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P. Das et al. recently introduced and studied the notions of strong 𝐴𝐼-summability with respect to an Orlicz function 𝐹 and 𝐴𝐼-
statistical convergence, where 𝐴 is a nonnegative regular matrix and 𝐼 is an ideal on the set of natural numbers. In this paper, we
will generalise these notions by replacing 𝐴 with a family of matrices and 𝐹 with a family of Orlicz functions or moduli and study
the thus obtained convergence methods. We will also give an application in Banach space theory, presenting a generalisation of
Simons’ sup-limsup-theorem to the newly introduced convergence methods (for the case that the filter generated by the ideal 𝐼 has
a countable base), continuing some of the author’s previous work.

1. Introduction

Let us begin by recalling that an ideal 𝐼 on a nonempty set𝑌 is
a nonempty set of subsets of 𝑌 such that 𝑌 ∉ 𝐼 and 𝐼 is closed
under the formation of subsets and finite unions. The ideal is
called admissible if {𝑦} ∈ 𝐼 for each 𝑦 ∈ 𝑌. For example, if 𝑌
is infinite, then the set of all finite subsets of 𝑌 forms an ideal
on 𝑌. If 𝐼 is an ideal, then F(𝐼) := {𝑌 \ 𝐴 : 𝐴 ∈ 𝐼} is a filter
on 𝑌.

Now if (𝑥
𝑛
)
𝑛∈N is a sequence in a topological space𝑋 and 𝐼

is an ideal on the setN of natural numbers, then (𝑥
𝑛
)
𝑛∈N is said

to be 𝐼-convergent to 𝑥 ∈ 𝑋 if for every neighbourhood 𝑈 of
𝑥 the set {𝑛 ∈ N : 𝑥

𝑛
∉ 𝑈} belongs to 𝐼 (equivalently, {𝑛 ∈ N :

𝑥
𝑛
∈ 𝑈} ∈ F(𝐼)). In a Hausdorff space the 𝐼-limit is unique

if it exists. It will be denoted by 𝐼-lim𝑥
𝑛
. If 𝐼

𝑓
is the ideal

of all finite subsets of N, then 𝐼
𝑓
-convergence is equivalent

to the usual convergence. Thus if 𝐼 is admissible, the usual
convergence implies 𝐼-convergence. For a normed space 𝑋
the set of all 𝐼-convergent sequences in𝑋 is a subspace of𝑋N

and the map (𝑥
𝑛
) 󳨃→ 𝐼-lim𝑥

𝑛
is linear. We refer the reader to

[1–4] for more information on 𝐼-convergence.
Recall now that for a given infinite matrix 𝐴 = (𝑎

𝑛𝑘
)
𝑛,𝑘∈N

with real or complex entries a sequence 𝑠 = (𝑠
𝑘
)
𝑘∈N of (real or

complex) numbers is said to be𝐴-summable to the number 𝑎

provided that each of the series ∑∞

𝑘=1
𝑎
𝑛𝑘
𝑠
𝑘
is convergent and

lim
𝑛→∞

∑
∞

𝑘=1
𝑎
𝑛𝑘
𝑠
𝑘
= 𝑎.

The matrix 𝐴 is called regular if every sequence that is
convergent in the ordinary sense is also 𝐴-summable to the
same limit. A well-known theorem of Toeplitz states that𝐴 is
regular if and only if the following holds:

(i) sup
𝑛∈N∑

∞

𝑘=1
|𝑎

𝑛𝑘
| < ∞,

(ii) lim
𝑛→∞

∑
∞

𝑘=1
𝑎
𝑛𝑘
= 1,

(iii) lim
𝑛→∞

𝑎
𝑛𝑘
= 0 ∀𝑘 ∈ N.

Let us suppose for the moment that 𝐴 is regular and also
nonnegative (i.e., 𝑎

𝑛𝑘
≥ 0 for all 𝑛, 𝑘 ∈ N). We will denote

by 𝐷(𝑠, 𝑎, 𝜀) the set {𝑘 ∈ N : |𝑠
𝑘
− 𝑎| ≥ 𝜀} for every

𝜀 > 0. Then 𝑠 is said to be 𝐴-statistically convergent to 𝑎 if
for every 𝜀 > 0 we have lim

𝑛→∞
∑

∞

𝑘=1
𝑎
𝑛𝑘
𝜒
𝐷(𝑠,𝑎,𝜀)

(𝑘) = 0,
where the symbol 𝜒

𝐾
denotes the characteristic function of

the set 𝐾 ⊆ N. If one takes 𝐴 to be the Cesàro matrix (i.e.,
𝑎
𝑛𝑘
= 1/𝑛 for 𝑘 ≤ 𝑛 and 𝑎

𝑛𝑘
= 0 for 𝑘 > 𝑛) one gets the

usual notion of statistical convergence as it was introduced
by Fast in [5]. Note that the set 𝐼

𝐴
of all subsets 𝐾 ⊆ N

for which lim
𝑛→∞

∑
∞

𝑘=1
𝑎
𝑛𝑘
𝜒
𝐾
(𝑘) = 0 holds is an ideal on

N and 𝐴-statistical convergence is nothing but convergence
with respect to this ideal.
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For any number𝑝 > 0 the sequence 𝑠 is said to be strongly
𝐴-𝑝-summable to 𝑎 provided that ∑∞

𝑘=1
𝑎
𝑛𝑘
|𝑠

𝑘
− 𝑎|

𝑝
< ∞ for

all 𝑛 ∈ N and lim
𝑛→∞

∑
∞

𝑘=1
𝑎
𝑛𝑘
|𝑠

𝑘
− 𝑎|

𝑝
= 0. The strong

𝐴-𝑝-summability is a linear consistent summability method
and the strong𝐴-𝑝-limit is uniquely determined whenever it
exists. In [6] Connor proved that 𝑠 is statistically convergent
to 𝑎 whenever it is strongly 𝑝-Cesàro convergent to 𝑎 and the
converse is true if 𝑠 is bounded. Practically the same proof
given in [6] still works if one replaces the Cesàro matrix
by an arbitrary nonnegative regular matrix 𝐴. In particular,
strong 𝐴-𝑝-summability and 𝐴-statistical convergence are
equivalent on bounded sequences (see also [7, Theorem
8]). More information on strong matrix summability can be
found in [8] (for the case 𝑝 = 1) or [9].

In [10] Maddox proposed a generalisation of strong 𝐴-
𝑝-summability by replacing the number 𝑝 with a sequence
p = (𝑝

𝑘
)
𝑘∈N of positive numbers: the sequence 𝑠 is strongly

𝐴-p-summable to 𝑎 if∑∞

𝑘=1
𝑎
𝑛𝑘
|𝑠

𝑘
− 𝑎|

𝑝𝑘 < ∞ for every 𝑛 ∈ N
and lim

𝑛→∞
∑

∞

𝑘=1
𝑎
𝑛𝑘
|𝑠

𝑘
− 𝑎|

𝑝𝑘 = 0.
Next, let us recall that a function 𝐹 : [0,∞) → [0,∞) is

called an Orlicz function if it is increasing, continuous, and
convex and satisfies lim

𝑡→∞
𝐹(𝑡) = ∞ as well as 𝐹(𝑡) = 0 if

and only if 𝑡 = 0. If we drop the convexity and replace it by
the condition 𝐹(𝑠 + 𝑡) ≤ 𝐹(𝑠) + 𝐹(𝑡) for all 𝑠, 𝑡 ≥ 0, then 𝐹
is called a modulus. For example, the function 𝐹

𝑝
defined by

𝐹
𝑝
(𝑡) = 𝑡

𝑝 is an Orlicz function for 𝑝 ≥ 1 and a modulus for
0 < 𝑝 ≤ 1. We will denote the set of all Orlicz functions by O
and the set of all moduli byM.

Connor introduced another generalisation of strong
matrix summability in [7]: if 𝐹 is a modulus, then 𝑠 is
said to be strongly 𝐴-summable to the limit 𝑎 with respect
to 𝐹 if ∑∞

𝑘=1
𝑎
𝑛𝑘
𝐹(|𝑠

𝑘
− 𝑎|) < ∞ for all 𝑛 ∈ N and

lim
𝑛→∞

∑
∞

𝑘=1
𝑎
𝑛𝑘
𝐹(|𝑠

𝑘
− 𝑎|) = 0. It is shown in [7, Theorem

8] that strong 𝐴-summability with respect to 𝐹 implies
𝐴-statistical convergence and that the converse holds for
bounded sequences. In [11] Demirci replaced the modulus in
Connor’s definition by an Orlicz function and studied which
results carry over to this setting.

Another common generalised convergence method is
that of almost convergence introduced by Lorentz in [12]. For
this we first recall that a Banach limit is a linear functional
𝐿 on the space ℓ∞ of all bounded real-valued sequences
such that 𝐿 is shift-invariant (i.e., 𝐿((𝑠

𝑛+1
)
𝑛∈N) = 𝐿((𝑠𝑛)𝑛∈N)),

positive (i.e., 𝐿((𝑠
𝑛
)
𝑛∈N) ≥ 0 if 𝑠𝑛 ≥ 0 for all 𝑛), and fulfills

𝐿(1, 1, . . .) = 1. The existence of a Banach limit can be easily
proved by means of the Hahn-Banach extension theorem. A
sequence 𝑠 ∈ ℓ∞ is said to be almost convergent to 𝑎 ∈ R if
𝐿(𝑠) = 𝑎 for every Banach limit 𝐿.

It is proved in [12] that almost convergence is equivalent
to “uniform Cesàro convergence.” More precisely, a bounded
sequence 𝑠 = (𝑠

𝑘
)
𝑘∈N in R is almost convergent to 𝑎 ∈ R if

and only if the following holds:

1

𝑛

𝑛

∑

𝑘=1

𝑠
𝑘+𝑖

𝑛→∞

󳨀󳨀󳨀󳨀󳨀→ 𝑎 uniformly in 𝑖 ∈ N
0
, (1)

where N
0
= N ∪ {0}.

Lorentz subsequently introduced and studied the notion
of 𝐹

𝐴
-convergence by replacing the Cesàro matrix with an

arbitrary real-valued regular matrix 𝐴: a bounded sequence
𝑠 = (𝑠

𝑘
)
𝑘∈N inR is said to be𝐹

𝐴
-convergent to 𝑎 ∈ R provided

that
∞

∑

𝑘=1

𝑎
𝑛𝑘
𝑠
𝑘+𝑖

𝑛→∞

󳨀󳨀󳨀󳨀󳨀→ 𝑎 uniformly in 𝑖 ∈ N
0
. (2)

Stieglitz further generalised the notion of almost convergence
in the following way (cf. [13]): consider a sequence B =

(𝐵
𝑖
)
𝑖∈N0
= ((𝑏

(𝑖)

𝑛𝑘
)
𝑛,𝑘∈N)𝑖∈N0

of matrices with entries in R or
C and a bounded sequence 𝑠 = (𝑠

𝑘
)
𝑘∈N of real or complex

numbers.Then 𝑠 is said to be 𝐹B-convergent to the number 𝑎
if each of the series∑∞

𝑘=1
𝑏
(𝑖)

𝑛𝑘
𝑠
𝑘
with 𝑛 ∈ N, 𝑖 ∈ N

0
is convergent

and
∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝑠
𝑘

𝑛→∞

󳨀󳨀󳨀󳨀󳨀→ 𝑎 uniformly in 𝑖 ∈ N
0
. (3)

To obtain 𝐹
𝐴
-convergence, take 𝑏(𝑖)

𝑛𝑘
= 𝑎

𝑛𝑘−𝑖
for 𝑘 > 𝑖 and

𝑏
(𝑖)

𝑛𝑘
= 0 for 𝑘 ≤ 𝑖.
Maddox introduced the 𝐹B-analogue of strong matrix

summability in [14]. If each of the matrices 𝐵
𝑖
is nonnegative

and 𝑠 = (𝑠
𝑘
)
𝑘∈N is a (not necessarily bounded) sequence in R

orC, then 𝑠 is said to be strongly𝐹B-convergent to 𝑎 provided
that

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘

󵄨󵄨󵄨󵄨𝑠𝑘 − 𝑎
󵄨󵄨󵄨󵄨

𝑛→∞

󳨀󳨀󳨀󳨀󳨀→ 0 uniformly in 𝑖 ∈ N
0
. (4)

Very recently, the authors of [15] introduced the following
definitions, combining matrices and ideals.

Definition 1 (cf. [15]). Let 𝐴 = (𝑎
𝑛𝑘
)
𝑛,𝑘∈N be a nonnegative

regular matrix, 𝐼 an ideal on N, and 𝐹 an Orlicz function. Let
𝑎 be any real or complex number. A sequence 𝑠 = (𝑠

𝑘
)
𝑘∈N in

R or C is said to be

(i) strongly 𝐴𝐼-summable to 𝑎 with respect to 𝐹 if

𝐼-lim
∞

∑

𝑘=1

𝑎
𝑛𝑘
𝐹 (
󵄨󵄨󵄨󵄨𝑠𝑘 − 𝑎

󵄨󵄨󵄨󵄨) = 0, (5)

(ii) 𝐴𝐼-statistically convergent to 𝑎 if

𝐼-lim
∞

∑

𝑘=1

𝑎
𝑛𝑘
𝜒
𝐷(𝑠,𝑎,𝜀) (𝑘) = 0 (6)

for every 𝜀 > 0.

