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Symbolic computation techniques are used to obtain a canonical form for polynomial matrices arising from discrete 2D linear
state-space systems. The canonical form can be regarded as an extension of the companion form often encountered in the theory
of 1D linear systems. Using previous results obtained by Boudellioua and Quadrat (2010) on the reduction by equivalence to Smith
form, the exact connection between the original polynomial matrix and the reduced canonical form is set out. An example is given
to illustrate the computational aspects involved.

1. Introduction

Canonical forms play an important role in themodern theory
of linear systems. In particular, the so-called companion
matrix has been used by many authors in the analysis and
synthesis of 1D linear control systems. For instance, Barnett
[1] showed thatmany of the concepts encountered in 1D linear
systems theory such as controllability, observability, stability,
and pole assignment can be nicely linked via the companion
matrix. Boudellioua [2] suggested a matrix form which can
be regarded as a 2D companion form for a class of bivariate
polynomials. These polynomials arise in the study of 2D
linear discrete state-space systems describing, for example,
2D image processing systems, as suggested by Roesser [3].
However in that paper, the author did not establish the exact
connection between the original matrix and the reduced
canonical form. In this paper, using symbolic computation
based on the OreModules [4] Maple package the connection
between the original polynomial matrix and the canonical
form is established.

2. Polynomial Matrices Arising from
Linear 2D Systems

A 2D system is a system in which information propagates
in two independent directions. These systems arise from
applications such as image processing and iterative circuits.
Several authors (Attasi [5], Fornasini and Marchesini [6],
and Roesser [3]) have proposed different state-space models

for 2D discrete linear systems. However, it has been shown
that Roesser’s model is the most satisfactory and the most
general model since the other models can be embedded in
it. The model of Roesser is one in which the local state
is divided into horizontal and vertical states which are
propagated, respectively, horizontally and vertically by first
order difference equations. The model has the form:

𝑥
ℎ
(𝑖 + 1, 𝑗) = 𝐴1𝑥

ℎ
(𝑖, 𝑗) + 𝐴2𝑥

V
(𝑖, 𝑗) + 𝐵1𝑢 (𝑖, 𝑗)

𝑥
V
(𝑖, 𝑗 + 1) = 𝐴3𝑥

ℎ
(𝑖, 𝑗) + 𝐴4𝑥

V
(𝑖, 𝑗) + 𝐵2𝑢 (𝑖, 𝑗) ,

(1)

where 𝑥
ℎ
(𝑖, 𝑗) is the horizontal state vector, 𝑥

V
(𝑖, 𝑗) is the

vertical state vector, 𝑢(𝑖, 𝑗) is the input vector, and 𝐴1, 𝐴2,
𝐴3, 𝐴4, 𝐵1, and 𝐵2 are real constant matrices of appropriate
dimensions. System (1) can be written in the polynomial
form:

(

𝑠𝐼𝑛 − 𝐴1 −𝐴2

−𝐴3 𝑧𝐼𝑚 − 𝐴4

)(
𝑥
ℎ
(𝑖, 𝑗)

𝑥
V
(𝑖, 𝑗)

) = (

𝐵1

𝐵2

)𝑢 (𝑖, 𝑗) , (2)

where 𝑠 represents an advance operator in the horizontal
direction and 𝑧 represents an advance operator in the vertical
direction. The polynomial matrix over R[𝑠, 𝑧],

𝑇 (𝑠, 𝑧) = (

𝑠𝐼𝑛 − 𝐴1 −𝐴2

−𝐴3 𝑧𝐼𝑚 − 𝐴4

) , (3)

is the characteristic matrix associated with (1). Throughout
this paper, unless specified otherwise, 𝐷 = 𝐾[𝑥1, . . . , 𝑥𝑛]
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denotes the polynomial ring in the indeterminates 𝑥1, . . . , 𝑥𝑛

with coefficients in an arbitrary but fixed field 𝐾. First we
present a few definitions that will be needed later in the paper.

