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An output feedback slidingmode control law design relying on an integralmanifold is proposed in this work.The considered class of
nonlinear systems is assumed to be affected by bothmatched and unmatched uncertainties.The use of the integral sliding manifold
allows one to subdivide the control design procedure into two steps. First a linear control component is designed by pole placement
and then a discontinuous control component is added so as to cope with the uncertainty presence. In conventional sliding mode
the control variable suffers from high frequency oscillations due to the discontinuous control component. However, in the present
proposal, the designed control law is applied to the actual system after passing through a chain of integrators. As a consequence, the
control input actually fed into the system is continuous, which is a positive feature in terms of chattering attenuation. By applying
the proposed controller, the system output is regulated to zero even in the presence of the uncertainties. In the paper, the proposed
control law is theoretically analyzed and its performances are demonstrated in simulation.

1. Introduction

Output feedback sliding mode control techniques proved
themselves to be the good candidate for systems where only
output is measurable and its derivatives can be estimated
accurately. Linear systems or systems which could be easily
lineralized are addressed in Edwards and Spurgeon [1].
Nonlinear systems with measurable outputs are for instance
dealt with via Dynamic Sliding Mode Control (DSMC) ([2–
4], where the original system is replaced with a differential
input-output form often called Fliess Controllable Canonical
form or Local generalized controllable canonical (LGCC)
form, by using some nonlinear transformation. Asymptotic
stabilization of LGCC forms by means of DSMC provided
satisfactory results. Traditionally, this control methodology
based on the sliding mode control (SMC) theory [5] refers
to the case of uncertain systems with matched uncertainties
(see, [1] for a definition of this class of uncertainties). How-
ever, there are many systems affected by uncertainties which
do not satisfy the matching condition. To solve this prob-
lem, various methods have been proposed in the literature

(see, e.g., [6–11]). These papers of Scararat, Swaroop, and
Ferrara relied on a backstepping based SMC design to relax
the matching conditions.

Nonlinear systems often do not remain robust against
uncertainties even of matched nature in the so-called reach-
ing phase. Therefore, an approach capable of eliminating this
phase in the controlled systemevolutionwas proposed in [12].
This approach is based on the design of an integral sliding
manifold and is called integral sliding mode control (ISMC).
Levant and Alelishvili [13] synthesized higher order sliding
mode technique (see, e.g., [14–19]) with integral slidingmode
technique to improve the robustness and to alleviate chat-
tering. Choi [20] proposed a linear matrix inequality (LMI)
based sliding surface design method for integral sliding
mode control of systems with unmatched norm bounded
uncertainties. Further, Park et al. [21] extendedChoi’smethod
and proposed a dynamical output feedback variable structure
control law with high gain to deal with the same problem.
Xiang et al. [22] applied an iterative LMI method to avoid
the high gain related problems. In this context, da Silva et al.

Hindawi Publishing Corporation
Journal of Nonlinear Dynamics
Volume 2014, Article ID 489364, 10 pages
http://dx.doi.org/10.1155/2014/489364



2 Journal of Nonlinear Dynamics

[23] developed an algorithm in which the existence and the
reachability problems have been formulated using a polytopic
description in order to tackle unmatched uncertainties with
reduced chattering. Cao and Xu [24] proposed a nonlinear
integral-type sliding surface for the system in the presence
of both matched and unmatched uncertainties. The stabil-
ity of the controlled system with unmatched uncertainties
depends on the controlled nominal system and on the nature
and size of the equivalent unmatched uncertainties. In the
aforementioned approaches, robustness is ensured but with a
compromise on chattering alleviation. Castaños and Fridman
[25] analyzed the robust features of the integral sliding mode
and used𝐻

∞
theory to overtake the undesirable effects of the

uncertainties. Rubagotti et al. [26] extends thework presented
in [25] providing a control law which minimizes the effect
of the uncertainties. Chang [27] proposed a dynamic output
feedback controller design according to an integral sliding
mode approach for linear systems. Note that in the aforemen-
tioned papers it is assumed that all the states of the system are
available since they are explicitly used to construct the control
law.

The main contribution in this work is that the uncertain
nonlinear system operating under a class of states dependent
matched and unmatched uncertainties is transformed to a
generalized controllable canonical form which is analogous
to that of Lu and Spurgeon [4] in some terms. In addition,
an integral manifold based control law is developed which
establishes sliding mode from the very beginning of the
process.The control acting on the original system is obtained
as the output of a chain of integrators and is, accordingly,
continuous, thus attaining the aim of chattering attenuation.
This can be a clear benefit in many applications such as
those of mechanical nature, where a discontinuous control
action could be nonappropriate. Furthermore, the controller
robustness is analyzed in the presence of both matched and
unmatched uncertainties.The claim is verified by considering
a very simple academic example. Note that the output
feedback control of nonlinear systems, which can be put in
LGCC form, was previously faced, in a preliminary version,
in Khan et al. [28].

The rest of the paper is organized as follows. In Section 2,
the problem formulation is presented and in Section 3
the design of the proposed control law is outlined. In
Section 4, the stability analysis in the presence of matched
and unmatched uncertainties is carried out. A numerical
example is discussed in Section 5which is relevant to a system
with relative degree two and is considered to be affected
by matched and unmatched uncertainties. Some concluding
remarks are reported in Section 6.