It is proved in [15,Theorem 2.5] that𝐴𝐼-summability with
respect to 𝐹 implies 𝐴𝐼-statistical convergence (to the same
limit) and the converse holds if the sequence 𝑠 is bounded
and 𝐹 satisfies the Δ

2
-condition (i.e., there is a constant 𝐾

such that 𝐹(2𝑡) ≤ 𝐾𝐹(𝑡) for all 𝑡 ≥ 0).
We would like to propose here the following three

definitions that include all the above mentioned generalised
convergence methods.
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First we define a sequence (𝑔
𝑛
)
𝑛∈N of functions from a set

𝑆 into a generalised metric space (𝑋, 𝑑) (same as a metric
space except that 𝑑 is allowed to take values in [0,∞]; for
example, 𝑑(𝑎, 𝑏) = |𝑎 − 𝑏| for 𝑎, 𝑏 ∈ [0,∞), 𝑑(𝑎,∞) =
𝑑(∞, 𝑎) = ∞ for all 𝑎 ∈ [0,∞), and 𝑑(∞,∞) = 0 defines
a generalised metric on [0,∞]) to be uniformly convergent
to the function 𝑔 : 𝑆 → 𝑋 along the ideal 𝐼 if for every 𝜀 > 0
there is some 𝐸 ∈ 𝐼 such that for every 𝑠 ∈ 𝑆

{𝑛 ∈ N : 𝑑 (𝑔
𝑛 (𝑠) , 𝑔 (𝑠)) ≥ 𝜀} ⊆ 𝐸 (7)

or, equivalently, for every 𝜀 > 0, we have

{𝑛 ∈ N : sup
𝑠∈𝑆

𝑑 (𝑔
𝑛 (𝑠) , 𝑔 (𝑠)) ≥ 𝜀} ∈ 𝐼. (8)

If 𝐼 = 𝐼
𝑓
, this yields the usual definition of uniform con-

vergence. Also, this definition is a direct generalisation of
the definition of 𝜇-statistical uniform convergence given in
[16]. The uniform convergence of (𝑔

𝑛
)
𝑛∈N to 𝑔 along 𝐼 clearly

implies 𝐼-lim𝑔
𝑛
(𝑠) = 𝑔(𝑠) for all 𝑠 ∈ 𝑆.

Now we come to the main definition.

Definition 2. Let 𝐼 be an ideal on N and 𝑆 any nonempty set.
Let B = (𝐵

𝑖
)
𝑖∈𝑆
= ((𝑏

(𝑖)

𝑛𝑘
)
𝑛,𝑘∈N)𝑖∈𝑆 be a family of (not nec-

essarily regular) matrices with entries in R or C and F =

(𝐹
(𝑖)

𝑘
)
𝑘∈N,𝑖∈𝑆

a family in M ∪ O. Suppose that there is some
𝑖
0
∈ 𝑆 such that

inf
𝑛∈N

∞

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨
𝑏
(𝑖0)

𝑛𝑘

󵄨󵄨󵄨󵄨󵄨
> 0. (+)

Finally, let 𝑠 = (𝑠
𝑘
)
𝑘∈N be a sequence in R or C and 𝑎 ∈ R or

C.

(i) 𝑠 is said to be B𝐼-summable to 𝑎 provided that each
of the series ∑∞

𝑘=1
𝑏
(𝑖)

𝑛𝑘
𝑠
𝑘
is convergent and

𝐼-lim
∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝑠
𝑘
= 𝑎 uniformly in 𝑖 ∈ 𝑆. (9)

(ii) If each matrix 𝐵
𝑖
is nonnegative, then 𝑠 is said to be

stronglyB𝐼-summable to 𝑎 with respect toF if

𝐼-lim
∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝐹

(𝑖)

𝑘
(
󵄨󵄨󵄨󵄨𝑠𝑘 − 𝑎

󵄨󵄨󵄨󵄨) = 0 uniformly in 𝑖 ∈ 𝑆. (10)

(iii) If each 𝐵
𝑖
is nonnegative, then 𝑠 is said to be B𝐼-

statistically convergent to 𝑎 provided that for every
𝜀 > 0

𝐼-lim
∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝜒
𝐷(𝑠,𝑎,𝜀) (𝑘) = 0 uniformly in 𝑖 ∈ 𝑆. (11)

If 𝐹(𝑖)
𝑘
= id

[0,∞)
for all 𝑘 ∈ N, 𝑖 ∈ 𝑆 in (ii) we simply speak

of strongB𝐼-summability. Clearly, strongB𝐼-summability to

𝑎 implies B𝐼-summability to 𝑎 provided that 𝑠 is bounded,
∑

∞

𝑘=1
𝑏
(𝑖)

𝑛𝑘
< ∞ for all 𝑘 ∈ N, 𝑖 ∈ 𝑆 and

𝐼-lim
∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
= 1 uniformly in 𝑖 ∈ 𝑆. (12)

Taking 𝐵
𝑖
= 𝐴 and 𝐹(𝑖)

𝑘
= 𝐹 ∈ O for each 𝑖 ∈ 𝑆 and 𝑘 ∈ N

in (ii) and (iii) yields the definitions of strong𝐴𝐼-summability
with respect to 𝐹 and of𝐴𝐼-statistical convergence. If we take
𝐼 = 𝐼

𝑓
and 𝑆 = N

0
in (i) and (ii) we obtain the definitions of

𝐹B- and strong 𝐹B-convergence. Setting 𝐼 = 𝐼
𝑓
, 𝐵

𝑖
= 𝐴 for

every 𝑖 ∈ 𝑆 and 𝐹(𝑖)
𝑘
= 𝐹

𝑝𝑘
for all 𝑖 ∈ 𝑆, 𝑘 ∈ N in (ii) gives us

the definition of Maddox’s strong 𝐴-p-summability.
Note also that if each 𝐵

𝑖
is nonnegative, then the set 𝐽B,𝐼

of all subsets 𝐾 ⊆ N, such that

𝐼-lim
∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝜒
𝐾 (𝑘) = 0 uniformly in 𝑖 ∈ 𝑆, (13)

is an ideal onN (the condition (+) ensuresN ∉ 𝐽B,𝐼
).TheB𝐼-

statistical convergence is nothing but the convergence with
respect to 𝐽B,𝐼

. In the case that 𝐵
𝑖
is the infinite unit matrix

for each 𝑖 ∈ 𝑆 we have 𝐽B,𝐼
= 𝐼.

In the next section we will start to investigate the above
convergence methods.

2. Some Convergence Theorems

If not otherwise stated, we will denote by 𝐼 an ideal on N,
by B = (𝐵

𝑖
)
𝑖∈𝑆
= ((𝑏

(𝑖)

𝑛𝑘
)
𝑛,𝑘∈N)𝑖∈𝑆 a family of real or complex

matrices (where 𝑆 is any nonempty index set) such that there
is some 𝑖

0
∈ 𝑆 with (+), and by F = (𝐹(𝑖)

𝑘
)
𝑘∈N,𝑖∈𝑆

a family in
M ∪O. Finally, 𝑠 = (𝑠

𝑘
)
𝑘∈N denotes a sequence inR or C and

𝑎 an element of R or C, as in the previous section.
The following two propositions (wherein each 𝐵

𝑖
is

implicitly assumed to be nonnegative) generalise the afore-
mentioned results from [15, Theorem 2.5]. The techniques
used there followed the line of [17] while we will adopt the
techniques from [6].

Proposition 3. Suppose that 𝑠 is strongly B𝐼-summable to 𝑎
with respect toF and that

𝐿 (𝑡) := inf {𝐹(𝑖)
𝑘
(𝑡) : 𝑘 ∈ N, 𝑖 ∈ 𝑆} > 0 ∀𝑡 > 0. (14)

Then 𝑠 is alsoB𝐼-statistically convergent to 𝑎.

Proof. Let 𝜀, 𝛿 > 0 be arbitrary. By assumption there is some
𝐸 ∈ 𝐼 such that for all 𝑖 ∈ 𝑆

{𝑛 ∈ N :
∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝐹

(𝑖)

𝑘
(
󵄨󵄨󵄨󵄨𝑠𝑘 − 𝑎

󵄨󵄨󵄨󵄨) ≥ 𝛿𝐿 (𝜀)} ⊆ 𝐸. (15)

But we have
∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝐹

(𝑖)

𝑘
(
󵄨󵄨󵄨󵄨𝑠𝑘 − 𝑎

󵄨󵄨󵄨󵄨) ≥

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛k𝐹
(𝑖)

𝑘
(
󵄨󵄨󵄨󵄨𝑠𝑘 − 𝑎

󵄨󵄨󵄨󵄨) 𝜒𝐷(𝑠,𝑎,𝜀) (𝑘)

≥ 𝐿 (𝜀)

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝜒
𝐷(𝑠,𝑎,𝜀) (𝑘)

(16)
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for all 𝑖 ∈ 𝑆, 𝑘 ∈ N. Hence

{𝑛 ∈ N :
∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝜒
𝐷(𝑠,𝑎,𝜀) (𝑘) ≥ 𝛿} ⊆ 𝐸 (17)

for every 𝑖 ∈ 𝑆 and the proof is finished.

Proposition 4. Suppose that 𝑠 is bounded andB𝐼-statistically
convergent to 𝑎. IfF is equicontinuous at 0 and there exists an
𝐴 ∈ 𝐼 such that

𝑀 := sup{
∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
: 𝑛 ∈ N \ 𝐴, 𝑖 ∈ 𝑆} < ∞, (18)

as well as

ℎ (𝑡) := sup {𝐹(𝑖)
𝑘
(𝑡) : 𝑘 ∈ N, 𝑖 ∈ 𝑆} < ∞ ∀𝑡 ≥ 0, (19)

then 𝑠 is also strongly 𝐵𝐼-summable to 𝑎 with respect toF.

Proof. Let 𝜀 > 0 be arbitrary. Take 𝜏 > 0with 𝜏(𝑀+ℎ(‖𝑠‖
∞
+

|𝑎|)) < 𝜀. SinceF is equicontinuous at 0, we can find a 𝛿 > 0
such that 𝐹(𝑖)

𝑘
(𝑡) ≤ 𝜏 for all 𝑡 ∈ [0, 𝛿] and all 𝑘 ∈ N, 𝑖 ∈ 𝑆.

Because 𝑠 isB𝐼-statistically convergent to 𝑎 there is some
𝐸 ∈ 𝐼 such that for every 𝑖 ∈ 𝑆

{𝑛 ∈ N :
∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝜒
𝐷(𝑠,𝑎,𝛿) (𝑘) ≥ 𝜏} ⊆ 𝐸. (20)

It follows that for every 𝑛 ∈ N \ (𝐸 ∪ 𝐴) and all 𝑖 ∈ 𝑆

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝐹

(𝑖)

𝑘
(
󵄨󵄨󵄨󵄨𝑠𝑘 − 𝑎

󵄨󵄨󵄨󵄨)

≤ 𝜏

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝜒N\𝐷(𝑠,𝑎,𝛿) (𝑘)

+

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝐹

(𝑖)

𝑘
(
󵄨󵄨󵄨󵄨𝑠𝑘 − 𝑎

󵄨󵄨󵄨󵄨) 𝜒𝐷(𝑠,𝑎,𝛿) (𝑘)

≤ 𝜏𝑀 + ℎ (‖𝑠‖∞ + |𝑎|)

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝜒
𝐷(𝑠,𝑎,𝛿) (𝑘)

≤ 𝜏 (𝑀 + ℎ (‖𝑠‖∞ + |𝑎|)) < 𝜀

(21)

and we are done.

So in particular, if B and F meet the requirements of
both Propositions 3 and 4, then B𝐼-statistical convergence
and strong B𝐼-summability with respect to F coincide on
bounded sequences. Note that all the assumptions on F are
satisfied if 𝐹(𝑖)

𝑘
= 𝐹

𝑝𝑘𝑖
for a family (𝑝

𝑘𝑖
)
𝑘∈N,𝑖∈𝑆

of positive
numbers which is bounded and bounded away from zero.

If 𝐼 ⊆ 𝐽B,𝐼
, in other words, if

𝐼-lim
∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝜒
𝐴 (𝑘) = 0 uniformly in 𝑖 ∈ 𝑆 ∀𝐴 ∈ 𝐼, (22)

then 𝐼-convergence implies B𝐼-statistical convergence (to
the same limit). Thus if B and F additionally satisfy the
requirements of Proposition 4, then for bounded sequences
𝐼-convergence also implies strong B𝐼-summability to the
same limit. Concerning the consistency of ordinary B𝐼-
summability, we have the following sufficient conditions
which are analogous to those of Toeplitz’s theorem. We write
𝑑
𝐼
for the set of all bounded sequences (𝑎

𝑘
)
𝑘∈N for which

{𝑘 ∈ N : 𝑎
𝑘
̸= 0} ∈ 𝐼.

Lemma 5. Suppose that ∑∞

𝑘=1
|𝑏

(𝑖)

𝑛𝑘
| < ∞ for all 𝑛 ∈ N, 𝑖 ∈ 𝑆

and

∃𝐴 ∈ 𝐼 𝑀 := sup{
∞

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨
𝑏
(𝑖)

𝑛𝑘

󵄨󵄨󵄨󵄨󵄨
: 𝑛 ∈ N \ 𝐴, 𝑖 ∈ 𝑆} < ∞,

(23)

𝐼-lim
∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝑎
𝑘
= 0 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑖𝑛 𝑖 ∈ 𝑆 ∀ (𝑎

𝑘
) ∈ 𝑑

𝐼
, (24)

𝐼-lim
∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
= 1 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑖𝑛 𝑖 ∈ 𝑆. (25)

Then for every bounded sequence 𝑠 = (𝑠
𝑛
)
𝑛∈N in R or C, if

𝐼-lim 𝑠
𝑛
= 𝑎, then 𝑠 is alsoB𝐼-summable to 𝑎.

Proof. Because of (25) we may assume 𝑎 = 0. Let 𝜀 > 0 be
arbitrary. Since 𝐼-lim𝑠

𝑛
= 0, we have 𝐶 := {𝑛 ∈ N : |𝑠

𝑛
| ≥ 𝜀} ∈

𝐼 and hence by (24) there is some 𝐸 ∈ 𝐼 such that

{𝑛 ∈ N :

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝑠
𝑘
𝜒
𝐶 (𝑘)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≥ 𝜀} ⊆ 𝐸 ∀𝑖 ∈ 𝑆. (26)

But for all 𝑖 ∈ 𝑆 and all 𝑛 ∈ N \ 𝐴

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝑠
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝑠
𝑘
𝜒
𝐶 (𝑘)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

∞

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨
𝑏
(𝑖)

𝑛𝑘

󵄨󵄨󵄨󵄨󵄨
𝜒N\𝐶 (𝑘)

󵄨󵄨󵄨󵄨𝑠𝑘
󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝑠
𝑘
𝜒
𝐶 (𝑘)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 𝑀𝜀,

(27)

and thus

{𝑛 ∈ N :

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝑠
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≥ 𝜀 (1 +𝑀)} ⊆ 𝐸 ∪ 𝐴 ∀𝑖 ∈ 𝑆 (28)

and we are done.