3. Definitions

Definition 1. Let 𝐷 = 𝐾[𝑥1, . . . , 𝑥𝑛]. The general linear group
GL𝑝(𝐷) is defined by

GL𝑝 (𝐷) = {𝑀 ∈ 𝐷
𝑝×𝑝

| ∃𝑁 ∈ 𝐷
𝑝×𝑝

: 𝑀𝑁 = 𝑁𝑀 = 𝐼𝑝} .

(4)

An element 𝑀 ∈ GL𝑝(𝐷) is called a unimodular matrix. It
follows that 𝑀 is unimodular if and only if the determinant
of 𝑀 is invertible in 𝐷 that is |𝑀| is a non-zero is a non-zero
element of 𝐾.

One of standard tasks carried out in systems theory is
to transform a given system representation into a simpler
form before applying any analytical or numerical method.
The transformation involvedmust of course preserve relevant
system properties if conclusions about the reduced system
are to remain valid about the original one. An equivalence
transformation used in the context of multidimensional
systems is unimodular equivalence. This transformation can
be regarded as an extension of Rosenbrock’s equivalence [7]
from the univariate to the multivariate setting and is defined
by as follows.

Definition 2. Let 𝑇1 and 𝑇2 denote two 𝑞 × 𝑝 matrices with
elements in 𝐷; then, 𝑇1 and 𝑇2 are said to be unimodular
equivalent if there exist two matrices 𝑀 ∈ GL𝑞(𝐷) and 𝑁 ∈

GL𝑝(𝐷) such that

𝑇2 = 𝑀𝑇1𝑁. (5)

4. Equivalence to Smith Form over
𝐷 = 𝐾[𝑥1, . . . , 𝑥𝑛]

The Smith form 𝑆 of a 𝑝 × 𝑞 matrix 𝑃 with elements in a
domain 𝐷 is usually the result of an equivalence transforma-
tion, that is, a transformation of the form

𝑆 = 𝑀𝑇𝑁, (6)

where 𝑀 and 𝑁 are unimodular matrices with elements in
𝐷, that is, square with determinant a unit of 𝐷. The resulting
Smith form 𝑆 is given by

[D 0] ; (𝑝 < 𝑞) ,

D; (𝑝 = 𝑞) ,

[

D
0
] ; (𝑝 > 𝑞) ,

(7)

whereD is a 𝑡 × 𝑡 diagonal matrix given by
D = diag (Φ1, Φ2, . . . , Φ𝑟, 0, 0, . . . , 0) , (8)

𝑡 = min(𝑝, 𝑞), and 𝑟 = rank of 𝑇, and the invariant
polynomials Φ𝑖 in (8) are given by

Φ𝑖 =

𝑑𝑖

𝑑𝑖−1

, 𝑖 = 1, 2, . . . , 𝑟, (9)

𝑑0 = 1 and 𝑑𝑖 is the greatest common divisor of the 𝑖th
order minors of 𝑇. In order to show that any matrix can be
brought by an equivalence transformation to its Smith form,
it is usually required that 𝐷 is a principal ideal domain or a
Euclidean domain. The problem of equivalence of a multi-
variate polynomial matrix to its Smith form was first studied
by Frost and Storey [8] who proposed only necessary con-
ditions. Later Frost and Boudellioua [9] presented necessary
and sufficient conditions for a class of bivariate polynomial
matrices. Lee and Zak [10] also gave some necessary and
sufficient conditions in terms of solutions of somepolynomial
equations. However, these conditions are difficult to test. Lin
et al. [11] extended the result in [9] to the multivariate case
and Boudellioua and Quadrat [12] generalized it to a larger
class of matrices using a module theoretic approach. The
establishment of the equivalence to the Smith form is based
on the application of thewell knownQuillen-SuslinTheorem.
For the implementation of Quillen-SuslinTheorem onMaple
and applications to multidimensional systems theory, the
reader is referred to the paper by Fabianska and Quadrat [13].

