

			

				2
			

			
				−
				6
				𝑛
				+
				8
				}
			

		
	
. This completes the proof.
With the analogous method with Theorem 3, we can deduce the minimum Wiener polarity index of 4-uniform (see the proof of the Appendix).
Theorem 7.  Let 
	
		
			

				𝐺
			

		
	
 be 4-uniform with 
	
		
			

				𝑛
			

		
	
 quadrilaterals. Then
							
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			

				𝑊
			

			

				𝑃
			

			
				(
				𝐺
				)
				≥
				4
				(
				𝑛
				−
				1
				)
				;
			

		
	

						the equality holds if and only if  
	
		
			
				𝐺
				≅
				𝐺
			

			

				′
			

		
	
, where 
	
		
			

				𝐺
			

			

				′
			

		
	
 is a chain quadrilateral cactus with the distance between the cut-vertices being at least 2 (see Figure 3).


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
	
		
	
		
	
	
	
	
	
	
	
	
	


	
		
			
		
		
			
		
		
			
		
	

Figure 3: The graph of 
	
		
			

				𝐺
			

			

				′
			

		
	
.


Remark 8. From Theorems 6 and 7, we can conclude that the extremal 4-uniform with the maximum Wiener polarity index is not unique, but the minimum case is unique and different from the case of cycle-block graphs with 
	
		
			
				𝑔
				≥
				5
			

		
	
. For the case of extremal cycle-block with 
	
		
			
				𝑔
				≥
				3
			

		
	
 of Wiener polarity index is very complex, we do not discuss it here.
Appendix

					The proof of Theorem 3.
Proof. We proof the result with the similar method of Theorem 2.When 
	
		
			
				𝑘
				=
				2
			

		
	
, the graph is 
	
		
			

				𝐶
			

			

				1
			

			
				∘
				𝐶
			

			

				2
			

		
	
. By Lemma 1 and elementary computation, we have 
	
		
			

				𝑊
			

			

				𝑃
			

			
				∑
				(
				𝐺
				)
				=
			

			
				2
				𝑖
				=
				1
			

			

				𝑊
			

			

				𝑃
			

			
				(
				𝐶
			

			

				𝑖
			

			
				)
				+
				8
			

		
	
.When 
	
		
			
				𝑘
				=
				3
			

		
	
, from the process of the proof of Theorem 2, Case 3 has the minimum Wiener polarity index. It holds for the result.Suppose that 
	
		
			
				𝑘
				=
				𝑛
				−
				1
			

		
	
 holds for the result; the smallest Wiener polarity index of cycle-block graphs is the cycle-block graph with 
	
		
			
				𝑛
				−
				2
			

		
	
 cut-vertex and any two cut-vertices’ distance being greater than 1. Next we demonstrate that the result holds for 
	
		
			
				𝑘
				=
				𝑛
			

		
	
. There are four cases to be discussed. Suppose that 
	
		
			

				𝑣
			

			

				1
			

			
				,
				𝑣
			

			

				2
			

			
				,
				…
				,
				𝑣
			

			
				𝑛
				−
				2
			

		
	
 are cut-vertices between the cycles 
	
		
			

				𝐶
			

			

				1
			

			
				,
				𝐶
			

			

				2
			

			
				,
				…
				,
				𝐶
			

			
				𝑛
				−
				1
			

		
	
. 
	
		
			

				𝑣
			

			
				𝑛
				−
				1
			

		
	
 is the cut-vertex of 
	
		
			

				𝐶
			

			

				1
			

			
				∘
				𝐶
			

			

				2
			

			
				∘
				⋯
				∘
				𝐶
			

			

				𝑛
			

		
	
. Consider the following:
							
	
 		
 			
				(
				A
				.
				1
				)
			
 		
	

	
		
			

				𝑊
			

			

				𝑃
			

			
				⎧
				⎪
				⎪
				⎪
				⎪
				⎪
				⎪
				⎪
				⎪
				⎪
				⎨
				⎪
				⎪
				⎪
				⎪
				⎪
				⎪
				⎪
				⎪
				⎪
				⎩
				(
				𝐺
				)
				=
			

			
				𝑛
				−
				1
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑊
			

			

				𝑃
			

			
				
				𝐶
			

			

				𝑖
			

			
				
				+
				8
				(
				𝑛
				−
				2
				)
				+
				𝑊
			

			

				𝑃
			

			
				
				𝐶
			

			