The next proposition is the direct generalisation of [18,
Theorem 3.3] to our setting. Its proof is easy and moreover
virtually the same as in [18] so it will be omitted.
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Proposition 6. Suppose that we are given two families of non-
negative matricesB = ((𝑏(𝑖)

𝑛𝑘
)
𝑛,𝑘∈N)𝑖∈𝑆 andA = ((𝑎

(𝑖)

𝑛𝑘
)
𝑛,𝑘∈N)𝑖∈𝑆.

If

𝐼-lim
∞

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨
𝑎
(𝑖)

𝑛𝑘
− 𝑏

(𝑖)

𝑛𝑘

󵄨󵄨󵄨󵄨󵄨
= 0 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑖𝑛 𝑖 ∈ 𝑆, (29)

then 𝐽B,𝐼
= 𝐽A,𝐼

.

In [19] it was proved that a bounded (real) sequence
𝑠 is statistically convergent to 𝑎 if and only if 𝑠 is
Cesàro-summable to 𝑎 and the “variance” 𝜎

𝑛
(𝑠)

2
:=

1/𝑛∑
𝑛

𝑖=1
(𝑎 − 1/𝑛∑

𝑛

𝑘=1
𝑠
𝑘
)
2 converges to 0. The proposition

below is a generalisation of this result. We will use the
notation

𝜎
B,F
𝑛𝑖
(𝑠) :=

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝐹
𝑘𝑖
(
󵄨󵄨󵄨󵄨𝑠𝑘 − (𝐵𝑖𝑠) (𝑛)

󵄨󵄨󵄨󵄨) , (30)

provided that each 𝐵
𝑖
is nonnegative.

First we need the following lemma, whose proof is
analogous to those of Propositions 3 and 4 and will therefore
be omitted.

Lemma 7. Suppose that F and B fulfill the requirements of
Propositions 3 and 4 and let 𝑦 = (𝑦

𝑛𝑖
)
𝑛∈N,𝑖∈𝑆

be a family in R

or C. Put 𝐴
𝜀,𝑛,𝑖
:= 𝐷(𝑠, 𝑦

𝑛𝑖
, 𝜀) for all 𝑖 ∈ 𝑆, 𝑛 ∈ N and 𝜀 > 0.

Then

𝐼-lim
∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝐹
𝑘𝑖
(
󵄨󵄨󵄨󵄨𝑠𝑘 − 𝑦𝑛𝑖

󵄨󵄨󵄨󵄨) = 0 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑖𝑛 𝑖 ∈ 𝑆 (31)

implies that for every 𝜀 > 0

𝐼-lim
∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝜒
𝐴𝜀,𝑛,𝑖
(𝑘) = 0 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑖𝑛 𝑖 ∈ 𝑆 (32)

and the converse is true if 𝑠 is bounded and sup
𝑖∈N,𝑛∈N\𝑉

|𝑦
𝑛𝑖
| <

∞ for some 𝑉 ∈ 𝐼.

Proposition 8. Let 𝑠 be bounded. Under the same hypotheses
as in the previous lemma and the additional assumption that
∑

∞

𝑘=1
|𝑏

(𝑖)

𝑛𝑘
| < ∞ for all 𝑛 ∈ N, 𝑖 ∈ 𝑆 and

𝐼-lim
∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
= 1 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑖𝑛 𝑖 ∈ 𝑆, (33)

𝑠 is B𝐼-statistically convergent to the number 𝑎 if and only if
𝑠 is B𝐼-summable to 𝑎 and 𝜎B,F

𝑛i (𝑠) converges to 0 along 𝐼
uniformly in 𝑖 ∈ 𝑆.

Proof. In view of Lemma 7 it is enough to consider the case
𝐹
𝑘𝑖
= id

[0,∞)
for all 𝑘 ∈ N, 𝑖 ∈ 𝑆. We first assume that 𝑠 is

B𝐼-summable to 𝑎 and that

𝐼- lim 𝜎B,F
𝑛𝑖
(𝑠)

= 𝐼- lim
∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘

󵄨󵄨󵄨󵄨𝑠𝑘 − (𝐵𝑖𝑠) (𝑛)
󵄨󵄨󵄨󵄨 = 0 uniformly in 𝑖 ∈ 𝑆.

(34)

Because of
∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘

󵄨󵄨󵄨󵄨𝑠𝑘 − 𝑎
󵄨󵄨󵄨󵄨

≤

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘

󵄨󵄨󵄨󵄨𝑠𝑘 − (𝐵𝑖𝑠) (𝑛)
󵄨󵄨󵄨󵄨

+

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘

󵄨󵄨󵄨󵄨(𝐵𝑖𝑠) (𝑛) − 𝑎
󵄨󵄨󵄨󵄨

≤ 𝜎
B,F
𝑛𝑖
(𝑠) +

󵄨󵄨󵄨󵄨(𝐵𝑖𝑠) (𝑛) − 𝑎
󵄨󵄨󵄨󵄨𝑀 ∀𝑛 ∈ N \ 𝐴, ∀𝑖 ∈ 𝑆,

(35)

where 𝐴 and 𝑀 are as in Proposition 4, it follows that 𝑠 is
strongly B𝐼-summable to 𝑎 and hence by Proposition 3 it is
alsoB𝐼-statistically convergent to 𝑎.

Conversely, let 𝑠 beB𝐼-statistically convergent to 𝑎. Then
by Proposition 4 𝑠 is also strongly B𝐼-summable to 𝑎 and
because of assumption (33) it follows that 𝑠 isB𝐼-summable
to 𝑎. Moreover, we have

𝜎
B,F
𝑛𝑖
(𝑠) =

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘

󵄨󵄨󵄨󵄨𝑠𝑘 − (𝐵𝑖𝑠) (𝑛)
󵄨󵄨󵄨󵄨

≤

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘

󵄨󵄨󵄨󵄨𝑠𝑘 − 𝑎
󵄨󵄨󵄨󵄨 +

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘

󵄨󵄨󵄨󵄨𝑎 − (𝐵𝑖𝑠) (𝑛)
󵄨󵄨󵄨󵄨

≤

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘

󵄨󵄨󵄨󵄨𝑠𝑘 − 𝑎
󵄨󵄨󵄨󵄨 + 𝑀

󵄨󵄨󵄨󵄨𝑎 − (𝐵𝑖𝑠) (𝑛)
󵄨󵄨󵄨󵄨

∀𝑛 ∈ N \ 𝐴, ∀𝑖 ∈ 𝑆

(36)

and hence 𝜎B,F
𝑛𝑖
(𝑠) converges to 0 along 𝐼 uniformly in 𝑖 ∈

𝑆.

According to [12,Theorem2], for any regularmatrix𝐴 the
𝐹
𝐴
-convergence of a sequence implies its almost convergence

to the same limit and by [12, Theorem 3] the converse is true
if𝐴 satisfies lim

𝑛→∞
∑

∞

𝑘=1
|𝑎

𝑛𝑘
−𝑎

𝑛𝑘+1
| = 0.The following two

results are generalisations of these facts. Their proofs remain
virtually the same and will not be given here.

Proposition 9. Let 𝐴 = (𝑎
𝑛𝑘
)
𝑛,𝑘∈N be an infinite matrix in R

such that∑∞

𝑘=1
|𝑎

𝑛𝑘
| < ∞ for all 𝑛 ∈ N and 𝐼-lim ∑∞

𝑘=1
𝑎
𝑛𝑘
= 1.

Put A = ((𝑎(𝑖)
𝑛𝑘
)
𝑛,𝑘∈N)𝑖∈N0

, where 𝑎(𝑖)
𝑛𝑘
= 𝑎

𝑛𝑘−𝑖
for 𝑘 > 𝑖 and

𝑎
(𝑖)

𝑛𝑘
= 0 for 𝑘 ≤ 𝑖.
Let 𝑠 ∈ ℓ∞ be A𝐼-summable to the value 𝑎. Then 𝑠 is also

almost convergent to 𝑎.

Theorem 10. Let 𝐴 and A be as in the previous proposition
but assume additionally that 𝐼-lim 𝑎

𝑛𝑘
= 0 for every 𝑘 ∈ N,

sup
𝑛∈N\𝑉

∑
∞

𝑘=1
|𝑎

𝑛𝑘
| < ∞ for some 𝑉 ∈ 𝐼, and

𝐼-lim
∞

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑎𝑛𝑘 − 𝑎𝑛𝑘+1
󵄨󵄨󵄨󵄨 = 0. (37)
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Let 𝐶 be the Cesàro matrix and suppose that the family C
arises from 𝐶 as A from 𝐴. Suppose further that the ideal 𝐼
is admissible and that 𝐽 is another ideal. Let 𝑠 ∈ ℓ∞ be C𝐽-
summable to the value 𝑎. Then 𝑠 is alsoA𝐼-summable to 𝑎.

In [4] the notion of 𝐼-Cauchy sequences in arbitrary
metric spaces, which generalises the notion of statistically
Cauchy sequences of Fridy (cf. [20]), was introduced. A
sequence (𝑥

𝑛
)
𝑛∈N in a metric space (𝑋, 𝑑) is said to be an 𝐼-

Cauchy sequence if for every 𝜀 > 0 there is some 𝑘 ∈ N such
that {𝑛 ∈ N : 𝑑(𝑥

𝑛
, 𝑥

𝑘
) ≥ 𝜀} ∈ 𝐼. For 𝐼 = 𝐼

𝑓
this yields just an

equivalent formulation of the notion of an ordinary Cauchy
sequence. Fridy’s notion of statistically Cauchy sequences is
obtained by taking 𝐼 = 𝐽

𝐶,𝐼𝑓
, where 𝐶 is the Cesàro matrix.

It was proved in [4] that every 𝐼-convergent sequence is 𝐼-
Cauchy (cf. [4, Proposition 1]) and that, in the case of an
admissible ideal 𝐼, the metric space (𝑋, 𝑑) is complete if and
only if every 𝐼-Cauchy sequence in (𝑋, 𝑑) is 𝐼-convergent (cf.
[4, Theorem 2]). The proof of [4, Theorem 2] also shows that
every 𝐼-convergent sequence possesses a subsequence which
is convergent in the ordinary sense.

In [20] it was proved that a sequence of numbers is
statistically convergent if and only if it is statistically Cauchy,
but a third equivalent condition was obtained there as well;
namely, a number sequence (𝑠

𝑛
)
𝑛∈N is statistically convergent

if and only if there is a sequence (𝑡
𝑛
)
𝑛∈N which is convergent

in the usual sense and coincides “almost everywhere” with
(𝑠

𝑛
)
𝑛∈N, which in our notation means precisely {𝑛 ∈ N :

𝑠
𝑛
̸= 𝑡
𝑛
} ∈ 𝐽

𝐶,𝐼𝑓
.

It is clear that, for any two sequences (𝑥
𝑛
)
𝑛∈N, (𝑦𝑛)𝑛∈N in

an arbitrary topological space, if (𝑦
𝑛
)
𝑛∈N is 𝐼-convergent and

{𝑛 ∈ N : 𝑥
𝑛
̸= 𝑦

𝑛
} ∈ 𝐼, then (𝑥

𝑛
)
𝑛∈N is also 𝐼-convergent.

For the case of B𝐼-statistical convergence of sequences of
numbers we can prove a converse result provided that F(𝐼)
has a countable base that fulfills a certain condition with
respect to thematrix-familyB.The proof uses the basic ideas
from [20].

Theorem 11. Let 𝐼 be an admissible ideal with 𝐼 ⊆ 𝐽B,𝐼
such

that there is an increasing sequence (𝐵
𝑚
)
𝑚∈N in 𝐼 for which {N\

𝐵
𝑚
: 𝑚 ∈ N} forms a base ofF(𝐼) and

sup
𝑖∈𝑆

sup
𝑛∈𝐵𝑚

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝜒N\𝐵𝑚

(𝑘)
𝑚→∞

󳨀󳨀󳨀󳨀󳨀→ 0. (38)

Then the sequence 𝑠 = (𝑠
𝑛
)
𝑛∈N isB𝐼-statistically convergent to

𝑎 if and only if there is a sequence (𝑡
𝑛
)
𝑛∈N which is 𝐼-convergent

to 𝑎 and fulfills {𝑛 ∈ N : 𝑠
𝑛
̸= 𝑡
𝑛
} ∈ 𝐽B,𝐼

.

Proof. We only have to show the necessity. So let 𝑠 be B𝐼-
statistically convergent to 𝑎. Put 𝜀

𝑚
= 2

−𝑚 and𝐴
𝑚
= {𝑘 ∈ N :

|𝑠
𝑘
− 𝑎| ≥ 𝜀

𝑚
} for every 𝑚 ∈ N. Then for every 𝑚 ∈ N there

exists a set 𝐸
𝑚
∈ 𝐼 such that

{𝑛 ∈ N :
∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝜒
𝐴𝑚
(𝑘) ≥ 𝜀𝑚} ⊆ 𝐸𝑚 ∀𝑖 ∈ 𝑆 (39)

and by (38) we can find a strictly increasing sequence
(𝑀

𝑝
)
𝑝∈N in N such that

sup
𝑖∈𝑆

sup
𝑛∈𝐵𝑀𝑝

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝜒N\𝐵𝑀𝑝

(𝑘) ≤ 𝜀
𝑝
∀𝑝 ∈ N. (40)

Next we fix a strictly increasing sequence (𝑝
𝑚
)
𝑚∈N in N such

that 𝐸
𝑚
⊆ 𝐵

𝑀𝑝𝑚
for every𝑚 ∈ N. We write 𝐹

𝑚
for 𝐵

𝑀𝑝𝑚
.Then

𝐹
𝑚
⊆ 𝐹

𝑚+1
and⋃∞

𝑚=1
𝐹
𝑚
= N.

Let𝑚(𝑘) = min{𝑚 ∈ N : 𝑘 ∈ 𝐹
𝑚
} for every 𝑘 ∈ N and put

𝑡
𝑘
= {
𝑠
𝑘

if 𝑘 ∉ 𝐴
𝑚(𝑘)

𝑎 if 𝑘 ∈ 𝐴
𝑚(𝑘)
.

(41)

It is easily checked that {𝑘 ∈ N : |𝑡
𝑘
− 𝑎| ≥ 𝜀

𝑚
} ⊆ 𝐹

𝑚
for every

𝑚 and hence (𝑡
𝑘
)
𝑘∈N is 𝐼-convergent to 𝑎.