Theorem 3 (Quillen and Suslin [14, 15]). Let 𝐾 be a principal
ideal domain and 𝐷 = 𝐾[𝑥1, . . . , 𝑥𝑛] and let 𝑅 ∈ 𝐷

𝑞×𝑝 be a
matrix which admits a right-inverse �̃� ∈ 𝐷

𝑝×𝑞; that is,𝑅�̃� = 𝐼𝑞.
Then, there exists a unimodular matrix𝑁 ∈ 𝐺𝐿𝑝(𝐷) such that

𝑅𝑁 = (𝐼𝑞 0) . (10)

Now we state the necessary and sufficient conditions for
the reduction of a class of polynomial matrices to the Smith
form.

Theorem 4 (see [9, 11, 12]). Let 𝑇 ∈ 𝐷
𝑝×𝑝, with full row rank;

then, 𝑇 is unimodular equivalent to the Smith form:

𝑆 = (

𝐼𝑝−1 0

0 |𝑇|

) , (11)

where |𝑇| = det(𝑇) ∈ 𝐷 if and only if there exist a vector
𝑈 ∈ 𝐷

𝑝 which admits left inverse over 𝐷 such that the matrix
(𝑇 𝑈) has right inverse over 𝐷.

5. Canonical Form for Linear 2D Systems

Now let 𝐷 = R[𝑠, 𝑧] and suppose now that there exists a
vector 𝑈 ∈ 𝐷

𝑛+𝑚 such that the condition in Theorem 4 is
satisfied. Then, it follows that the matrix 𝑇 is equivalent over
𝐷 to the Smith form:

𝑆 = (

𝐼𝑛+𝑚−1 0

0 |𝑇|
) , (12)

where

|𝑇| =

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑠𝐼𝑛 − 𝐴1 −𝐴2

−𝐴3 𝑧𝐼𝑚 − 𝐴4

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(13)

is the 2D characteristic polynomial of the matrix 𝐴 =

(
𝐴
1
𝐴
2

𝐴
3
𝐴
4

).
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Introduce the canonical form given in [2] for a matrix 𝑇

in form (3) and let

|𝑇| =

𝑚

∑

𝑗=0

𝑘𝑗 (𝑠) 𝑧
𝑚−𝑗

= 𝑘0 (𝑠) 𝑧
𝑚

+ 𝑘1 (𝑠) 𝑧
𝑚−1

+ ⋅ ⋅ ⋅ + 𝑘𝑚 (𝑠)

=

𝑛

∑

𝑖=0

𝑚

∑

𝑗=0

𝑃 (𝑗, 𝑖) 𝑠
𝑛−𝑖

𝑧
𝑚−𝑗

,

(14)

where 𝑘0(𝑠) is monic and has degree equal to 𝑛 and 𝑘𝑗(𝑠) have
degrees less or equal to 𝑛, (𝑗 = 1, 2, . . . , 𝑚). Consider now the
matrix 𝑇𝐹 ∈ 𝐷

(𝑛+𝑚)×(𝑛+𝑚) in the canonical form:

𝑇𝐹 = (

𝑠𝐼𝑛 − 𝐹1 −𝐴2

−𝐴3 𝑧𝐼𝑚 − 𝐹4

) , (15)

where 𝐹1 and 𝐹2 are in companion form; that is,

𝐹1 = (

0 1 ⋅ ⋅ ⋅ 0

0 0 ⋅ ⋅ ⋅ 0

.

.

.

.

.

. d
.
.
.

𝐹1 (𝑛, 𝑛) 𝐹1 (𝑛, 𝑛 − 1) ⋅ ⋅ ⋅ 𝐹1 (𝑛, 1)

) ,

𝐹4 = (

0 1 ⋅ ⋅ ⋅ 0

0 0 ⋅ ⋅ ⋅ 0

.

.

.

.

.

. d
.
.
.