				𝑛
			

			
				
				+
				2
				×
				4
				+
				2
				×
				4
				,
			

			
				𝑛
				−
				1
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑊
			

			

				𝑃
			

			
				
				𝐶
			

			

				𝑖
			

			
				
				+
				8
				(
				𝑛
				−
				2
				)
				+
				𝑊
			

			

				𝑃
			

			
				
				𝐶
			

			

				𝑛
			

			
				
				+
				2
				×
				6
				+
				2
				×
				2
				,
			

			
				𝑛
				−
				1
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑊
			

			

				𝑃
			

			
				
				𝐶
			

			

				𝑖
			

			
				
				+
				8
				(
				𝑛
				−
				2
				)
				+
				𝑊
			

			

				𝑃
			

			
				
				𝐶
			

			

				𝑛
			

			
				
				+
				2
				×
				4
				+
				2
				×
				2
				,
			

			
				𝑛
				−
				1
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑊
			

			

				𝑃
			

			
				
				𝐶
			

			

				𝑖
			

			
				
				+
				8
				(
				𝑛
				−
				2
				)
				+
				𝑊
			

			

				𝑃
			

			
				
				𝐶
			

			

				𝑛
			

			
				
				=
				⎧
				⎪
				⎪
				⎪
				⎪
				⎪
				⎪
				⎪
				⎪
				⎪
				⎪
				⎨
				⎪
				⎪
				⎪
				⎪
				⎪
				⎪
				⎪
				⎪
				⎪
				⎪
				⎩
				+
				2
				×
				2
				+
				2
				×
				2
				,
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑊
			

			

				𝑃
			

			
				
				𝐶
			

			

				𝑖
			

			
				
				
				𝑣
				+
				8
				𝑛
				,
				𝑑
			

			

				𝑖
			

			
				,
				𝑣
			

			
				𝑛
				−
				1
			

			
				
				=
				0
				,
				1
				≤
				𝑖
				≤
				𝑛
				−
				2
				,
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑊
			

			

				𝑃
			

			
				
				𝐶
			

			

				𝑖
			

			
				
				
				𝑣
				+
				8
				𝑛
				,
				𝑑
			

			

				𝑖
			

			
				,
				𝑣
			

			
				𝑛
				−
				1
			

			
				
				
				𝑣
				=
				𝑑
			

			

				𝑗
			

			
				,
				𝑣
			

			
				𝑛
				−
				1
			

			
				
				=
				1
				,
				1
				≤
				𝑖
				,
				𝑗
				≤
				𝑛
				−
				2
				,
				𝑖
				≠
				𝑗
				,
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑊
			

			

				𝑃
			

			
				
				𝐶
			

			

				𝑖
			

			
				
				
				𝑣
				+
				8
				𝑛
				−
				4
				,
				𝑑
			

			

				𝑗
			

			
				,
				𝑣
			

			
				𝑛
				−
				1
			

			
				
				𝑑
				
				𝑣
				=
				1
				,
			

			

				𝑖
			

			
				,
				𝑣
			

			
				𝑛
				−
				1
			

			
				
				>
				1
				,
				1
				≤
				𝑖
				,
				𝑗
				≤
				𝑛
				−
				2
				,
				𝑖
				≠
				𝑗
				,
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑊
			

			

				𝑃
			

			
				
				𝐶
			

			

				𝑖
			

			
				
				
				𝑣
				+
				8
				(
				𝑛
				−
				1
				)
				,
				𝑑
			

			

				𝑖
			

			
				,
				𝑣
			

			
				𝑛
				−
				1
			

			
				
				≥
				2
				,
				1
				≤
				𝑖
				≤
				𝑛
				−
				2
				.
			

		
	

						From the discussion for 
	
		
			
				𝑘
				=
				𝑛
			

		
	
, we find that the result follows. By induction, it follows that the cycle-block graph 
	
		
			
				𝐺
				∈
				𝔾
			

		
	
 has the minimum Wiener polarity index.
The proof of Theorem 7.
Proof. We prove the result with the same method of Theorem 3.When 
	
		
			
				𝑘
				=
				2
			

		
	
 and 
	
		
			
				𝑘
				=
				3
			

		
	
, from the process of the proof of Theorem 6, it holds for the result.Suppose that 
	
		
			
				𝑘
				=
				𝑛
				−
				1
			

		
	
 holds for the result; next we prove the case of 
	
		
			