2. Problem Formulation

Consider a nonlinear SISO dynamic system represented by
the state equation analogous to that considered in [24]

�̇� = 𝑓 (𝑥, 𝑡) + 𝑔 (𝑥, 𝑡) {𝑢 (1 + 𝛿
𝑚
) + Δ𝑔

𝑚
(𝑥, 𝑡)} + 𝑓

𝑢
(𝑥, 𝑡) ,

𝑦 = ℎ (𝑥) ,

(1)

where 𝑥 ∈ 𝑅
𝑛 is the state vector, 𝑢 ∈ 𝑅 is scalar control input,

𝑓(𝑥, 𝑡) and 𝑔(𝑥, 𝑡) are smooth vector fields, 𝛿
𝑚
and Δ𝑔

𝑚
(𝑥, 𝑡)

are matched uncertainties, 𝑓
𝑢
(𝑥, 𝑡) is the unmatched uncer-

tainty vector, and𝑦 = ℎ(𝑥) ∈ 𝑅 is a sufficiently smooth output
function. The following assumption is introduced.

Assumption 1. 𝛿
𝑚
, Δ𝑔
𝑚
(𝑥, 𝑡), and 𝑓

𝑢
(𝑥, 𝑡) are continuous and

bounded with continuous bounded time derivatives for all
(𝑥, 𝑡) ∈ 𝑅

𝑛

× 𝑅
+
; that is, |Δ𝑔

𝑚
(𝑥, 𝑡)| ≤ 𝜌

𝑚
, |𝛿
𝑚
| ≤ 1 − 𝜀

𝑚

where 𝜀
𝑚
is some positive constant, and ‖𝑓

𝑢
(𝑥, 𝑡)‖ ≤ 𝜌

𝑢
.

The problem we want to solve (Problem 1) is that of
steering the output 𝑦 to zero asymptotically; that is, an output
regulation problem is considered in the presence of matched
and unmatched uncertainties.

In order to design the proposed controller, system (1) is
suitably transformed. To this end, we denote with

𝐿
𝑓
ℎ (𝑥) =

𝜕ℎ (𝑥)

𝜕𝑥
𝑓 (𝑥) = ∇ℎ (𝑥) 𝑓 (𝑥) ,

𝐿
𝑓
𝑢

ℎ (𝑥) =
𝜕ℎ (𝑥)

𝜕𝑥
𝑓
𝑢
= ∇ℎ (𝑥) 𝑓

𝑢
.

(2)

Recursively, it can be written as

𝐿
0

𝑓
ℎ (𝑥) = ℎ (𝑥) ,

𝐿
𝑗

𝑓
ℎ (𝑥) = 𝐿

𝑓
(𝐿
𝑗−1

𝑓
ℎ (𝑥)) = ∇ (𝐿

𝑗−1

𝑓
ℎ (𝑥)) 𝑓 (𝑥) ,

𝐿
𝑗

𝑓
𝑢

ℎ (𝑥) = 𝐿
𝑓
𝑢

(𝐿
𝑗−1

𝑓
𝑢

ℎ (𝑥)) = ∇ (𝐿
𝑗−1

𝑓
ℎ (𝑥)) 𝑓

𝑢
,

𝑗 = 1, 2, . . . .

(3)

The relative degree “𝑟” of the systemwith respect to the output
is the 𝑟th derivative of the output function in which the input
𝑢 appears explicitly [29]. One has

𝑦
(𝑟)

= 𝐿
𝑟

𝑓
ℎ (𝑥) + 𝐿

𝑔
(𝐿
𝑟−1

𝑓
ℎ (𝑥)) 𝑢 + 𝜁 (𝑥, 𝑡) , (4)

where 𝜁(𝑥, 𝑡) represents the matched and unmatched uncer-
tainties collection subject to the following conditions:

(1) 𝐿
𝑔
(𝐿
𝑖

𝑓
ℎ(𝑥)) = 0 for all 𝑥 in the neighborhood of 𝑥

0

for 𝑖 < 𝑟 − 1.

(2) 𝐿
𝑔
(𝐿
𝑟−1

𝑓
ℎ(𝑥)) ̸= 0.

(3) 𝐿
𝑔
𝐿
𝑓
𝑢

ℎ(𝑥) = 0, 𝐿
𝑔
𝐿
𝑓
𝑢

𝐿
𝑓
ℎ(𝑥) = 0, 𝐿

𝑔
𝐿
𝑓
𝐿
𝑓
𝑢

ℎ(𝑥) = 0,
𝐿
𝑔
𝐿
2

𝑓
𝑢

ℎ(𝑥) = 0, and so on.

Two possible cases arises for (4).

If 𝑟 = 𝑛. then this becomes a trivial case which shows
that the system is already in canonical form.This case
is neglected in the paper.

If 𝑟 < 𝑛, then there exist some positive integer 𝑘which
satisfy 𝑟 + 𝑘 = 𝑛.
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Then taking the successive 𝑘 derivatives of (4), one
obtains the 𝑛th derivative of output function as

𝑦
(𝑛)

= 𝐿
𝑛

𝑓
ℎ (𝑥) + 𝐿

𝑔
(𝐿
𝑛−1

𝑓
ℎ (𝑥)) 𝑢 + 𝐿

𝑓
𝐿
𝑔
𝐿
𝑟−1

𝑓
ℎ (𝑥) 𝑢

(𝑘−1)

+ 𝐿
2

𝑔
𝐿
𝑟−1

𝑓
ℎ (𝑥) 𝑢𝑢

(𝑘−1)

+ ⋅ ⋅ ⋅ + 𝐿
𝑔
𝐿
𝑟−1

𝑓
ℎ (𝑥) 𝑢

(𝑘)

+ 𝜁
⋆

(𝑥, 𝑢, �̇�, . . . , 𝑢
(𝑛−1)

, 𝑡) ,

(5)

where 𝜁
⋆

(𝑥, 𝑢, �̇�, . . . , 𝑢
(𝑛−1)

, 𝑡) is the lumped uncertainty
which represents the collection of matched and unmatched
uncertainties with their time derivatives.