Now it remains to show 𝐶 := {𝑘 ∈ N : 𝑠
𝑘
̸= 𝑡
𝑘
} ∈ 𝐽B,𝐼

. To
this end, fix 𝜀 > 0 and choose𝑚 such that∑∞

𝑙=𝑚+1
𝜀
𝑙
≤ 𝜀/3 and

𝜀
𝑝𝑚
≤ 𝜀/3.
Since 𝐼 ⊆ 𝐽B,𝐼

, we can find 𝐸 ∈ 𝐼 with

{𝑛 ∈ N :
∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝜒
𝐹𝑚
(𝑘) ≥

𝜀

3
} ⊆ 𝐸 ∀𝑖 ∈ 𝑆. (42)

Then 𝐹
𝑚
∪𝐸 ∈ 𝐼 and for every 𝑛 ∈ N \ (𝐹

𝑚
∪𝐸) and each 𝑖 ∈ S

we have𝑚(𝑛) > 𝑚 and
∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝜒
𝐶 (𝑘) =

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝜒
𝐶∩𝐹𝑚
(𝑘)

+

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝜒
𝐶∩(N\𝐹𝑚)

(𝑘)

(42)

<
𝜀

3
+

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝜒
𝐶∩(N\𝐹𝑚(𝑛))

(𝑘)

+

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝜒
𝐶∩(𝐹𝑚(𝑛)\𝐹𝑚)

(𝑘)

(40)

≤
𝜀

3
+ 𝜀

𝑝𝑚(𝑛)

+

𝑚(𝑛)

∑

𝑙=𝑚+1

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝜒
𝐶∩(𝐹𝑙\𝐹𝑙−1)

(𝑘)

≤
𝜀

3
+ 𝜀

𝑝𝑚
+

𝑚(𝑛)

∑

𝑙=𝑚+1

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝜒
𝐴𝑙
(𝑘)

(39)

≤
2

3
𝜀 +

𝑚(𝑛)

∑

𝑙=𝑚+1

𝜀
𝑙
≤ 𝜀,

(43)

which completes the proof.

Note that condition (38) is in particular satisfied for 𝐵
𝑚
=

{1, . . . , 𝑚} if 𝐼 = 𝐼
𝑓
and each 𝐵

𝑖
is a lower triangular matrix.

Making use of his aforementioned characterisation of
statistical convergence, Fridy further proved in [20] the
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following Tauberian theorem for statistical convergence: a
statistically convergent sequence (𝑠

𝑛
)
𝑛∈N which satisfies |𝑠

𝑛
−

𝑠
𝑛+1
| = 𝑂(1/𝑛) for 𝑛 → ∞ is convergent in the ordinary

sense. It is not too difficult to obtain the following slightly
more general result by modifying the proof from [20]
accordingly (there the functions 𝜑, 𝜓, and ℎ below are simply
𝜑(𝑥) = 1/𝑥 = 𝜓(𝑥) and ℎ(𝑥) = 𝑥(1 + 𝑥)−1). For the sake of
brevity, we skip the details.

Theorem 12. Let 𝐼 be an admissible ideal and 𝐴 = (𝑎
𝑛𝑘
)
𝑛,𝑘≥1

a lower triangular matrix such that 𝐼-lim ∑𝑛

𝑘=1
𝑎
𝑛𝑘
= 1 and

𝐼-lim 𝑎
𝑛𝑘
= 0 for every 𝑘 ∈ N. Suppose that 𝜑, 𝜓, and ℎ are

functions from [0,∞) into itself such that 𝜑 is decreasing on
(0,∞), min

𝑘=1,...,𝑛
𝑎
𝑛𝑘
≥ 𝜓(𝑛) for every 𝑛 ∈ N, 𝐼-lim 𝑥

𝑛
= 0

whenever 𝐼-lim ℎ(𝑥
𝑛
) = 0, and

𝑥𝜓 (𝑥 + 𝑦) ≥ ℎ (𝑥𝜑 (𝑦)) ∀𝑥, 𝑦 ≥ 0. (44)

Let (𝑠
𝑛
)
𝑛∈N and (𝑡

𝑛
)
𝑛∈N be number sequences such that

lim
𝑛→∞

𝑡
𝑛
= 0, {𝑛 ∈ N : 𝑠

𝑛
̸= 𝑡
𝑛
} ∈ 𝐽

𝐴,𝐼
, and |𝑠

𝑛
− 𝑠

𝑛+1
| =

𝑂(𝜑(𝑛)) for 𝑛 → ∞. Then 𝐼-lim 𝑠
𝑛
= 0.

Combining Theorems 11 and 12 we get the following
corollary.

Corollary 13. Under the same general hypothesis as in
Theorem 12 with 𝐼 = 𝐼

𝑓
, if (𝑠

𝑛
)
𝑛∈N is a sequence which is 𝐴-

statistically convergent to the number 𝑎 and fulfills |𝑠
𝑛
−𝑠

𝑛+1
| =

𝑂(𝜑(𝑛)) for 𝑛 → ∞, then (𝑠
𝑛
)
𝑛∈N is convergent to 𝑎 in the

usual sense.

3. Limit Superior and Limit Inferior

In [21] Demirci introduced the concepts of limit superior and
limit inferior with respect to an ideal 𝐼 on N, generalising the
notions of statistical limit superior and limit inferior from
[22]. For a sequence (𝑠

𝑛
)
𝑛∈N in R put

𝐼-lim sup 𝑠
𝑛
:= sup {𝑡 ∈ R : {𝑛 ∈ N : 𝑠

𝑛
> 𝑡} ∉ 𝐼} ,

𝐼-lim inf 𝑠
𝑛
:= inf {𝑡 ∈ R : {𝑛 ∈ N : 𝑠

𝑛
< 𝑡} ∉ 𝐼} .

(45)

The same definitions were independently introduced by the
authors of [3]. Note that since (𝑠

𝑛
)
𝑛∈N is not assumed to be

bounded, it can happen that these values are∞ or −∞. If 𝐼 =
𝐼
𝑓
the above definitions are equivalent to the usual definitions

of limit superior and limit inferior. It is proved in [21] (and in
[3] as well) that 𝐼-lim inf 𝑠

𝑛
≤ 𝐼-lim sup 𝑠

𝑛
and that (𝑠

𝑛
)
𝑛∈N

is 𝐼-convergent to 𝑎 ∈ R if and only if 𝐼-lim inf 𝑠
𝑛
= 𝑎 =

𝐼-lim sup 𝑠
𝑛
(cf. [21, Theorems 3 and 4] or [3, Theorems 3.2

and 3.4]).
Let us also remark that

𝐼-lim sup 𝑠
𝑛
= inf

𝐴∈𝐼

sup {𝑠
𝑛
: 𝑛 ∈ N \ 𝐴} ,

𝐼-lim inf 𝑠
𝑛
= sup

𝐴∈𝐼

inf {𝑠
𝑛
: 𝑛 ∈ N \ 𝐴} ,

(46)

as is easily checked.
In [22, Lemma on p.3628] necessary and sufficient condi-

tions for a real matrix𝐴 to satisfy the inequality lim sup𝐴𝑥 ≤

st-lim sup𝑥 for all 𝑥 ∈ ℓ∞ were obtained (here, st-limsup 𝑥
denotes the aforementioned statistical limit superior that was
introduced in [22]; in our terminology it is nothing but the
limit superior with respect to the ideal 𝐽

𝐶,𝐼𝑓
, where 𝐶 is the

Cesàro matrix).
Later, Demirci gave a more general necessity result

concerning the 𝐼-limit superior and the 𝐼-limit inferior (cf.
[21, Corollary 1]). The following proposition is a further
generalisation of this result while its proof follows the lines
from [22].

Proposition 14. Let 𝐼, 𝐽 be ideals on N and 𝐴 = (𝑎
𝑛𝑘
)
𝑛,𝑘∈N

an infinite matrix in R such that the following conditions are
satisfied:

∞

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑎𝑛𝑘
󵄨󵄨󵄨󵄨 < ∞ ∀𝑛 ∈ N, (47)

𝐼-lim
∞

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑎𝑛𝑘
󵄨󵄨󵄨󵄨 = 1 = 𝐼-lim

∞

∑

𝑘=1

𝑎
𝑛𝑘
, (48)

𝐼-lim
∞

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑎𝑛𝑘
󵄨󵄨󵄨󵄨 𝜒𝐸 (𝑘) = 0 ∀𝐸 ∈ 𝐽. (49)

Then

𝐼-lim sup 𝐴𝑠 ≤ 𝐽-lim sup 𝑠 ∀𝑠 ∈ ℓ∞ (50)

as well as

𝐼-lim inf 𝐴𝑠 ≥ 𝐽-lim inf 𝑠 ∀𝑠 ∈ ℓ∞. (51)

Proof. Let 𝑠 = (𝑠
𝑛
)
𝑛∈N ∈ ℓ

∞ be arbitrary and put 𝑏 =
𝐽-limsup𝑠. Since 𝑠 is bounded, we have 𝑏 ∈ R. Also, fix an
arbitrary 𝜀 > 0. Then by [21, Theorem 1] (or [3, Theorem 3.1])
we have 𝐸 := {𝑛 ∈ N : 𝑠

𝑛
> 𝑏 + 𝜀} ∈ 𝐽. We put 𝐹 = N \ 𝐸.

For every 𝑎 ∈ R set 𝑎+ = max{𝑎, 0} and 𝑎− = max{−𝑎, 0},
as in [22]. Note that 𝑎 = 𝑎+ − 𝑎+ and |𝑎| = 𝑎+ + 𝑎−.

Then for every 𝑛 ∈ N

(𝐴𝑠) (𝑛) =

∞

∑

𝑘=1

𝑎
𝑛𝑘
𝑠
𝑘
=

∞

∑

𝑘=1

𝑎
+

𝑛𝑘
𝜒
𝐸 (𝑘) 𝑠𝑘

+

∞

∑

𝑘=1

𝑎
+

𝑛𝑘
𝜒
𝐹 (𝑘) 𝑠𝑘 −

∞

∑

𝑘=1

𝑎
−

𝑛𝑘
𝑠
𝑘

≤ ‖𝑠‖∞

∞

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑎𝑛𝑘
󵄨󵄨󵄨󵄨 𝜒𝐸 (𝑘) + (𝑏 + 𝜀)

∞

∑

𝑘=1

𝑎
+

𝑛𝑘
𝜒
𝐹 (𝑘)

+
1

2
‖𝑠‖∞

∞

∑

𝑘=1

(
󵄨󵄨󵄨󵄨𝑎𝑛𝑘
󵄨󵄨󵄨󵄨 − 𝑎𝑛𝑘)

= ‖𝑠‖∞

∞

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑎𝑛𝑘
󵄨󵄨󵄨󵄨 𝜒𝐸 (𝑘) +

1

2
‖𝑠‖∞

∞

∑

𝑘=1

(
󵄨󵄨󵄨󵄨𝑎𝑛𝑘
󵄨󵄨󵄨󵄨 − 𝑎𝑛𝑘)

+
𝑏 + 𝜀

2
(

∞

∑

𝑘=1

(
󵄨󵄨󵄨󵄨𝑎𝑛𝑘
󵄨󵄨󵄨󵄨 + 𝑎𝑛𝑘) (1 − 𝜒𝐸 (𝑘))) .

(52)
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Because of 𝐸 ∈ 𝐽 and the assumptions (48) and (49) the 𝐼-
limit of the right-hand side of the above inequality is equal to
𝑏 + 𝜀. Together with the obvious monotonicity of 𝐼-lim sup it
follows that 𝐼-lim sup𝐴𝑠 ≤ 𝑏 + 𝜀. Since 𝜀 > 0 was arbitrary,
the proof is finished.

The second statement follows from the first one by
multiplication with −1.

It was also proved in [22] that a sequence of real numbers
which is bounded above and Cesàro-summable to its statisti-
cal limit superior is statistically convergent (cf. [22, Theorem
5]). It is possible to modify the proof of [22] to obtain the
followingmore general result. We use the same notation as in
the previous section.

Theorem 15. Suppose that each 𝐵
𝑖
is nonnegative, ∑∞

𝑘=1
𝑏
(𝑖)

𝑛𝑘
<

∞ for all 𝑛 ∈ N, 𝑖 ∈ 𝑆, and

𝐼-lim
∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
= 1 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑖𝑛 𝑖 ∈ 𝑆. (53)

If 𝑠 = (𝑠
𝑛
)
𝑛∈N is a bounded sequence of real numbers and 𝑎 ∈ R

such that 𝑠 isB𝐼-summable to 𝑎 and 𝐽B,𝐼
-lim sup 𝑠 = 𝑎 or 𝐽B,𝐼

-
lim inf 𝑠 = 𝑎, then 𝑠 isB𝐼-statistically convergent to 𝑎.

Proof. It is enough to prove the statement for the case 𝐽B,𝐼
-

lim sup 𝑠 = 𝑎. Suppose that 𝑠 is not 𝐵𝐼-statistically convergent
to 𝑎. Then 𝐽B,𝐼

-lim inf 𝑠 < 𝑎 and hence there must be some
𝑡 < 𝑎 such that 𝐸 := {𝑛 ∈ N : 𝑠

𝑛
< 𝑡} ∉ 𝐽B,𝐼

. Consequently,
there exists a 𝑑 > 0 such that

𝐴 := {𝑛 ∈ N : sup
𝑖∈𝑆

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝜒
𝐸 (𝑘) ≥ 𝑑} ∉ 𝐼. (54)

Fix an arbitrary 𝜀 > 0 and put 𝐹 := {𝑛 ∈ N : 𝑡 ≤ 𝑠
𝑛
≤ 𝑎 + 𝜀}

and𝐺 := {𝑛 ∈ N : 𝑠
𝑛
> 𝑎+𝜀}. Take 𝛿 ∈ (0, 𝜀)with 𝛿|𝑎+ 𝜀| ≤ 𝜀.

