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The two-dimensional hydromagnetic free convective flow of elastico-viscous fluid (Walters liquid Model B) with simultaneous
heat and mass transfer past an infinite vertical porous plate under the influence of gravity modulation effects has been analysed.
Generalized Navier’s boundary condition has been used to study the characteristics of slip flow regime. Fluctuating characteristics
of temperature and concentration are considered in the neighbourhood of the surface having periodic suction. The governing
equations of fluidmotion are solved analytically by using perturbation technique. Various fluid flow characteristics (velocity profile,
viscous drag, etc.) are analyzed graphically for various values of flowparameters involved in the solution. A special emphasis is given
on the gravity modulation effects on both Newtonian and non-Newtonian fluids.

1. Introduction

The analysis of viscoelastic fluid flow is one of the important
fields of fluid dynamics. The complex stress-strain rela-
tionships of viscoelastic fluid flow mechanisms are used
in geophysics, chemical engineering (absorption, filtration),
petroleum engineering, hydrology, soil-physics, biophysics,
and paper and pulp technology.The viscosity of the viscoelas-
tic fluid signifies the physics of the energy dissipated during
the flow and its elasticity represents the energy stored during
the flow. AsWalters liquid (Model B) contains both viscosity
and elasticity it is different from Newtonian fluid because the
Newtonian fluid does not have the concept of elasticity as it
discusses only the concept of energy dissipation.

The phenomenon of transient free convection flow from
a vertical plate has been analysed by Siegel [1]. Gebhart
[2] has studied the fluid motion in the presence of natural
convection from vertical elements. Chung and Anderson [3]
have investigated the nature of unsteady fluid flow including
the effects of natural convection. Schetz and Eichhorn [4]
have investigated the above unsteady problem in the vicinity
of a doubly infinite vertical plate. Goldstein and Briggs [5]
have studied the problem of free convection about vertical
plates and circular cylinders. Two- and three-dimensional

oscillatory convection in gravitationally modulated fluid
layers have been investigated by Clever et al. [6, 7]. A study of
thermal convection in an enclosure induced simultaneously
by gravity and vibration has been done by Fu and Shieh [8].
Convection phenomenon of material processing in space has
been described by Ostrach [9]. Li [10] has investigated the
effect of magnetic fields on low frequency oscillating natural
convection. Deka and Soundalgekar [11] have analysed the
problem of free convection flow influenced by gravity mod-
ulation by using Laplace transform technique. Rajvanshi and
Saini [12] have studied the free convection MHD flow past
a moving vertical porous surface with gravity modulation
at constant heat flux. The influence of combined heat and
mass transfer and gravity modulation on unsteady flow past
a porous vertical plate in slip flow regime has been examined
by Jain and Rajvanshi [13].

In this study, an analysis is carried out to study the
effects of gravity modulation on free convection unsteady
flow of a viscoelastic fluid past a vertical permeable plate
with slip flow regime under the action of transverse magnetic
field. The velocity field and magnitude of shearing stress at
the plate are obtained and illustrated graphically to observe
the viscoelastic effects in combination with other flow
parameters.

Hindawi Publishing Corporation
ISRN Applied Mathematics
Volume 2014, Article ID 492906, 7 pages
http://dx.doi.org/10.1155/2014/492906



2 ISRN Applied Mathematics

The constitutive equation for Walters liquid (Model B) is

𝜎
𝑖𝑘
= −𝑝𝑔

𝑖𝑘
+ 𝜎


𝑖𝑘
, 𝜎
𝑖𝑘

= 2𝜂
0
𝑒
𝑖𝑘
− 2𝑘
0
𝑒
𝑖𝑘
, (1)

where 𝜎𝑖𝑘 is the stress tensor, 𝑝 is isotropic pressure, 𝑔
𝑖𝑘
is the

metric tensor of a fixed coordinate system 𝑥
𝑖
, V
𝑖
is the velocity

vector, and the contravariant form of 𝑒𝑖𝑘 is given by

𝑒
𝑖𝑘

=

𝜕𝑒
𝑖𝑘

𝜕𝑡

+ V𝑚𝑒𝑖𝑘
,𝑚
− V𝑘
,𝑚
𝑒
𝑖𝑚
− V𝑖
,𝑚
𝑒
𝑚𝑘. (2)

It is the convected derivative of the deformation rate tensor
𝑒
𝑖𝑘 defined by

2𝑒
𝑖𝑘
= V
𝑖,𝑘
+ V
𝑘,𝑖
. (3)