System (5) can be written as

𝑦
(𝑛)

= 𝜑 (𝑦, �̂�) + 𝛾 (𝑦) 𝑢
(𝑘)

+ 𝜁
⋆

(𝑥, 𝑢, �̇�, . . . , 𝑢
(𝑘−1)

, 𝑡)

= 𝜑 (𝑦, �̂�) + 𝛾 (𝑦) {𝑢
(𝑘)

(1 + 𝛿
𝑚
) + Δ𝐺

𝑚
(𝑦, �̂�, 𝑡)}

+ 𝐹
𝑢
(𝑦, �̂�, 𝑡) ,

(6)

where

𝜑 (𝑦, �̂�) = 𝐿
𝑛

𝑓
ℎ (𝑥) + 𝐿

𝑔
(𝐿
𝑛−1

𝑓
ℎ (𝑥)) 𝑢 + ⋅ ⋅ ⋅

+ 𝐿
𝑓
𝐿
𝑔
𝐿
𝑟−1

𝑓
ℎ (𝑥) 𝑢

(𝑘−1)

+𝐿
2

𝑔
𝐿
𝑟−1

𝑓
ℎ (𝑥) 𝑢𝑢

(𝑘−1)

,

𝛾 (𝑦) = 𝐿
𝑔
𝐿
𝑟−1

𝑓
ℎ (𝑥) ,

(7)

𝑦 = (𝑦, ̇𝑦, . . . , 𝑦
(𝑛−1)

), �̂� = (𝑢, �̇�, . . . , 𝑢
(𝑛−1)

), Δ𝐺
𝑚
(𝑦, �̂�, 𝑡)

is the matched uncertainty term and 𝐹
𝑢
(𝑦, �̂�, 𝑡) is the

unmatched uncertainty term.

Note 1. To transform the system (6) into a suitable form, it
is first assumed that there are no uncertainties in the system.
Therefore, by defining the transformation 𝑦

(𝑖−1)

= 𝜉
𝑖
[3], 𝜉 =

(𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑛
) for the nominal system, the uncertainties can

be represented in the transformed variables like 𝜁
𝑖
(𝜉, �̂�, 𝑡) =

𝐿
𝑖

𝑓
𝑢

ℎ(𝑥) for 𝑖 = 1, 2, . . . , 𝑛 and 𝑦 = 𝜉. Finally, system (6) can
be written as follows:

̇𝜉
1
= 𝜉
2
+ 𝜁
1
(𝜉, �̂�, 𝑡) ,

̇𝜉
2
= 𝜉
3
+ 𝜁
2
(𝜉, �̂�, 𝑡) ,

...

̇𝜉
𝑛
= 𝜑 (𝜉, �̂�) + 𝛾 (𝜉) {𝑢

(𝑘)

(1 + 𝛿
𝑚
) + Δ𝐺

𝑚
(𝜉, �̂�, 𝑡)}

+ 𝐹
𝑢
(𝜉, �̂�, 𝑡) .

(8)

The representation in (8) is analogous to the so-called Local
generalized controllable canonical (LGCC) form [2], in the
sense that it differs from the basic LGCC form since it is
also affected by uncertainties. With reference to system (8),
the following assumption (which is an alternative form of
Assumption 1) is introduced.

Assumption 2. Assume that |𝜑(𝜉, �̂�)| ≤ 𝐶, |𝛾(𝜉)| ≤ 𝐾
𝑀
,

|Δ𝐺
𝑚
(𝑦, �̂�, 𝑡)| ≤ 𝛽

1
, |𝐹
𝑢
(𝜉, �̂�, 𝑡)| ≤ 𝛽

2
, and |𝜁

𝑖
(𝜉, �̂�, 𝑡)| ≤

𝜇
𝑖
; 𝑖 = 1, 2, . . . , 𝑛 − 1, where 𝛽

1
, 𝛽
2
and 𝜇

𝑖
are positive

constants. Furthermore, consider that 𝜁
1
(𝜉, �̂�, 𝑡) + 𝜁

2
(𝜉, �̂�, 𝑡) +

⋅ ⋅ ⋅ + 𝐹
𝑢
(𝜉, �̂�, 𝑡) ≅ ΔΦ(𝜉, �̂�, 𝑡) and |ΔΦ(𝜉, �̂�, 𝑡)| ≤ 𝜏.

Now, note that the nominal system corresponding to
system (8) is given by

̇𝜉
1
= 𝜉
2
,

̇𝜉
2
= 𝜉
3
,

...
̇𝜉
𝑛
= 𝜑 (𝜉, �̂�) + 𝛾 (𝜉) 𝑢

(𝑘)

= 𝜓 (𝜉, �̂�, 𝑢
(𝑘)

) .

(9)

Definition 3. The differential input output (I-O) form (or
LGCC form) is termed as proper if [4]

(1) it is single input single output;
(2) 𝜓(𝜉, �̂�, 𝑢(𝑘)) ∈ 𝐶

1;
(3) the following regularity condition is satisfied:

det[

[

𝜕𝜓 (𝜉, �̂�, 𝑢
(𝑘)

)

𝜕𝑢(𝑘)
]

]

̸= 0. (10)

Definition 4. The zero dynamics of the system in (9) are
defined as [4]

𝜓 (0, �̂�, 𝑢
(𝑘)

) = 0. (11)

The system in (9) is called minimum phase if the zero
dynamics defined in (11) are uniformly asymptotically stable.
Note that the zero dynamics in the I-O form are the dynamics
of the control and is the generalization of the definition
in Fliess [30]. They are different from the zero dynamics
mentioned in Isidori [29] which are the dynamics of the
uncontrollable states.