𝐹4 (𝑚,𝑚) 𝐹4 (𝑚,𝑚 − 1) ⋅ ⋅ ⋅ 𝐹4 (𝑚, 1)

) ,

(16)

𝐴2 = (𝐸𝑛 0), and 𝐸𝑛 is the 𝑛th column of 𝐼𝑛.
Equating the coefficients of the polynomials |𝑇| and |𝑇𝐹|

determines uniquely the matrix 𝐴3 = [𝑎𝑖𝑗]. Furthermore,
using the results given in [2], we get

𝐹1 (𝑛, 𝑖) = −𝑃 (0, 𝑛 − 𝑖 + 1) , 𝑖 = 1, 2, . . . , 𝑛,

𝐹4 (𝑚, 𝑗) = −𝑃 (𝑚 − 𝑗 + 1, 0) , 𝑗 = 1, 2, . . . , 𝑚,

𝐴3 (𝑖, 𝑗) = 𝑃 (𝑖, 0) 𝑃 (0, 𝑛 − 𝑗 + 1)

− 𝑃 (𝑖, 𝑛 − 𝑗 + 1) −

𝑖−1

∑

𝑘=1

𝑃 (𝑖 − 𝑘, 0) 𝐴3 (𝑘, 𝑗) .

(17)

It should be noted here that the unimodular equivalence of
a system described by polynomial matrix 𝑇 in (3), satisfying
the condition in Theorem 4, means that such a system can
be reduced to an equivalent presentation involving only one
single equation in one unknown function. Furthermore, the
class of 2D linear systems in (1) amenable to be reduced to the
canonical form described above are those which are strongly
controllable as studied by Zerz [16, page 75].

Lemma 5. The matrix in the canonical form 𝑇𝐹 in (15) is
unimodular equivalent to the Smith form (12).

Proof. Consider the matrix 𝑇𝐹 in the canonical form (15), the
vector 𝑈 = 𝐸𝑛+𝑚, and the highest order minor 𝑚

2,3,...,𝑛+𝑚+1

1,2,...,𝑛+𝑚

formed from the rows 1, 2, . . . , 𝑛+𝑚 and columns 2, 3, . . . , 𝑛+

𝑚 + 1 of the matrix ( 𝑇𝐹 𝐸𝑛+𝑚 ); that is,

𝑚
2,3,...,𝑛+𝑚+1

1,2,...𝑛+𝑚
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

−1 0 ⋅ ⋅ ⋅ 0

∗ −1 ⋅ ⋅ ⋅ 0

.

.

.

.

.

. d
.
.
.

∗ ∗ ⋅ ⋅ ⋅ −1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

. (18)

Clearly the matrix ( 𝑇𝐹 𝑈 ) ≡ ( 𝑇𝐹 𝐸𝑛+𝑚 ) has right inverse
over𝐷 since it has a highest order minor𝑚

2,3,...,𝑛+𝑚+1

1,2,...,𝑛+𝑚
equal to

(−1)
𝑛+𝑚. Hence by Theorem 4, the matrix 𝑇𝐹 is unimodular

equivalent to the Smith form (12):

𝑆 = (

𝐼𝑛+𝑚−1 0

0
󵄨
󵄨
󵄨
󵄨
𝑇𝐹

󵄨
󵄨
󵄨
󵄨

) . (19)

The following result based on the Smith form establishes
the connection between a polynomial matrix 𝑇 in form (3)
and its equivalent canonical form 𝑇𝐹 in (15).

Theorem 6. Let 𝑇 be a polynomial matrix in form (3)
satisfying the condition given in Theorem 4; then 𝑇, is uni-
modular equivalent over 𝐷 to the canonical form 𝑇𝐹 in (15).
Furthermore,

𝑇𝐹 = 𝑀
−1

2
𝑀2𝑇𝑁1𝑁

−1

2
, (20)

where the Smith form 𝑆 = 𝑀1𝑇𝑁1 = 𝑀2𝑇𝐹𝑁2.