By our assumption (53) we have

𝐶 := {𝑛 ∈ N : sup
𝑖∈𝑆

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≥ 𝛿} ∈ 𝐼. (55)

It follows from [21, Theorem 1] that 𝐺 ∈ 𝐽B,𝐼
and hence

𝐷 := {𝑛 ∈ N : sup
𝑖∈𝑆

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝜒
𝐺 (𝑘) ≥ 𝛿} ∈ 𝐼. (56)

Now let 𝑛 ∈ 𝐻 := 𝐴∩ (N \ (𝐶 ∪𝐷)) be arbitrary. Since 𝑛 ∈ 𝐴,
there is some 𝑖 ∈ 𝑆 such that ∑∞

𝑘=1
𝑏
(𝑖)

𝑛𝑘
𝜒
𝐸
(𝑘) > 𝑑/2. Write

𝑀 = ‖𝑠‖
∞
. It then follows from the definitions of the sets

𝐸, 𝐹, 𝐺, 𝐶, and𝐷 and the choice of 𝛿 that
∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝑠
𝑘
=

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝑠
𝑘
𝜒
𝐸 (𝑘)

+

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝑠
𝑘
𝜒
𝐹 (𝑘) +

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝑠
𝑘
𝜒
𝐺 (𝑘)

≤ 𝑡

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝜒
𝐸 (𝑘)

+ (𝑎 + 𝜀)

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝜒
𝐹 (𝑘) + 𝑀𝛿

= 𝑡

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝜒
𝐸 (𝑘) + 𝑀𝛿

+ (𝑎 + 𝜀)

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
(1 − 𝜒

𝐸 (𝑘) − 𝜒𝐺 (𝑘))

≤ 𝑡

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝜒
𝐸 (𝑘) + 𝑀𝛿

+ (𝑎 + 𝜀)(1 −

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝜒
𝐸 (𝑘))

+ |𝑎 + 𝜀| (

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝜒
𝐺 (𝑘) +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

)

≤ 𝑎 + 𝜀 +𝑀𝜀 + (𝑡 − 𝑎 − 𝜀)

×

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝜒
𝐸 (𝑘) + 2 |𝑎 + 𝜀| 𝛿

< 𝑎 + 𝜀 (𝑀 + 3) + (𝑡 − 𝑎 − 𝜀)
𝑑

2
.

(57)

Thus we have

sup
𝑖∈𝑆

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎 −

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝑠
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

>
𝑑

2
(𝑎 + 𝜀 − 𝑡) − 𝜀 (𝑀 + 3) ∀𝑛 ∈ 𝐻.

(58)

Suppose that

ℎ := 𝐼-lim sup sup
𝑖∈𝑆

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎 −

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝑠
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

<
𝑑

2
(𝑎 + 𝜀 − 𝑡) − 𝜀 (𝑀 + 3) .

(59)

Then it would follow that𝐻 ∈ 𝐼. But 𝐶,𝐷 ∈ 𝐼 and hence

𝐴 = 𝐻 ∪ (𝐶 ∩ 𝐴) ∪ (𝐷 ∩ 𝐴) ∈ 𝐼, (60)

contradicting (54).
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Thus ℎ ≥ (𝑑/2)(𝑎 + 𝜀 − 𝑡) − 𝜀(𝑀 + 3) and since 𝜀 > 0
was arbitrary, we get ℎ ≥ (𝑎 − 𝑡)𝑑/2 > 0 and hence 𝑠 is not
𝐵
𝐼-summable to 𝑎.

We conclude this section with a lemma that will be
needed later and may also be of independent interest. First
we need one more definition: a number sequence (𝑠

𝑛
)
𝑛∈N is

called 𝐼-bounded if there is a constant 𝐾 > 0 such that
{𝑛 ∈ N : |𝑠

𝑛
| > 𝐾} ∈ 𝐼. Note that 𝐼-convergent sequences

are 𝐼-bounded and that the 𝐼-boundedness of (𝑠
𝑛
)
𝑛∈N implies

that 𝐼-lim sup 𝑠
𝑛
and 𝐼-lim inf 𝑠

𝑛
are finite.

Lemma 16. For any ideal 𝐼 on N and all 𝐼-bounded sequences
(𝑠

𝑛
)
𝑛∈N and (𝑡

𝑛
)
𝑛∈N in R the inequalities

𝐼-lim sup (𝑠
𝑛
+ 𝑡

𝑛
) ≤ 𝐼-lim sup 𝑠

𝑛
+ 𝐼-lim sup 𝑡

𝑛
,

𝐼-lim sup (𝑠
𝑛
+ 𝑡

𝑛
) ≥ 𝐼-lim sup 𝑠

𝑛
+ 𝐼-lim sup 𝑡

𝑛

(61)

hold. If one of the sequences is 𝐼-convergent, then equality holds.

Proof. It is enough to prove the statement for the 𝐼-lim sup.
Let 𝑎 = 𝐼-lim sup 𝑠

𝑛
and 𝑏 = 𝐼-limsup𝑡

𝑛
. If 𝑢, V ∈ R such

that 𝑢 > 𝑎 and V > 𝑏 then 𝐴 := {𝑛 ∈ N : 𝑠
𝑛
> 𝑢} ∈ 𝐼 and

𝐵 := {𝑛 ∈ N : 𝑡
𝑛
> V} ∈ 𝐼. Hence 𝐴 ∪ 𝐵 ∈ 𝐼. But

𝐶 := {𝑛 ∈ N : 𝑠
𝑛
+ 𝑡

𝑛
> 𝑢 + V} ⊆ 𝐴 ∪ 𝐵, (62)

and thus 𝐶 ∈ 𝐼.
If 𝐼-lim sup(𝑠

𝑛
+ 𝑡

𝑛
) > 𝑢 + V, then there would be some

𝜂 > 𝑢 + V such that {𝑛 ∈ N : 𝑠
𝑛
+ 𝑡

𝑛
> 𝜂} ∉ 𝐼, which

would imply 𝐶 ∉ 𝐼. Thus we must have 𝐼-lim sup(𝑠
𝑛
+ 𝑡

𝑛
) ≤

𝑢 + V. Since 𝑢 > 𝑎 and V > 𝑏 were arbitrary, it follows that
𝐼-lim sup(𝑠

𝑛
+ 𝑡

𝑛
) ≤ 𝑎 + 𝑏.

Now suppose that (𝑠
𝑛
)
𝑛∈N is 𝐼-convergent to 𝑎 and fix an

arbitrary 𝜀 > 0. Put 𝐷 := {𝑛 ∈ N : 𝑠
𝑛
+ 𝑡

𝑛
> 𝑎 + 𝑏 − 𝜀},

𝐸 := {𝑛 ∈ N : 𝑠
𝑛
> 𝑎 − 𝜀/2}, and 𝐹 := {𝑛 ∈ N : 𝑡

𝑛
> 𝑏 − 𝜀/2}.

By [21, Theorem 1] 𝐹 ∉ 𝐼 and because of 𝐼-lim𝑠
𝑛
= 𝑎 we

have N \ 𝐸 ∈ 𝐼, that is, 𝐸 ∈ F(𝐼).
If 𝐸 ∩ 𝐹 ∈ 𝐼, then (N \ 𝐸) ∪ (N \ 𝐹) ∈ F(𝐼) and hence

(N\𝐹)∩𝐸 = ((N\𝐸)∪(N\𝐹))∩𝐸 ∈ F(𝐼); thusN\𝐹 ∈ F(𝐼),
contradicting the fact that 𝐹 ∉ 𝐼.

So we must have 𝐸∩𝐹 ∉ 𝐼 and since 𝐸∩𝐹 ⊆ 𝐷, it follows
that𝐷 ∉ 𝐼, which implies 𝐼-lim sup(𝑠

𝑛
+𝑡

𝑛
) ≥ 𝑎+𝑏−𝜀. Letting

𝜀 → 0 completes the proof.

4. Cluster Points

Fridy [23] defined and studied statistical cluster points and
statistical limit points of a sequence.These conceptswere later
generalised by the authors of [1] to an arbitrary admissible
ideal 𝐼. Consider a sequence (𝑥

𝑛
)
𝑛∈N in a metric space (𝑋, 𝑑).

An element 𝑥 ∈ 𝑋 is called an 𝐼-cluster point of (𝑥
𝑛
)
𝑛∈N if

{𝑛 ∈ N : 𝑑(𝑥
𝑛
, 𝑥) < 𝜀} ∉ 𝐼 for every 𝜀 > 0 and it is called

an 𝐼-limit point of (𝑥
𝑛
)
𝑛∈N if there is a subsequence (𝑥

𝑛𝑘
)
𝑘∈N

with {𝑛
𝑘
: 𝑘 ∈ N} ∉ 𝐼 that converges to 𝑥. For 𝐼 = 𝐼

𝑓
, both

notions are equivalent to the usual notion of cluster points.
Every 𝐼-limit point is also an 𝐼-cluster point of (𝑥

𝑛
)
𝑛∈N (cf.

[1, Proposition 4.1]) but the converse is not true in general.
It was shown in [3, Theorem 3.5] that a bounded sequence

(𝑠
𝑛
)
𝑛∈N inR always possesses an 𝐼-cluster point and that the 𝐼-

lim sup and the 𝐼-lim inf of the sequence are the greatest and
the smallest of them, respectively. It is easily observed that the
same proof still works if the sequence is only 𝐼-bounded.

Concerning 𝐽B,𝐼
-cluster points, we can give the following

characterisation.

Proposition 17. Suppose that sup
𝑛∈N,𝑖∈𝑆

∑
∞

𝑘=1
𝑏
(𝑖)

𝑛𝑘
< ∞ and

𝐼-lim
∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
= 1 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑖𝑛 𝑖 ∈ 𝑆. (63)

Then 𝑎 is a 𝐽B,𝐼
-cluster point of 𝑠 = (𝑠

𝑛
)
𝑛∈N if and only if for

every 𝜀 > 0

𝐼-lim inf inf
𝑖∈𝑆

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝜒
𝐷(𝑠,𝑎,𝜀) (𝑘) < 1. (64)

Proof. Put𝐴
𝜀
= 𝐷(𝑠, 𝑎, 𝜀) and 𝐵

𝜀
= N \𝐴

𝜀
for every 𝜀 > 0. By

definition, 𝑎 is a 𝐽B,𝐼
-cluster point of 𝑠 if and only if 𝐵

𝜀
∉ 𝐽B,𝐼

for every 𝜀 > 0 which is the case if and only if

𝐼-lim sup sup
𝑖∈𝑆

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝜒
𝐵𝜀
(𝑘) > 0. (65)

But ∑∞

𝑘=1
𝑏
(𝑖)

𝑛𝑘
𝜒
𝐵𝜀
(𝑘) = ∑

∞

𝑘=1
𝑏
(𝑖)

𝑛𝑘
− ∑

∞

𝑘=1
𝑏
(𝑖)

𝑛𝑘
𝜒
𝐴𝜀
(𝑘), so because

of (63) and Lemma 16 it follows that 𝑎 is a 𝐽B,𝐼
-cluster point

of 𝑠 if and only if

𝐼-lim sup sup
𝑖∈𝑆

(1 −

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝜒
𝐴𝜀
(𝑘)) > 0

⇐⇒ 1 − 𝐼-lim inf inf
𝑖∈𝑆

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝜒
𝐴𝜀
(𝑘) > 0

(66)

and the proof is finished.

This characterisation yields the following sufficient con-
dition for a 𝐽B,𝐼

-cluster point.

Corollary 18. Under the same assumptions as in the previous
proposition, ifF = (𝐹(𝑖)

𝑘
)
𝑘∈N,𝑖∈𝑆

is a family inM ∪ O such that

𝐿 (𝑡) := inf {𝐹(𝑖)
𝑘
(𝑡) : 𝑘 ∈ N, 𝑖 ∈ 𝑆} > 0 ∀𝑡 > 0,

𝐼-lim inf inf
𝑖∈𝑆

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝐹

(𝑖)

𝑘
(
󵄨󵄨󵄨󵄨𝑠𝑘 − 𝑎

󵄨󵄨󵄨󵄨) = 0,

(67)

then 𝑎 is a 𝐽B,𝐼
-cluster point of 𝑠.

Proof. For every 𝜀 > 0 and all 𝑖 ∈ 𝑆, 𝑛 ∈ N we have
∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝐹

(𝑖)

𝑘
(
󵄨󵄨󵄨󵄨𝑠𝑘 − 𝑎

󵄨󵄨󵄨󵄨)

≥

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝐹

(𝑖)

𝑘
(
󵄨󵄨󵄨󵄨𝑠𝑘 − 𝑎

󵄨󵄨󵄨󵄨) 𝜒𝐷(𝑠,𝑎,𝜀) (𝑘)

≥ 𝐿 (𝜀)

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝜒
𝐷(𝑠,𝑎,𝜀) (𝑘)

(68)
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and thus it follows from the assumptions that

𝐼-lim inf inf
𝑖∈𝑆

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝜒
𝐷(𝑠,𝑎,𝜀) (𝑘) = 0 < 1 ∀𝜀 > 0. (69)

Hence by the previous proposition, 𝑎 is a 𝐽B,𝐼
-cluster point of

𝑠.

5. Pre-Cauchy Sequences

The authors of [24] introduced the notion of statistically
pre-Cauchy sequences. The sequence 𝑠 = (𝑠

𝑘
)
𝑘∈N is called

a statistically pre-Cauchy sequence if lim
𝑛→∞

1/𝑛
2
|{(𝑖, 𝑗) ∈

{1, . . . , 𝑛}
2
: |𝑠

𝑖
− 𝑠

𝑗
| ≥ 𝜀}| = 0 for every 𝜀 > 0. They show

that a statistically convergent sequence is statistically pre-
Cauchy and that the converse is not true in general but under
certain additional assumptions. It is further proved that 𝑠 is
statistically pre-Cauchy if

lim
𝑛→∞

1

𝑛2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑠
𝑖
− 𝑠

𝑗

󵄨󵄨󵄨󵄨󵄨
= 0 (70)

and that the converse is true if 𝑠 is bounded (cf. [24,Theorem
3]).

We propose the following generalisation of the definition
of statistically pre-Cauchy sequences to our setting.

Definition 19. If each𝐵
𝑖
is nonnegative, a sequence 𝑠 = (𝑠

𝑘
)
𝑘∈N

of real or complex numbers is called a B𝐼-statistically pre-
Cauchy sequence if for every 𝜀 > 0

𝐼-lim
∞

∑

𝑘=1

∞

∑

𝑙=1

𝑏
(𝑖)

𝑛𝑘
𝑏
(𝑖)

𝑛𝑙
𝜒
𝐷(𝑠,𝜀) (𝑘, 𝑙) = 0 uniformly in 𝑖 ∈ 𝑆, (71)

where𝐷(𝑠, 𝜀) := {(𝑘, 𝑙) ∈ N2
: |𝑠

𝑘
− 𝑠

𝑙
| ≥ 𝜀}.