Assumption 5. System (9) is proper and minimum phase
according to Definitions 3 and 4, respectively.

Now the original control problem (Problem 1) can be
reformulated with reference to system (8) under Assump-
tion 2 and to the nominal system in (9) subject to Assump-
tion 5. The new problem (Problem 2) is that of steering
the state vector 𝜉 = [𝜉

1
, 𝜉
2
, . . . , 𝜉

𝑛
]
𝑇 of system (8) to

zero asymptotically inspite of the presence of matched and
unmatched uncertainties; that is, a state regulation problem
is now considered. Clearly the solution to Problem 2 implies
the solution to Problem 1, since 𝜉

1
= 𝑦 = ℎ(𝑥).

3. The Proposed Control Law Design

In analogy with Khan et al. [31], where only the presence of
matched uncertainties was considered, we propose a control
law of dynamic nature which can be expressed as

𝑢
(𝑘)

= 𝑢
(𝑘)

0
+ 𝑢
(𝑘)

1
. (12)
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The first part 𝑢(𝑘)
0

∈ 𝑅 is continuous and stabilizes the system
at the equilibrium point, while the second part 𝑢(𝑘)

1
∈ 𝑅 is

discontinuous in nature and can be classified as an integral
SMC. Its role is to reject uncertainties. In the next subsections,
the design of 𝑢(𝑘)

0
∈ 𝑅 and 𝑢

(𝑘)

1
∈ 𝑅 will be discussed. Starting

from the nominal case and then moving to the case in which
the presence of matched and unmatched uncertainties are
also considered.

3.1. The Nominal Case

3.1.1. Design of 𝑢(𝑘)
0
. The nominal system in (9) in alternative

form can be written as
̇𝜉
1
= 𝜉
2
,

̇𝜉
2
= 𝜉
3
,

...
̇𝜉
𝑛
= 𝜒 (𝜉, �̂�, 𝑢

(𝑘)

) + 𝑢
(𝑘)

,

(13)

where

𝜒 (𝜉, �̂�, 𝑢
(𝑘)

) = 𝜑 (𝜉, �̂�) + (𝛾 (𝜉) − 1) 𝑢
(𝑘)

. (14)

In the design of 𝑢(𝑘)
0
, system (13) is first considered to be

independent of nonlinearities; that is, 𝜒(𝜉, �̂�, 𝑢(𝑘)) = 0, and it
is also supposed to operate under 𝑢(𝑘)

0
only. Then, system (13)

becomes
̇𝜉
1
= 𝜉
2
,

̇𝜉
2
= 𝜉
3
,

...
̇𝜉
𝑛
= 𝑢
(𝑘)

0
.

(15)

This is a linear system, so it can be written as

̇𝜉 = 𝐴𝜉 + 𝐵𝑢
(𝑘)

0
, (16)

where

𝐴 = [
0
(𝑛−1)×1

𝐼
(𝑛−1)(𝑛−1)

0
1×1

0
1×(𝑛−1)

] ,

𝐵 = [
0
(𝑛−1)×1

1
] .

(17)

For the sake of simplicity, the input 𝑢(𝑘)
0

is designed via pole
placement; that is,

𝑢
(𝑘)

0
= −𝐾
𝑇

0
𝜉. (18)

3.1.2. Design of 𝑢(𝑘)
1
. Now in order to achieve the desired

performance, robust compensation of the uncertainties is
needed. To this end we select the following sliding manifold
of integral type [12]:

𝜎 (𝜉) = 𝜎
0
(𝜉) + 𝑧, (19)

where 𝜎
0
(𝜉) is a conventional sliding surface which is math-

ematically defined by 𝜎
0
(𝜉) = ∑

𝑛

𝑖=1
𝑐
𝑖
𝜉
𝑖
, with 𝑐

𝑛
= 1, and 𝑧 is

the integral term. The time derivative of (19) along (9) yields

�̇� (𝜉) =

𝑛−1

∑

𝑖=1

𝑐
𝑖
𝜉
𝑖+1

+ 𝜒 (𝜉, �̂�, 𝑢
(𝑘)

) + 𝑢
(𝑘)

0
+ 𝑢
(𝑘)

1
+ �̇�. (20)

Now, choose ż with the following expression:

�̇� = −(

𝑛−1

∑

𝑖=1

𝑐
𝑖
𝜉
𝑖+1

+ 𝑢
(𝑘)

0
) ,

𝑧 (0) = −𝜎
0
(𝜉 (0)) .

(21)

Then, (20) becomes

�̇� (𝜉) = 𝜒 (𝜉, �̂�, 𝑢
(𝑘)

) + 𝑢
(𝑘)

1

= 𝜑 (𝜉, �̂�) + (𝛾 (𝜉) − 1) 𝑢
(𝑘)

0
+ 𝛾 (𝜉) 𝑢

𝑘

1
.

(22)

This initial condition 𝑧(0) is adjusted in such a way to meet
the requirement 𝜎(0) = 0.