Proof. By Theorem 4, 𝑇 is equivalent to the Smith form 𝑆1,
where 𝑆1(𝑛+𝑚, 𝑛+𝑚) = |𝑇|, and by Lemma 5,𝑇𝐹 is equivalent
to the Smith form 𝑆2, with 𝑆2(𝑛 + 𝑚, 𝑛 + 𝑚) = |𝑇𝐹|. Since
|𝑇| = |𝑇𝐹|, it follows that 𝑇 and 𝑇𝐹 are equivalent to the
same Smith form; that is, 𝑆1 = 𝑆2; that is, there exist matrices
𝑀1, 𝑁1,𝑀2, 𝑁2 ∈ GL𝑛+𝑚(𝐷) such that 𝑆 = 𝑀1𝑇𝑁1 =

𝑀2𝑇𝐹𝑁2. By transitivity of the unimodular equivalence, 𝑇

and 𝑇𝐹 are also equivalent with

𝑇𝐹 = 𝑀
−1

2
𝑀2𝑇𝑁1𝑁

−1

2
. (21)

6. Illustrative Example

Let 𝐷 = R[𝑠, 𝑧] and

𝑇 = (

𝑠 + 1 −1 −1 1

1 𝑠 −1 1

2 −2 𝑧 + 1 −3

0 −3 2 𝑧 − 2

) , (22)

where |𝑇| = (𝑠
2
+ 𝑠 + 1)𝑧

2
+ (−𝑠
2
+ 2𝑠 + 1)𝑧 + 4𝑠

2
− 2𝑠 + 4.

Using the equations in (17), the matrix in canonical form 𝑇𝐹

associated with the polynomial |𝑇| is obtained as

𝑇𝐹 ≡ (

𝑠𝐼2 − 𝐹1 −𝐴2

−𝐴3 𝑧𝐼2 − 𝐹4

)

= (

𝑠 −1 0 0

1 𝑠 + 1 −1 0

2 3 𝑧 −1

2 −3 4 𝑧 − 1

) .

(23)
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First, we reduce the matrix 𝑇 to the Smith form 𝑆; that is,
compute 𝑀1 ∈ GL4(𝐷) and 𝑁1 ∈ GL4(𝐷) such that 𝑆 =

𝑀1𝑇𝑁1 where 𝑆 is given by (12).
Using themethod given by Boudellioua andQuadrat [12],

consider vector 𝑈1 = (0 0 −1 −1)

𝑇
∈ 𝐷
4 and 𝑃1 =

( 𝑇 𝑈1 ) ∈ 𝐷
4×5. Using the package OreModules in Maple,

see Chyzak et al. [4], we can check that 𝑃 admits right inverse
over 𝐷 and we can compute minimal parametrization 𝑄𝑚 ∈

𝐷
5 of 𝑃, where 𝑄𝑚 = (𝑄

𝑇

1
𝑄
𝑇

2
)

𝑇

and 𝑃1𝑄𝑚 = 0,

𝑄𝑚 = (

𝑄1

𝑄2

)

= (

2𝑠 + 2

2𝑠

(𝑧 + 1) 𝑠
2
+ (𝑧 + 4) 𝑠 + 𝑧 + 3

(𝑧 − 1) 𝑠
2
+ (𝑧 + 2) 𝑠 + 𝑧 + 1

(𝑧
2
− 𝑧 + 4) 𝑠

2
+ (𝑧
2
+ 2𝑧 − 2) 𝑠 + 𝑧

2
+ 𝑧 + 4

).

(24)

Computing the Syzygy Module 𝐾1 ∈ 𝐷
3×4 of 𝑄1, that is,

𝐾1𝑄1 = 0, gives

𝐾1 = (

2 1 𝑧 − 1 −𝑧 − 1

1 𝑠 −1 1

𝑠 + 1 −1 −1 1

) , (25)

where the matrix 𝑄3 ∈ 𝐷
4×3 is the right inverse of 𝐾1; that is,

𝑄3

= (

0 1 −1

0 1 −1

−

1

2

3

2

+ (

1

2

+

1

2

𝑧) 𝑠 (−

1

2

−

1

2

𝑧) 𝑠 − 2 −

1

2

𝑧

−

1

2

3

2

+ (−

1

2

+

1

2

𝑧) 𝑠 (

1

2

−

1

2

𝑧) 𝑠 − 1 −

1

2

𝑧

).