				𝑘
				=
				𝑛
			

		
	
 quadrilaterals. When 
	
		
			
				𝑘
				=
				𝑛
			

		
	
, it is the graph that by attaching a new quadrilateral to the chain quadrilateral cactus of 
	
		
			
				𝑛
				−
				1
			

		
	
 quadrilaterals which the distance between the cut-vertices is at least 2. There are four cases to be discussed. Suppose that 
	
		
			

				𝑣
			

			

				1
			

			
				,
				𝑣
			

			

				2
			

			
				,
				…
				,
				𝑣
			

			
				𝑛
				−
				2
			

		
	
 are cut-vertices of the chain quadrilateral cactus with 
	
		
			
				𝑛
				−
				1
			

		
	
 quadrilaterals. 
	
		
			

				𝑣
			

			
				𝑛
				−
				1
			

		
	
 is the new coalescence vertex of 
	
		
			

				𝐶
			

			

				1
			

			
				∘
				𝐶
			

			

				2
			

			
				∘
				⋯
				∘
				𝐶
			

			

				𝑛
			

		
	
. Consider the following:
	
 		
 			
				(
				A
				.
				2
				)
			
 		
	

	
		
			

				𝑊
			

			

				𝑃
			

			
				⎧
				⎪
				⎪
				⎪
				⎪
				⎨
				⎪
				⎪
				⎪
				⎪
				⎩
				4
				=
				⎧
				⎪
				⎪
				⎪
				⎪
				⎪
				⎨
				⎪
				⎪
				⎪
				⎪
				⎪
				⎩
				
				𝑣
				(
				𝐺
				)
				=
				4
				(
				𝑛
				−
				2
				)
				+
				2
				×
				2
				+
				1
				×
				4
				,
				4
				(
				𝑛
				−
				2
				)
				+
				2
				×
				5
				+
				1
				×
				2
				,
				(
				𝑛
				−
				2
				)
				+
				2
				×
				3
				+
				1
				×
				2
				,
				4
				(
				𝑛
				−
				2
				)
				+
				2
				×
				1
				+
				1
				×
				2
				,
				4
				𝑛
				,
				𝑑
			

			

				𝑖
			

			
				,
				𝑣
			

			
				𝑛
				−
				1
			

			
				
				
				𝑣
				=
				0
				,
				1
				≤
				𝑖
				≤
				𝑛
				−
				2
				,
				4
				𝑛
				+
				4
				,
				𝑑
			

			

				𝑖
			

			
				,
				𝑣
			

			
				𝑛
				−
				1
			

			
				
				
				𝑣
				=
				𝑑
			

			

				𝑗
			

			
				,
				𝑣
			

			
				𝑛
				−
				1
			

			
				
				
				𝑣
				=
				1
				,
				1
				≤
				𝑖
				,
				𝑗
				≤
				𝑛
				−
				2
				,
				𝑖
				≠
				𝑗
				,
				4
				𝑛
				,
				𝑑
			

			

				𝑗
			

			
				,
				𝑣
			

			
				𝑛
				−
				1
			

			
				
				
				𝑣
				=
				1
				,
				𝑑
			

			

				𝑖
			

			
				,
				𝑣
			

			
				𝑛
				−
				1
			

			
				
				
				𝑣
				>
				1
				,
				1
				≤
				𝑖
				,
				𝑗
				≤
				𝑛
				−
				2
				,
				𝑖
				≠
				𝑗
				,
				4
				(
				𝑛
				−
				1
				)
				,
				𝑑
			

			

				𝑖
			

			
				,
				𝑣
			

			
				𝑛
				−
				1
			

			
				
				≥
				2
				,
				1
				≤
				𝑖
				≤
				𝑛
				−
				2
				.
			

		
	
When 
	
		
			
				𝑑
				(
				𝑣
			

			

				𝑖
			

			
				,
				𝑣
			

			
				𝑛
				−
				1
			

			
				)
				≥
				2
				,
				1
				≤
				𝑖
				≤
				𝑛
				−
				2
			

		
	
, graph 
	
		
			

				𝐺
			

		
	
 is the chain quadrilateral cactus of 
	
		
			
				𝑛
				−
				1
			

		
	
 quadrilaterals with the distance between the cut-vertices being at least 2; the result follows. By induction, it follows that the chain quadrilateral cactus with the distance between the cut-vertices being at least 2 has the minimum Wiener polarity index. This completes the proof.
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