Taking into account the reachability condition defined as
follows [5]:

�̇� = −𝐾 sign𝜎 (23)

and comparing (22) with (23), the expression of the discon-
tinuous control component 𝑢(𝑘)

1
becomes

𝑢
(𝑘)

1
=

1

𝛾 (𝜉)

(−𝜑 (𝜉, �̂�) − (𝛾 (𝜉) − 1) 𝑢
(𝑘)

0
− 𝐾 sign𝜎) . (24)

This control law enforces sliding mode along the sliding
manifold defined in (19). The constant 𝐾 can be selected
according to the subsequent stability analysis.

Thus, the final control law becomes

𝑢
(𝑘)

= −𝐾
𝑇

0
𝜉 +

1

𝛾 (𝜉)

(−𝜑 (𝜉, �̂�)−(𝛾 (𝜉)−1) 𝑢
(𝑘)

0
−𝐾 sign𝜎) .

(25)

Note that this control law can be implemented by integrating
the derivative of the control, 𝑢(𝑘), “𝑘” times so that the control
input actually applied to the system is continuous. This can
be a benefit for various class of systems such as those of
mechanical type, for which a discontinuous control action
could be disruptive.

Remark 6. Thecoefficients of the conventional sliding surface
are chosen by tacking into the dynamic response of the
system. However, in real applications these constants can also
be optimized using LMIs methods.

Remark 7. The proposed methodology needs the availability
of the system output and of its derivatives for the controller
implementation. In case the output derivatives are not avail-
able for measurements, one can use for instance a finite time
sliding mode differentiator like the one proposed in [16] to
reconstruct them.
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4. Stability Analysis

In this section, the proposed control law when applied to
the uncertain nonlinear system in question is theoretically
analyzed. First the case in which only matched uncertainties
are present will be discussed, and then the more general case
of matched and unmatched uncertainties will be considered.

4.1. The System Operating under Matched Uncertainties. Now
we assume that the system operates only under matched
uncertainties. Thus, system (8) with matched uncertainties
becomes

̇𝜉
1
= 𝜉
2
,

̇𝜉
2
= 𝜉
3
,

...

̇𝜉
𝑛
= 𝜑 (𝜉, �̂�) + 𝛾 (𝜉) {𝑢

(𝑘)

(1 + 𝛿
𝑚
) + Δ𝐺

𝑚
(𝜉, �̂�, 𝑡)} .

(26)

To show that this system is stabilized in finite time in the
presence ofmatched uncertainties, the following theorem can
be stated.

Theorem 8. Consider that Assumptions 2 and 5 are satisfied.
The sliding surface is chosen as 𝜎(𝜉) = 0, where 𝜎(𝜉) is defined
in (19), and the control law 𝑢

(𝑘) is selected according to (25). If
the gain 𝐾 is chosen according to the following condition:

𝐾 ≥
1

(2 − 𝜀
𝑚
)
[(1 − 𝜀

𝑚
)

𝑢
(𝑘)

0


+ (1 − 𝜀

𝑚
) 𝐶+𝐾

𝑀
𝛽
1
+ 𝜂
1
] ,

(27)

where 𝜂
1
is a positive constant, then the finite time enforcement

of a sliding mode on 𝜎(𝜉) = 0 is guaranteed in the presence of
matched uncertainties.

Proof. Toprove that the slidingmode can be enforced in finite
time, differentiating (19) along the dynamics of (26) and then
substituting (25), one has

�̇� (𝜉) =

𝑛−1

∑

𝑖=1

𝑐
𝑖
𝜉
𝑖+1

+ 𝑢
(𝑘)

0
− 𝐾 sign𝜎

+ 𝛿
𝑚
[−𝜑 (𝜉, �̂�) + 𝑢

(𝑘)

0
− 𝐾 sign𝜎]

+ 𝛾 (𝜉) Δ𝐺
𝑚
(𝜉, �̂�, 𝑡) + �̇�.

(28)

Substituting (21) into (28) and then rearranging, one obtains

�̇� (𝜉) = − 𝐾 sign𝜎 + 𝛿
𝑚
[−𝜑 (𝜉, �̂�) + 𝑢

(𝑘)

0
− 𝐾 sign𝜎]

+ 𝛾 (𝜉) Δ𝐺
𝑚
(𝜉, �̂�, 𝑡) .

(29)

Now, by considering as a Lyapunov candidate function 𝑉 =

(1/2)𝜎
2, the time derivative of this function becomes

�̇� = 𝜎�̇�. (30)

So, by using (29) in (30), one has

�̇� ≤ − |𝜎| [ − 𝐾 (1 +
𝛿𝑚

) +
𝛿𝑚




𝜑 (𝜉, �̂�)



+
𝛿𝑚




𝑢
(𝑘)

0


+

𝛾 (𝜉) Δ𝐺

𝑚
(𝜉, �̂�, 𝑡)


] .

(31)

In view of Assumption 2, the above expression can be written
as

�̇� ≤ |𝜎| [(1 − 𝜀
𝑚
)

𝑢
(𝑘)

0


− (2 − 𝜀

𝑚
)𝐾 + (1 − 𝜀

𝑚
) 𝐶 + 𝐾

𝑀
𝛽
1
]

�̇� ≤ − |𝜎| 𝜂
1
< 0,

(32)

provided that

𝐾 ≥
1

(2 − 𝜀
𝑚
)
[(1 − 𝜀

𝑚
)

𝑢
(𝑘)

0


+ (1 − 𝜀

𝑚
) 𝐶 + 𝐾

𝑀
𝛽
1
+ 𝜂
1
]

(33)

as in (27). Note that (32) can also be written as

�̇� + √2𝜂
1

√𝑉 < 0. (34)

This implies that 𝜎(𝜉) converges to zero in a finite time 𝑡
𝑠
[1]

such that

𝑡
𝑠
≤ √2𝜂

−1

1

√𝑉 (𝜎 (0)) , (35)

which completes the proof.