First we show that, under an additional assumption on
B,B𝐼-statistically convergent sequences areB𝐼-statistically
pre-Cauchy.

Lemma 20. Suppose that 𝑠 isB𝐼-statistically convergent and

∃𝐴 ∈ 𝐼𝑀 := sup{
∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
: 𝑛 ∈ N \ 𝐴, 𝑖 ∈ 𝑆} < ∞. (72)

Then 𝑠 is aB𝐼-statistically pre-Cauchy sequence.

Proof. Say 𝑠 isB𝐼-statistically convergent to 𝑎. For every 𝜀 > 0
and all 𝑛 ∈ N \ 𝐴 we have
∞

∑

𝑘=1

∞

∑

𝑙=1

𝑏
(𝑖)

𝑛𝑘
𝑏
(𝑖)

𝑛𝑙
𝜒
𝐷(𝑠,𝜀) (𝑘, 𝑙)

≤

∞

∑

𝑘=1

∞

∑

𝑙=1

𝑏
(𝑖)

𝑛𝑘
𝑏
(𝑖)

𝑛𝑙
(𝜒

𝐷(𝑠,𝑎,𝜀/2) (𝑘) + 𝜒𝐷(𝑠,𝑎,𝜀/2) (𝑙))

≤ 2𝑀

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝜒
𝐷(𝑠,𝑎,𝜀/2) (𝑘) 󳨀→ 0 along 𝐼 uniformly in 𝑖 ∈ 𝑆.

(73)

The next two propositions are the analogues of [24,
Theorem 3]. Since their proofs parallel very much those of
Proposition 3 and Proposition 4, respectively, they will be
omitted. In the formulation of both propositions, we differ
from our usual notation and allow F = (𝐹

(𝑖)

𝑘𝑙
)
𝑘,𝑙∈N,𝑖∈𝑆

to be a
family inM ∪ O with index set N × N × 𝑆 instead of N × 𝑆.

Proposition 21. Suppose that

𝐼-lim
∞

∑

𝑘=1

∞

∑

𝑙=1

𝑏
(𝑖)

𝑛𝑘
𝑏
(𝑖)

𝑛𝑙
𝐹

(𝑖)

𝑘𝑙
(
󵄨󵄨󵄨󵄨𝑠𝑘 − 𝑠𝑙

󵄨󵄨󵄨󵄨) = 0 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑖𝑛 𝑖 ∈ 𝑆,

𝐿 (𝑡) := inf {𝐹(𝑖)
𝑘𝑙
(𝑡) : 𝑘, 𝑙 ∈ N, 𝑖 ∈ 𝑆} > 0 ∀𝑡 > 0.

(74)

Then 𝑠 isB𝐼-statistically pre-Cauchy.

Proposition 22. Suppose that 𝑠 is bounded and B𝐼-statis-
tically pre-Cauchy. IfF is equicontinuous at 0 and

∃𝐴 ∈ 𝐼𝑀 := sup{
∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
: 𝑛 ∈ N \ 𝐴, 𝑖 ∈ 𝑆} < ∞, (75)

as well as

ℎ (𝑡) := sup {𝐹(𝑖)
𝑘𝑙
(𝑡) : 𝑘, 𝑙 ∈ N, 𝑖 ∈ 𝑆} < ∞ ∀𝑡 ≥ 0, (76)

then we also have

𝐼-lim
∞

∑

𝑘=1

∞

∑

𝑙=1

𝑏
(𝑖)

𝑛𝑘
𝑏
(𝑖)

𝑛𝑙
𝐹

(𝑖)

𝑘𝑙
(
󵄨󵄨󵄨󵄨𝑠𝑘 − 𝑠𝑙

󵄨󵄨󵄨󵄨) = 0 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑖𝑛 𝑖 ∈ 𝑆.

(77)

It was proved in [24] that a statistically pre-Cauchy seq-
uence (𝑠

𝑛
)
𝑛∈N which possesses a convergent subsequence

(𝑠
𝑛𝑘
)
𝑘∈N such that the set of indices {𝑛

𝑘
: 𝑘 ∈ N} is “large”

in the sense that

lim inf
𝑛→∞

1

𝑛

󵄨󵄨󵄨󵄨{𝑛𝑘 : 𝑘 ∈ N, 𝑛𝑘 ≤ 𝑛}
󵄨󵄨󵄨󵄨 > 0

(78)

is statistically convergent.This result can be generalised in the
following way.

Theorem 23. Suppose that 𝐼 ⊆ 𝐽B,𝐼
and

sup{
∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
: 𝑛 ∈ N, 𝑖 ∈ 𝑆} < ∞. (79)

Let 𝑎 be any real or complex number. Let 𝑠 = (𝑠
𝑛
)
𝑛∈N be aB𝐼-

statistically pre-Cauchy sequence and let𝑊 ⊆ N be such that
for every 𝜀 > 0 the set {𝑛 ∈ 𝑊 : |𝑠

𝑛
− 𝑎| ≥ 𝜀} belongs to 𝐼 and

furthermore

𝑤 := 𝐼-lim inf inf
𝑖∈𝑆

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝜒
𝑊 (𝑘) > 0. (80)

Then 𝑠 isB𝐼-statistically convergent to 𝑎.
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Proof. Take 𝜀, 𝛿 > 0 arbitrary. Then 𝑉 := {𝑘 ∈ 𝑊 : |𝑠
𝑘
− 𝑎| ≥

𝜀/2} ∈ 𝐼, by assumption. Put 𝐴 := {𝑘 ∈ 𝑊 : |𝑠
𝑘
− 𝑎| < 𝜀/2},

𝐵 := {𝑘 ∈ N : |𝑠
𝑘
− 𝑎| ≥ 𝜀}, and 𝐶 := {(𝑘, 𝑙) ∈ N2

: |𝑠
𝑘
− 𝑠

𝑙
| ≥

𝜀/2}. Then 𝐴 × 𝐵 ⊆ 𝐶.
Let us also fix 𝜏 ∈ (0, 𝑤) such that 𝜏(𝑤 − 𝜏)−1 ≤ 𝛿. Since 𝑠

isB𝐼-statistically pre-Cauchy, there is some 𝐸 ∈ 𝐼 such that

{𝑛 ∈ N :
∞

∑

𝑘=1

∞

∑

𝑙=1

𝑏
(𝑖)

𝑛𝑘
𝑏
(𝑖)

𝑛𝑙
𝜒
𝐶 (𝑘, 𝑙) ≥ 𝜏} ⊆ 𝐸 ∀𝑖 ∈ 𝑆. (81)

But we have
∞

∑

𝑘=1

∞

∑

𝑙=1

𝑏
(𝑖)

𝑛𝑘
𝑏
(𝑖)

𝑛𝑙
𝜒
𝐶 (𝑘, 𝑙)

≥ (

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝜒
𝐴 (𝑘))(

∞

∑

𝑙=1

𝑏
(𝑖)

𝑛𝑙
𝜒
𝐵 (𝑙))

(82)

and thus

{𝑛 ∈ N : (
∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝜒
𝐴 (𝑘))(

∞

∑

𝑙=1

𝑏
(𝑖)

𝑛𝑙
𝜒
𝐵 (𝑙)) ≥ 𝜏} ⊆ 𝐸 ∀𝑖 ∈ 𝑆.

(83)

Since 𝑉 ∈ 𝐼 ⊆ 𝐽B,𝐼
, it follows that

𝐼-lim sup
𝑖∈𝑆

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝜒
𝑉 (𝑘) = 0. (84)

Because of Lemma 16 this implies

𝑤 = 𝐼-lim inf inf
𝑖∈𝑆

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
(𝜒

𝐴 (𝑘) + 𝜒𝑉 (𝑘))

≤ 𝐼-lim inf (inf
𝑖∈𝑆

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝜒
𝐴 (𝑘) + sup

𝑖∈𝑆

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝜒
𝑉 (𝑘))

= 𝐼-lim inf inf
𝑖∈𝑆

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝜒
𝐴 (𝑘) =: 𝑟.

(85)

By [21, Theorem 2] we have

𝐹 := {𝑛 ∈ N : inf
𝑖∈𝑆

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝜒
𝐴
(𝑘) < 𝑟 − 𝜏} ∈ 𝐼. (86)

If 𝑛 ∈ N \ (𝐸 ∪ 𝐹), then ∑∞

𝑘=1
𝑏
(𝑖)

𝑛𝑘
𝜒
𝐵
(𝑘) < 𝜏(𝑟 − 𝜏)

−1
≤ 𝜏(𝑤 −

𝜏)
−1
≤ 𝛿 for every 𝑖 ∈ 𝑆.
Thus 𝐸 ∪ 𝐹 ∈ 𝐼 with

{𝑛 ∈ N :
∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝜒
𝐵 (𝑘) ≥ 𝛿} ⊆ 𝐸 ∪ 𝐹 ∀𝑖 ∈ 𝑆 (87)

and the proof is finished.

By [24, Theorem 5] a bounded statistically pre-Cauchy
sequence in R whose set of cluster points is nowhere dense
is statistically convergent. To obtain an analogous result in
our setting, we introduce the following strengthening of the
notion ofB𝐼-statistically pre-Cauchy sequences.

Definition 24. If each 𝐵
𝑖
is nonnegative, a sequence 𝑠 =

(𝑠
𝑘
)
𝑘∈N of real or complex numbers is called aB𝐼

+
-statistically

pre-Cauchy sequence if for every 𝜀 > 0

𝐼-lim
∞

∑

𝑘=1

∞

∑

𝑙=1

𝑏
(𝑖)

𝑛𝑘
𝑏
(𝑗)

𝑛𝑙
𝜒
𝐷(𝑠,𝜀) (𝑘, 𝑙) = 0 uniformly in 𝑖, 𝑗 ∈ 𝑆.

(88)

For B𝐼

+
-statistically pre-Cauchy sequences, Lemma 20,

Proposition 21, and Proposition 22 hold accordingly (with
the obvious modifications, one can even take a family F =

(𝐹
(𝑖,𝑗)

𝑘𝑙
)
𝑘,𝑙∈N,𝑖,𝑗∈𝑆

inM ∪O with index set N2
× 𝑆

2 in this case).
The next lemma generalises [24, Lemma 4] while its proof

follows the same lines.

Lemma 25. Let 𝐼 be an admissible ideal. Suppose that
∑

∞

𝑘=1
𝑏
(𝑖)

𝑛𝑘
< ∞ for all 𝑛 ∈ N, 𝑖 ∈ 𝑆 and

∃𝐴 ∈ 𝐼 𝑀 := sup{
∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
: 𝑛 ∈ N \ 𝐴, 𝑖 ∈ 𝑆} < ∞, (89)

𝐼-lim
∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
= 1 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑖𝑛 𝑖 ∈ 𝑆. (90)

LetW be a basis forF(𝐼) such that for every {𝑛
1
< 𝑛

2
⋅ ⋅ ⋅ 𝑛

𝑘
<

𝑛
𝑘+1
⋅ ⋅ ⋅ } ∈W the following holds:

∃𝑘
0
∈ N, ∀𝑘 ≥ 𝑘

0
inf
𝑖∈𝑆

∞

∑

𝑙=1

󵄨󵄨󵄨󵄨󵄨
𝑏
(𝑖)

𝑛𝑘𝑙
− 𝑏

(𝑖)

𝑛𝑘+1𝑙

󵄨󵄨󵄨󵄨󵄨
<
1

3
. (91)

Let 𝑠 = (𝑠
𝑛
)
𝑛∈N be aB𝐼

+
-statistically pre-Cauchy sequence inR

and 𝛼 < 𝛽 such that𝐻 := {𝑛 ∈ N : 𝑠
𝑛
∈ (𝛼, 𝛽)} ∈ 𝐽B,𝐼

.
Then 𝑋 := {𝑛 ∈ N : 𝑠

𝑛
≤ 𝛼} ∈ 𝐽B,𝐼

or 𝑌 := {𝑛 ∈ N : 𝑠
𝑛
≥

𝛽} ∈ 𝐽B,𝐼
.

Proof. Let us put 𝑡
𝑛
= 𝑠

𝑛
if 𝑛 ∉ 𝐻 and 𝑡

𝑛
= 𝛼 if 𝑛 ∈ 𝐻.