Here 𝜂
0
is the limiting viscosity at the small rate of shear

which is given by

𝜂
0
= ∫

∞

0

𝑁(𝜏) 𝑑𝜏, 𝑘
0
= ∫

∞

0

𝜏𝑁 (𝜏) 𝑑𝜏, (4)

𝑁(𝜏) being the relaxation spectrum.This idealizedmodel is a
valid approximation of Walters liquid (Model B) taking very
short memories into account so that terms involving

∫

∞

0

𝑡
𝑛
𝑁(𝜏) 𝑑𝜏, 𝑛 ≥ 2 (5)

have been neglected.
Walter [14] reported that the mixture of polymethyl

methacrylate and pyridine at 25∘C containing 30.5 gm of
polymer per litre and having density 0.98 gm/mL fits very
nearly to this model.

2. Mathematical Formulation

An unsteady two-dimensional free convective flow of an
electrically conducting elastico-viscous fluid past a vertical
porous plate has been analysed in the presence of gravity
modulation and slip flow regime𝐴magnetic field of uniform
strength 𝐵

0
is applied in the direction normal to the plate.

Induced magnetic field is neglected by assuming very small
values ofmagnetic Reynolds number (Crammer andPai [15]).
The electrical conductivity of the fluid is also assumed to be
of smaller order of magnitude. Let 𝑥-axis be taken along the
vertical plate and 𝑦

-axis is taken normal to the plate. Let
𝑇
𝑤
and 𝐶

𝑤
be, respectively, the temperature and the molar

species concentration of the fluid at the plate and let 𝑇
∞

and 𝐶
∞

be, respectively, the equilibrium temperature and
equilibrium molar species concentration of the fluid. The
geometry of the problem is shown by Figure 1.
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Figure 1: Geometry of the problem.

The governing equations of the fluid motion are as
follows:
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(6)

In fact, nearly two hundred years ago Navier [16] pro-
posed amore general boundary condition,which includes the
possibility of fluid slip.Navier’s proposed boundary condition
assumes that the velocity at a solid surface is proportional to
the shear rate at the surface.

The boundary conditions of the problem are

𝑢

= ℎ

𝜎


𝑥𝑦
, 𝑇


= 𝑇
𝑤
+ 𝜖 (𝑇
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∞
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,
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+ 𝜖 (𝐶
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− 𝐶
∞
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,

at 𝑦 = 0,

𝑢

→ 0, 𝑇


→ 𝑇
∞
, 𝐶


→ 𝐶

∞
,

as 𝑦 → ∞,

(7)

where 𝜎
𝑥𝑦

= 𝜂
0
(𝜕𝑢

/𝜕𝑦

) − 𝑘
0
((𝜕
2
𝑢

/𝜕𝑦

𝜕𝑡

) + V(𝜕3𝑢/𝜕𝑦3)).

3. Method of Solution

The gravitational acceleration is considered as

𝑔 = 𝑔
0
− 𝑖𝑔
1
𝑒
𝑖𝜔

𝑡


, 𝑔
1
= 𝜖𝑎𝑔

0
. (8)



ISRN Applied Mathematics 3

Let us introduce the following nondimensional quantities:

𝑦 =

𝑦
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]
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2

0
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(9)

where 𝑦 is the displacement variable, 𝑡 is the time, 𝜔 is
the frequency of oscillation, 𝑢 is the dimension velocity, 𝜃
is the dimensionless temperature, 𝐶 is the dimensionless
concentration, Gr is Grashof number for heat transfer, Gm is
Grashof number for mass transfer,𝑀 is magnetic parameter,
𝑘 is viscoelastic parameter, Pr is the Prandtl number, Sc is the
Schmidt number, 𝑎 is gravity modulation parameter, and ℎ is
the slip parameter.

Then the nondimensional forms of the governing equa-
tions of motions are as follows:

1
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1
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2
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(10)

Boundary conditions in the dimensionless form are given as
follows:

𝑢 = ℎ [

𝜕𝑢

𝜕𝑦

− 𝑘{

1

4

𝜕
2
𝑢

𝜕𝑦𝜕𝑡

− (1 + 𝜖𝐴𝑒
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)

𝜕
2
𝑢
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2
}] ,

𝜃 = 1 + 𝜖𝑒
𝑖𝜔𝑡
, 𝐶 = 1 + 𝜖𝑒

𝑖𝜔𝑡

at 𝑦 = 0,

𝑢 → 0, 𝜃 → 0, 𝐶 → 0,

as 𝑦 → ∞.