Corollary 9. Thedynamics of the system (26), with control law
(25) and sliding manifold 𝜎(𝜉) = 0, with 𝜎(𝜉) defined in (19),
in sliding mode are governed by the linear control law (18).

Proof. The nonlinear system (26) can be written in the
following alternate form:

̇𝜉
1
= 𝜉
2
,

̇𝜉
2
= 𝜉
3
,

...

̇𝜉
𝑛
= 𝜑 (𝜉, �̂�) + (𝛾 (𝜉) − 1) 𝑢

(𝑘)

+ 𝑢
(𝑘)

0

+ 𝑢
(𝑘)

1
+ 𝛾 (𝜉) {𝑢

(𝑘)

𝛿
𝑚
+ Δ𝐺
𝑚
(𝜉, �̂�, 𝑡)} .

(36)

The time derivative of (19) along (36) yields

�̇� (𝜉) =

𝑛−1

∑

𝑖=1

𝑐
𝑖
𝜉
𝑖+1

+ 𝜑 (𝜉, �̂�) + (𝛾 (𝜉) − 1) 𝑢
(𝑘)

+ 𝑢
(𝑘)

0
+ 𝑢
(𝑘)

1
+ 𝛾 (𝜉) {𝑢

(𝑘)

𝛿
𝑚
+ Δ𝐺
𝑚
(𝜉, �̂�, 𝑡)} + �̇�.

(37)

Substituting (21) into (37), posing �̇�(𝜉) = 0, and solving with
respect to the control variable 𝑢(𝑘), one obtains the so-called
equivalent control [5] as

𝑢
(𝑘)

eq = −
1

𝛾 (𝜉) (1 + 𝛿
𝑚
)

[𝜑 (𝜉, �̂�) − 𝑢
(𝑘)

0
+𝛾 (𝜉) Δ𝐺

𝑚
(𝜉, �̂�, 𝑡)] .

(38)
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Now, using (38) into (36), one has

̇𝜉
𝑠
= 𝐴𝜉
𝑠
+ 𝐵𝑢
(𝑘)

0
, (39)

where 𝜉
𝑠
is the state of system (26) while in sliding mode.

Thus, it is proved that the system in sliding mode operates
under the continuous control law and the eigenvalues of the
controlled transformed system in sliding mode are those of
𝐴 − 𝐵𝐾

𝑇

0
.

4.2. The System Operating under Both Matched and
Unmatched Uncertainties. In this subsection, it is now
assumed that the considered system operates under both
matched and unmatched uncertainties and the control
objective is to regulate the output of the system in the
presence of these uncertainties. To prove that the proposed
control law is capable of compensating for these uncertain
terms, the following theorem can be stated.

Theorem 10. Consider that Assumptions 2 and 5 are satisfied.
The sliding surface is chosen as 𝜎(𝜉) = 0, where 𝜎(𝜉) is defined
in (19), and the control law 𝑢

(𝑘) is selected according to (25). If
the gain 𝐾 is chosen according to the following condition:

𝐾 ≥
1

(2 − 𝜀
𝑚
)
[(1 − 𝜀

𝑚
)

𝑢
(𝑘)

0


+(1−𝜀

𝑚
) 𝐶+𝐾

𝑀
𝛽
1
+ 𝜏+𝜂

2
] ,

(40)

where 𝜂
2
is some positive constant, then the finite time

enforcement of a sliding mode on 𝜎(𝜉) = 0 is guaranteed in
the presence of both matched and unmatched uncertainties.

Proof. Considering the time derivative of (19) along (8), and
then substituting (25), one has

�̇� (𝜉) =

𝑛−1

∑

𝑖=1

𝑐
𝑖
𝜉
𝑖+1

+ 𝑢
(𝑘)

0
− 𝐾 sign𝜎

+ 𝛿
𝑚
[−𝜑 (𝜉, �̂�) + 𝑢

(𝑘)

0
− 𝐾 sign𝜎]

+ 𝛾 (𝜉) Δ𝐺
𝑚
(𝜉, �̂�, 𝑡) + ΔΦ (𝜉, �̂�, 𝑡) + �̇�.

(41)

Using (21) in (41), it yields

�̇� (𝜉) = − 𝐾 sign𝜎 + 𝛿
𝑚
[−𝜑 (𝜉, �̂�) + 𝑢

(𝑘)

0
− 𝐾 sign𝜎]

+ 𝛾 (𝜉) Δ𝐺
𝑚
(𝜉, �̂�, 𝑡) + ΔΦ (𝜉, �̂�, 𝑡) .

(42)

Now, by considering as a Lyapunov candidate function 𝑉 =

(1/2)𝜎
2, the time derivative of this function becomes

�̇� = 𝜎�̇�. (43)

Using (42) in (43), one has

�̇� ≤ − |𝜎| [−𝐾 (1 +
𝛿𝑚

) +
𝛿𝑚




𝜑 (𝜉, �̂�)


+
𝛿𝑚




𝑢
(𝑘)

0



+

𝛾 (𝜉) Δ𝐺

𝑚
(𝜉, �̂�, 𝑡)


] +


ΔΦ (𝜉, �̂�, 𝑡)


.