Since𝐻 ∈ 𝐽B,𝐼
, it is not difficult to see that 𝑡 = (𝑡

𝑛
)
𝑛∈N is also

B𝐼

+
-statistically pre-Cauchy. Put 𝑃 := {𝑛 ∈ N : 𝑡

𝑛
≤ 𝛼} and

𝑄 := {𝑛 ∈ N : 𝑡
𝑛
≥ 𝛽}. Then 𝑋 ⊆ 𝑃 ∪ 𝐻 and 𝑌 ⊆ 𝑄 ∪ 𝐻;

thus it suffices to show 𝑃 ∈ 𝐽B,𝐼
or 𝑄 ∈ 𝐽B,𝐼

. Note also that
𝑡
𝑛
∉ (𝛼, 𝛽) for all 𝑛 ∈ N and hence 𝑄 = N \ 𝑃.
For the sake of brevity, we define for 𝑛 ∈ N and 𝑖 ∈ 𝑆

𝐷
𝑛𝑖 (𝐾) :=

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝜒
𝐴 (𝑘) ∀𝐾 ⊆ N. (92)

We claim that

𝐼-lim𝐷
𝑛𝑖 (𝑃) (1 − 𝐷𝑛𝑗 (𝑃)) = 0 uniformly in 𝑖, 𝑗 ∈ 𝑆. (93)

To see this, fix an arbitrary 𝜀 > 0 and note that 𝑃 × 𝑄 ⊆
𝐷(𝑡, 𝛽 − 𝛼). So, since 𝑡 isB𝐼

+
-statistically pre-Cauchy, there is

some 𝐸 ∈ 𝐼 such that

{𝑛 ∈ N : 𝐷
𝑛𝑖 (𝑃)𝐷𝑛𝑗 (𝑄) ≥

𝜀

2
} ⊆ 𝐸 ∀𝑖, 𝑗 ∈ 𝑆. (94)

By (90) there exists 𝐹 ∈ 𝐼 such that

{𝑛 ∈ N :
󵄨󵄨󵄨󵄨𝐷𝑛𝑖 (N) − 1

󵄨󵄨󵄨󵄨 ≥
𝜀

2𝑀
} ⊆ 𝐹 ∀𝑖 ∈ 𝑆. (95)
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Because of (89) and 𝐷
𝑛𝑖
(𝑄) = 𝐷

𝑛𝑖
(N) − 𝐷

𝑛𝑖
(𝑃) this easily

implies

{𝑛 ∈ N :
󵄨󵄨󵄨󵄨󵄨
𝐷

𝑛𝑖 (𝑃) (1 − 𝐷𝑛𝑗 (𝑃))
󵄨󵄨󵄨󵄨󵄨
≥ 𝜀} ⊆ 𝐸 ∪ 𝐹 ∪ 𝐴 ∀𝑖, 𝑗 ∈ 𝑆,

(96)

proving our claim. In particular, we can find 𝐶 ∈W with

󵄨󵄨󵄨󵄨󵄨
𝐷

𝑛𝑖 (𝑃) (1 − 𝐷𝑛𝑗 (𝑃))
󵄨󵄨󵄨󵄨󵄨
<
1

9
∀𝑛 ∈ 𝐶, ∀𝑖, 𝑗 ∈ 𝑆. (97)

Then for every 𝑛 ∈ 𝐶 we must have

sup
𝑖∈𝑆

𝐷
𝑛𝑖 (𝑃) ≤

1

3
or inf

𝑗∈𝑆

𝐷
𝑛𝑗 (𝑃) ≥

2

3
. (98)

Write𝐶 = {𝑛
1
< 𝑛

2
⋅ ⋅ ⋅ 𝑛

𝑘
< 𝑛

𝑘+1
⋅ ⋅ ⋅ } and choose 𝑘

0
according

to (91). Suppose first that sup
𝑖∈𝑆
𝐷

𝑛𝑘0
𝑖
(𝑃) ≤ 1/3.Then the same

must hold for every 𝑘 > 𝑘
0
; for elsewise we could find a

minimal 𝑘 > 𝑘
0
with inf

𝑖∈𝑆
𝐷

𝑛𝑘𝑖
(𝑃) ≥ 2/3 which would imply

∞

∑

𝑙=1

󵄨󵄨󵄨󵄨󵄨
𝑏
(𝑖)

𝑛𝑘𝑙
− 𝑏

(𝑖)

𝑛𝑘−1𝑙

󵄨󵄨󵄨󵄨󵄨
≥ 𝐷

𝑛𝑘𝑖
(𝑃) − 𝐷𝑛𝑘−1𝑖

(𝑃) ≥
2

3
−
1

3
=
1

3
(99)

for all 𝑖 ∈ 𝑆, contradicting the choice of 𝑘
0
.

So we have𝐷
𝑛𝑘𝑖
(𝑃) ≤ 1/3 for all 𝑘 ≥ 𝑘

0
and all 𝑖 ∈ 𝑆. Now

fix again an arbitrary 𝜀 > 0. By (93) there is 𝐺 ∈ 𝐼 such that

{𝑛 ∈ N :
󵄨󵄨󵄨󵄨󵄨
𝐷

𝑛𝑖 (𝑃) (1 − 𝐷𝑛𝑗 (𝑃))
󵄨󵄨󵄨󵄨󵄨
≥
2

3
𝜀} ⊆ 𝐺 ∀𝑖, 𝑗 ∈ 𝑆.

(100)

Since 𝐼 is admissible, 𝑅 := 𝐺 ∪ (N \ {𝑛
𝑘
: 𝑘 ≥ 𝑘

0
}) is again an

element of 𝐼 and we have

{𝑛 ∈ N : 𝐷
𝑛𝑖 (𝑃) ≥ 𝜀} ⊆ 𝑅 ∀𝑖 ∈ 𝑆. (101)

Thus we have shown that 𝐷
𝑛𝑖
(𝑃) converges along 𝐼 to zero

uniformly in 𝑖 ∈ 𝑆, which means exactly that 𝑃 ∈ 𝐽B,𝐼
.

In the second case, inf
𝑖∈𝑆
𝐷

𝑛𝑘0
𝑖
(𝑃) ≥ 2/3, one can show

analogously that 𝑄 ∈ 𝐽B,𝐼
.

Note that if 𝐼 = 𝐼
𝑓
and inf

𝑖∈𝑆
∑

∞

𝑙=1
|𝑏

(𝑖)

𝑛𝑙
−𝑏

(𝑖)

𝑛+1𝑙
| < 1/3 for all

but finitely many 𝑛 ∈ N, then we can takeW = {{𝑛 ∈ N : 𝑛 ≥
𝑚} : 𝑚 ∈ N} and condition (91) is satisfied. For the Cesàro
matrix 𝐶 we even have lim

𝑛→∞
∑

∞

𝑙=1
|𝑐
𝑛𝑙
− 𝑐

𝑛+1𝑙
| = 0.

As in [24], we can now use the above lemma to obtain a
sufficient condition forB𝐼-statistical convergence.

Theorem 26. Under the same general hypotheses as in the
previous lemma, if 𝑠 = (𝑠

𝑛
)
𝑛∈N is a 𝐽B,𝐼

-bounded B𝐼

+
-statis-

tically pre-Cauchy sequence inR such that the set𝑍 of all 𝐽B,𝐼
-

cluster points of 𝑠 is nowhere dense (note that 𝑍 is closed (cf.
[1, Theorem 4.1(i)]), so “𝑍 nowhere dense” just means that 𝑍
has empty interior) in R, then 𝑠 isB𝐼-statistically convergent.

Proof. Suppose that 𝑠 is 𝐽B,𝐼
-bounded and B𝐼

+
-statistically

pre-Cauchy but notB𝐼-statistically convergent.
As mentioned before, the 𝐽B,𝐼

-boundedness assures that
there is some 𝑎 ∈ 𝑍. Since 𝑠 is notB𝐼-statistically convergent

there is an 𝜀 > 0 such that {𝑛 ∈ N : 𝑠
𝑛
≤ 𝑎 − 𝜀} ∉ 𝐽B,𝐼

or
{𝑛 ∈ N : 𝑠

𝑛
≥ 𝑎 + 𝜀} ∉ 𝐽B,𝐼

. Without loss of generality, we
assume the former.

As in [24], we will show that (𝑎 − 𝜀, 𝑎) ⊆ 𝑍. If not, there
would be an open interval (𝛼, 𝛽) ⊆ (𝑎 − 𝜀, 𝑎) such that {𝑛 ∈
N : 𝑠

𝑛
∈ (𝛼, 𝛽)} ∈ 𝐽B,𝐼

.
It follows from Lemma 25 that 𝑋 = {𝑛 ∈ N : 𝑠

𝑛
≤ 𝛼} ∈

𝐽B,𝐼
or 𝑌 := {𝑛 ∈ N : 𝑠

𝑛
≥ 𝛽} ∈ 𝐽B,𝐼

.
Since 𝑋 ⊇ {𝑛 ∈ N : 𝑠

𝑛
≤ 𝑎 − 𝜀} ∉ 𝐽B,𝐼

, we would have
𝑌 ∈ 𝐽B,𝐼

. But we can find 𝛿 > 0 with 𝛽 < 𝑎−𝛿 and because of
𝑎 ∈ 𝑍 the set {𝑛 ∈ N : 𝑠

𝑛
> 𝑎−𝛿} cannot belong to 𝐽B,𝐼

where
on the other hand it is contained in 𝑌.

Thus 𝑍 has nonempty interior and the proof is finished.

As an immediate consequence of Theorem 26 we get the
following corollary.

Corollary 27. Under the same general assumptions as in
Lemma 25, if 𝑠 is aB𝐼

+
-statistically pre-Cauchy sequence in R

whose range is finite, then 𝑠 isB𝐼-statistically convergent.

6. A Sup-Limsup-Theorem

In this section we will present the generalisation of Simons’
equality that was announced in the abstract, but first we need
to recall some definitions: a boundary for a real Banach space
𝑋 is a subset 𝐻 of 𝐵

𝑋
∗ (for every Banach space 𝑌 we denote

by 𝐵
𝑌
its closed unit ball and by 𝑆

𝑌
its unit sphere) such that

for every 𝑥 ∈ 𝑋 there is some 𝑥∗ ∈ 𝐻 with 𝑥∗(𝑥) = ‖𝑥‖. By
the Hahn-Banach-theorem, 𝑆

𝑋
∗ is always a boundary for 𝑋.

It easily follows from the Krein-Milman-theorem that ex𝐵
𝑋
∗ ,

the set of extreme points of 𝐵
𝑋
∗ , is also a boundary for𝑋.

A famous theorem due to Rainwater (cf. [25]) states that
a bounded sequence in𝑋which is convergent to some 𝑥 ∈ 𝑋
under every functional from ex 𝐵

𝑋
∗ is weakly convergent to

𝑥.
Later Simons (cf. [26, 27]) generalised this result to an

arbitrary boundary 𝐻 by proving that for every bounded
sequence (𝑥

𝑛
)
𝑛∈N in𝑋 the equality

sup
𝑥
∗
∈𝐻

lim sup𝑥∗ (𝑥
𝑛
) = sup

𝑥
∗
∈𝐵𝑋∗

lim sup𝑥∗ (𝑥
𝑛
) , (102)

which is nowadays known as Simons’ equality, holds.
An easy separation argument shows that every boundary

𝐻 satisfies𝐵
𝑋
∗ = co𝑤

∗

𝐻, but𝐵
𝑋
∗ = co𝐻 is not true in general

(here co𝐴 denotes the convex hull, 𝐴𝑤
∗

the weak∗-closure,
and 𝐴 the norm-closure of 𝐴 ⊆ 𝑋∗).

In [28] Fonf and Lindenstrauss introduced the following
intermediate notion. Consider a convex weak∗-compact sub-
set 𝐾 of 𝑋∗ (where 𝑋 is a real or complex Banach space).
A subset 𝐻 of 𝐾 is said to (𝐼)-generate 𝐾 provided that
whenever 𝐻 is written as a countable union 𝐻 = ⋃∞

𝑚=1
𝐻

𝑚
,

then

co(
∞

⋃

𝑚=1

co𝑤
∗

𝐻
𝑚
) = 𝐾 (103)
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or equivalently, whenever 𝐻 is written as a countable union
𝐻 = ⋃

∞

𝑚=1
𝐻

𝑚
with𝐻

𝑚
⊆ 𝐻

𝑚+1
, then

∞

⋃

𝑚=1

co𝑤
∗

𝐻
𝑚
= 𝐾. (104)

Clearly, 𝐾 = co𝐻 implies that 𝐻(𝐼)-generates 𝐾 which in
turn implies 𝐾 = co𝑤

∗

𝐻, but the converses are not true in
general as was shown in [28]. It was also proved in [28] that,
for a real Banach space, every boundary of 𝐾 (𝐼)-generates
𝐾 (the set 𝐻 is called a boundary of 𝐾 if max{𝑥∗(𝑥) : 𝑥∗ ∈
𝐻} = sup{𝑥∗(𝑥) : 𝑥∗ ∈ 𝐾} for every 𝑥 ∈ 𝑋. In this term-
inology,𝐻 is a boundary for 𝑋 if and only if it is a boundary
of 𝐵

𝑋
∗).

Nygaard proved in [29] that Rainwater’s theorem holds
true for every (𝐼)-generating subset of 𝐵

𝑋
∗ and the authors

of [30] showed that Simons’ equality is equivalent to the
(𝐼)-generation property (cf. [30, Theorem 2.2]; see also [31,
Lemma 2.1 and Remark 2.2]).

In [32] the author investigated the possibility to gen-
eralise the Rainwater-Simons-convergence theorem for (𝐼)-
generating sets to some generalised convergence methods
such as strong 𝐴-p-summability and almost convergence by
proving a general Simons-like inequality for (𝐼)-generating
sets (cf. [32, Theorem 3.1]). We will continue this work here,
using similar arguments as in [32] to generalise Simons’
equality to the 𝐽B,𝐼

-limsup for the case that F(𝐼) has a
countable base, and obtain some related convergence results.

First we need the following lemma, whose proof is—once
more—analogous to those of Propositions 3 and 4.Therefore,
the details will be skipped.

Lemma 28. Let each 𝐵
𝑖
be nonnegative. Define 𝑓 : R →

[0,∞) by 𝑓(𝑡) = 𝑡 for 𝑡 ≥ 0 and 𝑓(𝑡) = 0 for 𝑡 < 0. Put
𝐴(𝑠, 𝑎, 𝜀) := {𝑘 ∈ N : 𝑠

𝑘
> 𝑎 + 𝜀} for every 𝜀 > 0. Then

𝐼- lim
∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝑓 (𝑠

𝑘
− 𝑎) = 0 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑖𝑛 𝑖 ∈ 𝑆

󳨐⇒ 𝐴 (𝑠, 𝑎, 𝜀) ∈ 𝐽B,𝐼
∀𝜀 > 0

(105)

and the converse is true if the sequence 𝑠 is bounded and

sup{
∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
: 𝑛 ∈ N \ 𝐴, 𝑖 ∈ 𝑆} < ∞ (106)

for some 𝐴 ∈ 𝐼.

Now we turn to the generalisation of Simons’ equality.

Theorem 29. Let𝑋 be a real Banach space, 𝐾 ⊆ 𝑋∗ a convex
weak∗-compact subset, and 𝐻 ⊆ 𝐾 an (𝐼)-generating set for
𝐾. Let the ideal 𝐼 be such that the filter F(𝐼) has a countable
base. Assume that each 𝐵

𝑖
is nonnegative and that there exists

an 𝐴 ∈ 𝐼 such that

𝑀 := sup{
∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
: 𝑛 ∈ N \ 𝐴, 𝑖 ∈ 𝑆} < ∞. (107)

Let (𝑥
𝑛
)
𝑛∈N be a bounded sequence in 𝑋. Then the equality

sup
𝑥
∗
∈𝐻

𝐽B,𝐼
-lim sup 𝑥∗ (𝑥

𝑛
) = sup

𝑥
∗
∈𝐾

𝐽B,𝐼
-lim sup 𝑥∗ (𝑥

𝑛
) (108)

holds.