(26)

Thus, the matrix 𝑁1 = ( 𝑄3 𝑄1 ) ∈ GL4(𝐷) is given by

𝑁1 = (

0 1 −1 2 + 2𝑠

0 1 −1 2𝑠

−

1

2

3

2

+ (

1

2

+

1

2

𝑧) 𝑠 (−

1

2

−

1

2

𝑧) 𝑠 − 2 −

1

2

𝑧 (𝑧 + 1) 𝑠
2
+ (4 + 𝑧) 𝑠 + 𝑧 + 3

−

1

2

3

2

+ (−

1

2

+

1

2

𝑧) 𝑠 (

1

2

−

1

2

𝑧) 𝑠 − 1 −

1

2

𝑧 (𝑧 − 1) 𝑠
2
+ (𝑧 + 2) 𝑠 + 𝑧 + 1

). (27)

The matrix 𝑀1 = (𝑇𝑄3 −𝑈)

−1
∈ GL4(𝐷) is given by

𝑀1 = (

0 0 1 −1

0 1 0 0

1 0 0 0

(2 −

1

2

𝑧 +

1

2

𝑧
2
) 𝑠 +

1

2

𝑧
2
− 1 + 𝑧 (−2 +

1

2

𝑧 −

1

2

𝑧
2
) 𝑠 + 3 −

3

2

𝑧

1

2

𝑧 −

1

2

𝑧 + 1

) (28)

and it can be easily verified that the matrix𝑀1𝑇𝑁1 yields the
Smith form:

𝑆 = (

𝐼3 0

0 𝑄2

)

≡ (

𝐼3 0

0 (𝑠
2
+ 𝑠 + 1) 𝑧

2
+ (2𝑠 − 𝑠

2
+ 1) 𝑧 + 4𝑠

2
− 2𝑠 + 4

) ,

(29)

where 𝑄2 = |𝑇|. Similarly, the matrix 𝑇𝐹 is reduced to the
Smith form 𝑆; that is, compute 𝑀2 ∈ 𝐺𝐿4(𝐷) and 𝑁2 ∈

𝐺𝐿4(𝐷) such that 𝑆 = 𝑀2𝑇𝐹𝑁2 where 𝑆 is given by (12).
Now consider vector 𝑈2 = (0 0 0 −1)

𝑇
∈ 𝐷
4 and 𝑃2 =

( 𝑇𝐹 𝑈2 ) ∈ 𝐷
4×5. Using the package OreModules in Maple,

we can check that 𝑃2 admits right inverse over 𝐷 and we can

compute minimal parametrization 𝑄𝑚 ∈ 𝐷
5 of 𝑃2, where

𝑄𝑚 = (𝑄

𝑇

1
𝑄

𝑇

2
)

𝑇

and 𝑃2𝑄𝑚 = 0,

𝑄𝑚 = (

1

𝑠

𝑠
2
+ 𝑠 + 1

𝑠
2
𝑧 + (3 + 𝑧) 𝑠 + 2 + 𝑧

(𝑧
2
− 𝑧 + 4) 𝑠

2
+ (𝑧
2
+ 2𝑧 − 2) 𝑠 + 𝑧 + 4 + 𝑧

2

).