(44)

In view of Assumption 2, the above expression can be written
as

�̇� ≤ |𝜎| [(1 − 𝜀
𝑚
)

𝑢
(𝑘)

0


−(2 − 𝜀

𝑚
)𝐾+(1 − 𝜀

𝑚
) 𝐶+𝐾

𝑀
𝛽
1
+𝜏]

�̇� ≤ − |𝜎| 𝜂
2
< 0,

(45)

provided that

𝐾 ≥
1

(2 − 𝜀
𝑚
)
[(1 − 𝜀

𝑚
)

𝑢
(𝑘)

0


+ (1 − 𝜀

𝑚
) 𝐶 + 𝐾

𝑀
𝛽
1
+𝜂
2
+𝜏] .

(46)

The expression in (45) can be placed in the same format
like that of (34). Note that the finite time 𝑡

𝑠
in this case is

given by the formula in (35) with 𝜂
2
instead of 𝜂

1
. Thus it

is confirmed that, when the gain of the control law (25) is
selected according to (40), the finite time enforcement of the
sliding mode is guaranteed in the presence of matched and
unmatched uncertainties, which proves the theorem.

Corollary 11. The dynamics of system (8), with control law
(25) and an integral manifold 𝜎(𝜉) = 0, with 𝜎(𝜉) defined in
(19), in slidingmode are governed by the linear control law (18).

Proof. The proof can be performed by following the same
procedure as in the proof of Corollary 9, with the only
difference that in this case the equivalent control is equal to

𝑢
(𝑘)

eq = −
1

𝛾 (𝜉) (1 + 𝛿
𝑚
)

× [𝜑 (𝜉, �̂�) − 𝑢
(𝑘)

0
+𝛾 (𝜉) Δ𝐺

𝑚
(𝜉, �̂�, 𝑡)+ΔΦ (𝜉, �̂�, 𝑡)] .

(47)

5. Illustrative Example (System with Relative
Degree 2)

Consider the following uncertain nonlinear system [4]:

�̇�
1
= 𝑥
2
+ 𝑓
1
(𝑥, 𝑡) ,

�̇�
2
= 𝑥
2

1
+ (𝑥
2

2
+ 1) 𝑢 {(1 + 𝛿

𝑚
) + Δ𝑔

𝑚
(𝑥, 𝑡)} + 𝑥

3
+ 𝑓
2
(𝑥, 𝑡) ,

�̇�
3
= −𝑥
3
+ 𝑥
2
𝑥
2

3
+ 𝑓
3
(𝑥, 𝑡) ,

(48)

where 𝑥
1
, 𝑥
2
, and 𝑥

3
are the states of the nonlinear system.

The terms 𝛿
𝑚
, Δ𝑔
𝑚
(𝑥, 𝑡) are matched uncertainties and

𝑓
𝑖
(𝑥, 𝑡) are components of themismatched uncertainty which

satisfy Assumptions 1 and 2 and these terms contribute
to the system uncertainty with the following mathematical
expressions:

𝑓
1
(𝑥, 𝑡) = − 𝑥

3
+ 𝑥
2
𝑥
2

3
+ (−𝑥

3
+ 𝑥
2
𝑥
2

3
)
2

+ 0.25 sin (𝑡) cos (3𝑥
2
) + 0.26,

𝑓
2
(𝑥, 𝑡) = 0.25 sin (𝑡) cos (3𝑥

2
) + 0.1,
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Figure 1: Output regulation, control effort, sliding variable convergence and [𝜉
1
, 𝜉
2
, 𝜉
3
]
𝑇 regulation in the presence of matched uncertainty

via the proposed control law.

𝑓
3
(𝑥, 𝑡) = − 𝑥

3
+ 𝑥
2
𝑥
2

3
+ 3(−𝑥

3
+ 𝑥
2
𝑥
2

3
)
2

+ 0.25 sin (𝑡) cos (3𝑥
2
) + 0.1,

Δ𝑔
𝑚
(𝑥, 𝑡) = 3 (−𝑥

3
+ 𝑥
2
𝑥
2

3
) ,

𝛿
𝑚
= 0.3 cos (𝜋𝑡𝑥

2
) .

(49)

The output of interest is the state variable 𝑥
1
. The relative

degree of which is 2. Consequently, the system in (48) can
be expressed in LGCC form as follows:

̇𝜉
1
= 𝜉
2
+ 𝜁
1
(𝜉, �̂�, 𝑡) ,

̇𝜉
2
= 𝜉
3
+ 𝜁
2
(𝜉, �̂�, 𝑡) ,

̇𝜉
3
= 𝜑 (𝜉, �̂�) + 𝛾 (𝜉) �̇� + Δ𝐺

𝑚
(𝜉, �̂�, 𝑡) + 𝐹

𝑢
(𝜉, �̂�, �̇�, 𝑡) ,

(50)

where (𝑦, ̇𝑦, ̈𝑦) = (𝜉
1
, 𝜉
2
, 𝜉
3
) = 𝜉, �̂� = 𝑢,

𝜉
1
= 𝑥
1
,

𝜉
2
= 𝑥
2
,

𝜉
3
= 𝑥
2

1
+ (𝑥
2

2
+ 1) 𝑢 + 𝑥

3
,

𝑥
1
= 𝜉
1
,

𝑥
2
= 𝜉
2
,

𝑥
3
= 𝜉
3
− 𝜉
2

1
− (𝜉
2

2
+ 1) 𝑢.

(51)

Thus, one has

𝛾 (𝜉) = (𝜉
2

2
+ 1) ,

𝜑 (𝜉, �̂�) = 2𝜉
1
𝜉
2
+ 2𝜉
2
𝜉
3
𝑢 − (𝜉

3
− 𝜉
2

1
− (𝜉
2

2
+ 1) 𝑢)

+ 𝜉
2
(𝜉
3
− 𝜉
2

1
− (𝜉
2

2
+ 1) 𝑢) .