Proof. Denote the left-hand supremum by 𝑐 and the right-
hand supremum by 𝑑. We only have to show 𝑑 ≤ 𝑐. Let
𝑅 = sup

𝑛∈N‖𝑥𝑛‖. Let (𝐶𝑛
)
𝑛∈N be a countable base for F(𝐼).

Without loss of generality we may assume 𝐶
𝑛+1
⊆ 𝐶

𝑛
for all

𝑛. Take 𝑥∗ ∈ 𝐾 and 𝜀 > 0 arbitrary and put

𝐸
𝑚
= {𝑦

∗
∈ 𝐾 :

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝑓 (𝑦

∗
(𝑥

𝑘
) − 𝑐)

≤ 𝜀∀𝑖 ∈ 𝑆, 𝑛 ∈ 𝐶
𝑚
} ,

𝐻
𝑚
= 𝐸

𝑚
∩ 𝐻 ∀𝑚 ∈ N,

(109)

where 𝑓 is as in the previous lemma. Then 𝐻
𝑚
⊆ 𝐻

𝑚+1
for

every 𝑚 ∈ N. It follows from [21, Theorem 1] that {𝑛 ∈ N :

𝑦
∗
(𝑥

𝑛
) > 𝑐 + 𝛿} ∈ 𝐽B,𝐼

for every 𝛿 > 0. Together with the
previous lemma this easily implies⋃∞

𝑚=1
𝐻

𝑚
= 𝐻.

Since𝐻(𝐼)-generates𝐾, we get that

𝐾 =

∞

⋃

𝑚=1

co𝑤
∗

𝐻
𝑚
. (110)

Thuswe can find𝑚 ∈ N and𝑦∗ ∈ co𝑤
∗

𝐻
𝑚
with ‖𝑥∗−𝑦∗‖ ≤ 𝜀.

It is easily checked that𝐸
𝑚
is convex andweak∗-closed; hence

𝑦
∗
∈ 𝐸

𝑚
. But for every 𝑘 ∈ N

𝑓 (𝑥
∗
(𝑥

𝑘
) − 𝑐) ≤ 𝑓 (𝑥

∗
(𝑥

𝑘
) − 𝑦

∗
(𝑥

𝑘
))

+ 𝑓 (𝑦
∗
(𝑥

𝑘
) − 𝑐)

≤
󵄩󵄩󵄩󵄩𝑥

∗
− 𝑦

∗󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑥𝑘
󵄩󵄩󵄩󵄩 + 𝑓 (𝑦

∗
(𝑥

𝑘
) − 𝑐)

≤ 𝑅𝜀 + 𝑓 (𝑦
∗
(𝑥

𝑘
) − 𝑐) .

(111)

It follows that
∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝑓 (𝑥

∗
(𝑥

𝑘
) − 𝑐) ≤ 𝑀𝑅𝜀 +

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝑓 (𝑦

∗
(𝑥

𝑘
) − 𝑐)

≤ 𝜀 (𝑀𝑅 + 1)

(112)

for every 𝑖 ∈ 𝑆 and every 𝑛 ∈ 𝐶
𝑚
∩ (N\𝐴). Since𝐶

𝑚
∩ (N\𝐴) ∈

F(𝐼) and 𝜀 > 0 was arbitrary, we conclude with Lemma 28
that {𝑛 ∈ N : 𝑥∗(𝑥

𝑛
) > 𝑐 + 𝛿} ∈ 𝐽B,𝐼

for every 𝛿 > 0, whence
𝐽B,𝐼
− lim sup𝑥∗(𝑥

𝑛
) ≤ 𝑐.

As a corollary, we get the following convergence result.

Corollary 30. Under the same hypotheses as in Theorem 29
with 𝐾 = 𝐵

𝑋
∗ , if 𝑥 ∈ 𝑋 is such that (𝑥∗(𝑥

𝑛
))

𝑛∈N is B𝐼-
statistically convergent to𝑥∗(𝑥) for every𝑥∗ ∈ 𝐻 then the same
holds true for every 𝑥∗ ∈ 𝑋∗; that is, (𝑥

𝑛
)
𝑛∈N is “weakly B𝐼-

statistically convergent to 𝑥.”



14 International Journal of Analysis

Moreover, for every family F = (𝐹
(𝑖)

𝑘
)
𝑘∈N,𝑖∈𝑆

in M ∪ O
which is equicontinuous at 0 and satisfies

inf {𝐹(𝑖)
𝑘
(𝑡) : 𝑘 ∈ N, 𝑖 ∈ 𝑆} > 0 ∀𝑡 > 0,

sup {𝐹(𝑖)
𝑘
(𝑡) : 𝑘 ∈ N, 𝑖 ∈ 𝑆} < ∞ ∀𝑡 ≥ 0,

(113)

(𝑥
∗
(𝑥

𝑛
))

𝑛∈N is stronglyB𝐼-summable to 𝑥∗(𝑥) with respect to
F for every 𝑥∗ ∈ 𝑋∗ whenever this statement holds for every
𝑥
∗
∈ 𝐻.

Proof. The first statement follows directly from Theorem 29
and the second follows from the first one via Propositions 3
and 4.

It is clear that this convergence result carries over to
complex Banach spaces (note that if 𝑋 is a complex Banach
space and 𝐻(𝐼)-generates 𝐵

𝑋
∗ ; then {Re 𝑥∗ : 𝑥∗ ∈ 𝐻} (𝐼)-

generates {Re𝑥∗ : 𝑥∗ ∈ 𝐵
𝑋
∗}, the unit ball of the underlying

real space).
In particular, if we take each 𝐵

𝑖
to be the infinite unit

matrix, we get that, for every ideal 𝐼 such that F(𝐼) has a
countable base, 𝐼-lim𝑥∗(𝑥

𝑛
) = 𝑥

∗
(𝑥) for every 𝑥∗ ∈ 𝑋∗

whenever this is true for every 𝑥∗ in an (𝐼)-generating subset
of 𝐵

𝑋
∗ (in particular, in a boundary for𝑋). We can also prove

an analogous convergence result forB𝐼-summability.

Proposition 31. Let𝑋 be a real or complex Banach space and
𝐻 ⊆ 𝐵

𝑋
∗ an (𝐼)-generating set for 𝐵

𝑋
∗ . Suppose thatF(𝐼) has

a countable base, ∑∞

𝑘=1
|𝑏

(𝑖)

𝑛𝑘
| < ∞ for all 𝑛 ∈ N, 𝑖 ∈ 𝑆, and

moreover

𝑀 := sup{
∞

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨
𝑏
(𝑖)

𝑛𝑘

󵄨󵄨󵄨󵄨󵄨
: 𝑛 ∈ N \ 𝐴, 𝑖 ∈ 𝑆} < ∞ (114)

for some 𝐴 ∈ 𝐼.
Let (𝑥

𝑛
)
𝑛∈N be a bounded sequence in 𝑋 and 𝑥 ∈ 𝑋 such

that (𝑥∗(𝑥
𝑛
))

𝑛∈N is B𝐼-summable to 𝑥∗(𝑥) for every 𝑥∗ ∈ 𝐻.
Then the same is true for every 𝑥∗ ∈ 𝑋∗.

Proof. Let (𝐶
𝑛
)
𝑛∈N be a decreasing countable basis for F(𝐼).

Let 𝑅 ≥ sup
𝑛∈N‖𝑥𝑛‖ and 𝑅 ≥ ‖𝑥‖. Take any 𝑥

∗
∈ 𝐵

𝑋
∗ and fix

an arbitrary 𝜀 > 0. Define

𝐸
𝑚
:= {𝑦

∗
∈ 𝐵

𝑋
∗ : sup

𝑖∈𝑆

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝑦
∗
(𝑥

𝑘
) − 𝑦

∗
(𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝜀 ∀𝑛 ∈ 𝐶
𝑚
} ,

𝐻
𝑚
:= 𝐸

𝑚
∩ 𝐻 ∀𝑚 ∈ N.

(115)

Then 𝐻
𝑚
↗ 𝐻 and since 𝐻(𝐼)-generates 𝐵

𝑋
∗ , we can find

𝑚 ∈ N and 𝑦∗ ∈ co𝑤
∗

𝐻
𝑚
such that ‖𝑥∗ − 𝑦∗‖ ≤ 𝜀.

It is not too hard to see that 𝐸
𝑚
is convex and weak∗-

closed and thus 𝑦∗ ∈ 𝐸
𝑚
. Consequently, for all 𝑖 ∈ 𝑆 and

𝑛 ∈ 𝐶
𝑚
∩ (N \ 𝐴) we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝑥
∗
(𝑥

𝑘
) − 𝑥

∗
(𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
(𝑥

∗
(𝑥

𝑘
) − 𝑦

∗
(𝑥

𝑘
))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
𝑦
∗
(𝑥

𝑘
) − 𝑦

∗
(𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝑦

∗
(𝑥) − 𝑥

∗
(𝑥)
󵄨󵄨󵄨󵄨

≤ 𝑀
󵄩󵄩󵄩󵄩𝑥

∗
− 𝑦

∗󵄩󵄩󵄩󵄩 𝑅 + 𝜀 +
󵄩󵄩󵄩󵄩𝑥

∗
− 𝑦

∗󵄩󵄩󵄩󵄩 𝑅

≤ 𝜀 (𝑅 (𝑀 + 1) + 1) .

(116)

Since 𝐶
𝑚
∩ (N \ 𝐴) ∈ F(𝐼) and 𝜀 > 0 was arbitrary, we are

done.

The next result concerning B𝐼-statistically pre-Cauchy
sequences is a generalisation of [32, Corollary 3.5]. Using
Propositions 21 and 22 with 𝐹(𝑖)

𝑘𝑙
= id

[0,∞)
for all 𝑘, 𝑙 ∈ N

and 𝑖 ∈ 𝑆, its proof can be carried out analogously to that
of Proposition 31. The details will be omitted.

Proposition 32. Let𝑋 be a real or complex Banach space and
𝐻 ⊆ 𝐵

𝑋
∗ an (𝐼)-generating set for 𝐵

𝑋
∗ . Suppose thatF(𝐼) has

a countable base, that each 𝐵
𝑖
is nonnegative, and that there is

some 𝐴 ∈ 𝐼 such that

sup{
∞

∑

𝑘=1

𝑏
(𝑖)

𝑛𝑘
: 𝑛 ∈ N \ 𝐴, 𝑖 ∈ 𝑆} < ∞. (117)

Let (𝑥
𝑛
)
𝑛∈N be a bounded sequence in𝑋 such that (𝑥∗(𝑥

𝑛
))

𝑛∈N

is B𝐼-statistically pre-Cauchy and B𝐼

+
-statistically pre-

Cauchy, respectively, for every 𝑥∗ ∈ 𝐻. Then the same is true
for every 𝑥∗ ∈ 𝑋∗.

Finally, let us give characterisations of weak-compactness
and reflexivity that generalise [32, Corollaries 3.7 and 3.8].

Corollary 33. Let𝑀 be a bounded subset of the Banach space
𝑋 and 𝐵 an (𝐼)-generating set for 𝐵

𝑋
∗ . Then 𝑀 is weakly

relatively compact if (and only if) for every sequence (𝑥
𝑛
)
𝑛∈N

in 𝑀 there is an element 𝑥 ∈ 𝑋, an ideal 𝐼 on N such that
F(𝐼) admits a countable base, and a nonnegative matrix 𝐴 =
(𝑎

𝑛𝑘
)
𝑛,𝑘≥1

such that

∃𝐶 ∈ 𝐼 sup
𝑛∈N\𝐶

∞

∑

𝑘=1

𝑎
𝑛𝑘
< ∞, (118)

𝐼-lim 𝑎
𝑛𝑘
= 0 ∀𝑘 ∈ N (119)

and (𝑥∗(𝑥
𝑛
))

𝑛∈N is 𝐴𝐼-statistically convergent to 𝑥∗(𝑥) for
every 𝑥∗ ∈ 𝐵.

Proof. Let (𝑥
𝑛
)
𝑛∈N be an arbitrary sequence in 𝑀 and fix

𝑥, 𝐼, and 𝐴 as above. By Corollary 30 (𝑥∗(𝑥
𝑛
))

𝑛∈N is 𝐴𝐼-
statistically convergent to 𝑥∗(𝑥) for every 𝑥∗ ∈ 𝑋∗. Thus,
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given finitely many functionals 𝑥∗
1
, . . . , 𝑥

∗

𝑚
∈ 𝑋

∗, the seq-
uence (∑𝑚

𝑗=1
|𝑥

∗

𝑗
(𝑥

𝑛
− 𝑥)|)

𝑛∈N is 𝐴𝐼-statistically convergent to
zero. Hence for any 𝜀 > 0 the set𝐷

𝜀
= {𝑛 ∈ N : ∑

𝑚

𝑗=1
|𝑥

∗

𝑗
(𝑥

𝑛
−

𝑥)| < 𝜀} does not belong to 𝐽
𝐴,𝐼

.
By (119), 𝐽

𝐴,𝐼
is admissible; therefore, 𝐷

𝜀
must be infinite

for every 𝜀 > 0, which shows that 𝑥 is a weak-cluster point of
(𝑥

𝑛
)
𝑛∈N.
So 𝑀 is weakly relatively and countably compact and

by the Eberlein-Shmulyan theorem, it must be also weakly
relatively compact.

Corollary 34. If 𝐵
𝑋

is an (𝐼)-generating set for 𝐵
𝑋
∗∗(we

consider 𝑋 canonically embedded into its bidual), then 𝑋 is
reflexive if (and only if) for every sequence (𝑥∗

𝑛
)
𝑛∈N in 𝐵

𝑋
∗

there is a functional 𝑥∗ ∈ 𝑋∗, an ideal 𝐼 on N such that F(𝐼)
admits a countable base, and a nonnegative matrix𝐴 such that
(118) and (119) are satisfied and (𝑥∗

𝑛
(𝑥))

𝑛∈N is 𝐴𝐼-statistically
convergent to 𝑥∗(𝑥) for every 𝑥 ∈ 𝑋.

Proof. By the previous corollary, 𝐵
𝑋
∗ is weakly compact; thus

𝑋
∗ and hence also𝑋 are reflexive.
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