(30)

Computing the Syzygy Module 𝐾2 ∈ 𝐷
3×4 of 𝑄1, that is,

𝐾2𝑄1 = 0, gives

𝐾2 = (

2 3 𝑧 −1

1 𝑠 + 1 −1 0

𝑠 −1 0 0

) , (31)



International Journal of Computational Mathematics 5

where the matrix 𝑄3 ∈ 𝐷
4×3 is the right inverse of 𝐾1; that is,

𝑄3 = (

0 0 0

0 0 −1

0 −1 −𝑠 − 1

−1 −𝑧 −3 − 𝑧 − 𝑠𝑧

) . (32)

Thus, the matrix 𝑁2 = ( 𝑄3 𝑄1
) ∈ GL4(𝐷) is given by

𝑁2 = (

0 0 0 1

0 0 −1 𝑠

0 −1 −𝑠 − 1 𝑠
2
+ 𝑠 + 1

−1 −𝑧 −3 − 𝑧 − 𝑠𝑧 𝑠
2
𝑧 + (3 + 𝑧) 𝑠 + 2 + 𝑧

) .

(33)

The matrix 𝑀2 = (𝑇𝑄3 −𝑈2
)

−1

∈ GL4(𝐷) is given by

𝑀2

= (

0 0 1 0

0 1 0 0

1 0 0 0

𝑧
2
+ 2𝑧 − 2 + (𝑧

2
− 𝑧 + 4) 𝑠 𝑧

2
− 𝑧 + 4 −1 + 𝑧 1

)

(34)

and it can be easily verified that thematrix𝑀2𝑇𝐹𝑁2 yields the
Smith form

𝑆 = (

𝐼3 0

0 𝑄2

)

≡ (

𝐼3 0

0 (𝑠
2
+ 𝑠 + 1) 𝑧

2
+ (2𝑠 − 𝑠

2
+ 1) 𝑧 + 4𝑠

2
− 2𝑠 + 4

) ,

(35)

where 𝑄2 = |𝑇𝐹| = |𝑇|. It follows that the matrix 𝑇𝐹 is related
to the matrix 𝑇 by the following transformation:

𝑇𝐹 = 𝑀𝑇𝑁, (36)

where 𝑀 = 𝑀
−1

2
𝑀1 ∈ GL4(𝐷) and 𝑁 = 𝑁1𝑁

−1

2
∈ GL4(𝐷)

are given by

𝑀 = (

1 0 0 0

0 1 0 0

0 0 1 −1

(−2 −

1

2

𝑧
2
+

1

2

𝑧) 𝑠 − 𝑧 + 1 −

1

2

𝑧
2

−1 − 𝑧
2
−

1

2

𝑧 + (−2 −

1

2

𝑧
2
+

1

2

𝑧) 𝑠 −

1

2

𝑧 + 1

1

2

𝑧

) ,

𝑁 = (

3 + 𝑠 2 + 𝑠 −1 0

𝑠 + 1 2 + 𝑠 −1 0

(

1

2

𝑧 +

1

2

) 𝑠
2
+ (

5

2

+ 𝑧) 𝑠 +

7

2

+ 𝑧 (

1

2

𝑧 +

1

2

) 𝑠
2
+ (

5

2

+ 𝑧) 𝑠 + 2 +

1

2

𝑧 (−

1

2

𝑧 −

1

2

) 𝑠 −

1

2

𝑧 −

3

2

1

2

(

1

2

𝑧 −

1

2

) 𝑠
2
+ (

1

2

+ 𝑧) 𝑠 +

3

2

+ 𝑧 (

1

2

𝑧 −

1

2

) 𝑠
2
+ (

1

2

+ 𝑧) 𝑠 + 1 +

1

2

𝑧 (−

1

2

𝑧 +

1

2

) 𝑠 −

1

2

𝑧 −

3

2

1

2

).

(37)

7. Conclusions

In this paper, the Smith form of a bivariate polynomial
matrix together with symbolic computation techniques is
used effectively to compute the equivalence transforma-
tions that reduce a class of 2D polynomial matrices to a
canonical form. The classes of matrices considered are those
amenable to be reduced by unimodular equivalence to a
single equation in one unknown function. These matrices
arise from 2D Roesser systems which are strongly controlla-
ble.
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