(52)

The regularity condition mentioned in Definition 3 holds
and the zero dynamics of this system express according to
Definition 4 becomes

�̇� + 𝑢 = 0. (53)

This confirms that the nominal system is minimum phase.
The corresponding linear system becomes

̇𝜉 = 𝐴𝜉 + 𝐵�̇�
0
, (54)

where

𝐴 = [

[

0 1 0

0 0 1

0 0 0

]

]

, 𝐵 = [

[

0

0

1

]

]

, (55)
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Figure 2: Output regulation, control effort, sliding variable convergence, and [𝜉
1
, 𝜉
2
]
𝑇 regulation in the presence of matched uncertainty via

the 2-QCSMC.

and the control law

�̇�
0
= −𝑘
1
𝜉
1
− 𝑘
2
𝜉
2
− 𝑘
3
𝜉
3

(56)

is obtained by pole assignment. The sliding variable now
adopted is

𝜎 = 𝑐
1
𝜉
1
+ 𝑐
2
𝜉
2
+ 𝜉
3
+ 𝑧 (57)

with

�̇� = −�̇�
0
− (𝑐
1
𝜉
2
+ 𝑐
2
𝜉
3
) ,

𝑧 (0) = 0,

(58)

and the final expression of the control law �̇� takes the form

�̇� = �̇�
0
+

1

𝛾 (𝜉)

[−𝜑 (𝜉, �̂�) − (𝛾 (𝜉) − 1) �̇�
0
− 𝐾 sign (𝜎)] .

(59)

In this study we compare the results of the proposed control
law with that of quasicontinuous high order sliding mode

controller proposed by Levant in [18]. To apply such an
approach, we denote

𝑠 = 𝑥
1
,

̇𝑠 = 𝑥
2
.

(60)

So that the expression of the quasicontinuous sliding mode
controller in case of relative degree (2-QCSMC) takes the
following form:

𝑢 = −

𝛼 ( ̇𝑠 + |𝑠|
1/2 sign (𝑠))

| ̇𝑠| + |𝑠|
1/2

, (61)

where𝛼 is the controller gainwhich can be selected according
to Bartolini et al. [32]. As proved in Levant [18], the control
law (61) provides a finite time slidingmode of the systemwith
a control law which is continuous everywhere except on the
second order sliding manifold 𝑠 = ̇𝑠 = 0.

Note 2. It is not necessary that every system whose output is
available can be put in the form appearing in (8) and (9).

Case 1 (system operated with matched uncertainty). In this
study, the system with matched uncertainties (i.e., with
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Figure 3: Output regulation, control effort, sliding variable convergence, and [𝜉
1
, 𝜉
2
, 𝜉
3
]
𝑇 regulation in the presence of matched and

unmatched uncertainty via the proposed control law.

Table 1: The parameters values of the control law used in the simulations.

Constants 𝑘
1

𝑘
2

𝑘
3

𝑐
1

𝑐
2

𝑐
3

𝐾 or 𝛼
2-QCSMC — — — — — — 4
Proposed control law with 𝑟 = 2 490.2 180.7 5.9 6 5 — 230

𝑓
𝑖
(𝑥, 𝑡) = 0 for 𝑖 = 1, 2, 3) is simulated to confirm the afore-

mentioned claim of the compensation of uncertain terms.
This test with matched uncertainty is also performed with
2-QCSMC previously mentioned. The results are reported
in Figures 1 and 2. In these Figures, it can be seen that the
output system with state vector [𝜉

1
, 𝜉
2
, 𝜉
3
]
𝑇 is regulated in the

presence of uncertainties. It is noticeable that the proposed
methodology provides a satisfactory regulation of the system
output via a continuous control law. The 2-QCSMC also
provides excellent performance yet with a control law which
becomes discontinuous when the output regulation objective
is attained. Apart from that, both the controllers need to use a
differentiator [16, 18] to construct the derivatives of the output
variable necessary in the control laws.

Case 2 (system operated under matched and unmatched
uncertainties). In this section, the test with both matched
and unmatched uncertainty is performed. The results with
the proposed control law are depicted in Figure 3.These sim-
ulation results confirm the robust and chattering free nature
of the proposed controller as well as its capability of efficiently
solving the regulation problem even in this particularly

critical case. In view of the nature of the uncertainty now con-
sidered, we cannot compare our results with those of the 2-
QCSMC algorithm, since that algorithm was designed under
the assumption of having only matched uncertainty [18].

Note that the controller gains and the controllers
parameters in both the experiments are listed in Table 1.

6. Conclusions

In this work, an output feedback dynamic sliding mode
controller is presented which is capable of dealing with a class
of SISO nonlinear systems operating under both matched
and unmatched state dependent uncertainties.The uncertain
system output trajectories are asymptotically regulated to
zero inspite of the presence of the uncertainties, while a
sliding mode is enforced in finite time along an integral
manifold. The use of the integral sliding manifold allows
one to subdivide the control design procedure into two
steps. First a linear control component is designed by pole
placement and then a discontinuous control component is
added so as to cope with the uncertainty presence.The design
procedure is relying on a suitably transformed system which
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generally appears in a canonical form and the control input
appears with 𝑘 time derivatives. As a consequence, the control
acting on the original system is obtained as the output of
a chain of integrators and is, accordingly, continuous. This
can be a clear benefit in many applications, such as those
of mechanical nature, where a discontinuous control action
could be nonappropriate or even disruptive for the actuators
and system’s health.
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