(11)

Assuming small amplitude of oscillations (𝜖 ≪ 1) in the
neighbourhood of the plate, the velocity, temperature, and
concentration are considered as

𝑢 = 𝑢
0
+ 𝜖𝑒
𝑖𝜔𝑡
𝑢
1
+ 𝑜 (𝜖

2
) ,

𝜃 = 𝜃
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+ 𝜖𝑒
𝑖𝜔𝑡
𝜃
1
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2
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𝐶 = 𝐶
0
+ 𝜖𝑒
𝑖𝜔𝑡
𝐶
1
+ 𝑜 (𝜖

2
) .

(12)

Using (12) in (10) and equating the like powers of 𝜖 and
neglecting the higher powers of 𝜖 we get

𝑘𝑢


0
+ 𝑢


0
+ 𝑢


0
−𝑀𝑢

0
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0
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0
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1
+ 𝑢


1
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4
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1
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4
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1
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0
− 𝜃
1
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1
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0
,

(13)

1
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0
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0
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1
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𝜃
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1
−
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4

𝜃
1
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0
,

1
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𝐶


0
+ 𝐶


0
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1
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𝐶


1
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1
−

𝑖𝜔

4

𝐶
1
= −𝐶


0
.

(14)

Relevant boundary conditions for solving the above equa-
tions are as follows:

𝑢
0
= ℎ [𝑢



0
+ 𝑘𝑢


0
] ,

𝑢
1
= ℎ [𝑢



1
− 𝑘 {

𝑖𝜔

4

𝑢


1
− 𝐴𝑢


0
− 𝑢


1
}] ,

𝜃
0
= 𝜃
1
= 𝐶
0
= 𝐶
1
= 1,

at 𝑦 = 0,

𝑢
0
= 𝑢
1
= 𝜃
0
= 𝜃
1
= 𝐶
0
= 𝐶
1
= 0,

as 𝑦 → ∞.

(15)

Equations (14) are solved by using the boundary conditions
(15) and their solutions are given by

𝜃
0
= 𝑒
−Pr𝑦

,

𝜃
1
= 𝐶
3
𝑒
𝛼
1
𝑦
+ 𝐶
4
𝑒
−𝛼
2
𝑦
+

𝑖4Pr
𝜔

𝑒
−Pr𝑦

,

𝐶
0
= 𝑒
−Sc𝑦

,

𝐶
1
= 𝐶
5
𝑒
𝛼
3
𝑦
+ 𝐶
6
𝑒
−𝛼
4
𝑦
+

𝑖4Sc
𝜔

𝑒
−Sc𝑦

.

(16)

The presence of elasticity in the governing fluid motion
constitutes a third-order differential equation (13) but for
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Newtonian fluid 𝑘 = 0; then the differential equation redu-
ces to of order two. And also it is seen that as there are
insufficient boundary conditions for solving (13), we use
multiparameter perturbation technique. Since 𝑘, which is a
measure (dimensionless) of relaxation time, is very small for
a viscoelastic fluid with small memory, thus following Ray
Mahapatra and Gupta [17] and Reza and Gupta [18], we use
the multiparameter perturbation technique, and we consider

𝑢
0
= 𝑢
00
+ 𝑘𝑢
01
+ 𝑜 (𝑘

2
) ,

𝑢
1
= 𝑢
10
+ 𝑘𝑢
11
+ 𝑜 (𝑘

2
) .

(17)

Using the perturbation scheme (17) in (13) and equating the
like powers of 𝑘 and neglecting the higher orders power of 𝑘,
we get

𝑢


00
+ 𝑢


00
−𝑀𝑢

00
= − (Gr𝜃

0
+ Gm𝐶

0
) ,

𝑢
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+ 𝑢


00
−𝑀𝑢

00
= −𝑢


00
,

𝑢
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+ 𝑢
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− (𝑀 +

𝑖𝜔

4

) 𝑢
10

= 𝛼 (Gr𝜃
0
+ Gm𝐶

0
) − 𝐴𝑢



0
− (Gr𝜃

1
+ Gm𝐶

1
) ,

𝑢
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+ 𝑢


11
− (𝑀 +

𝑖𝜔

4

) 𝑢
11

= −𝐴𝑢


01
− 𝐴𝑢


00
− 𝑢


10
−

𝑖𝜔

4

𝑢


10
.

(18)

The modified boundary conditions for solving the above
equations are

𝑢
00
= ℎ𝑢


00
, 𝑢

01
= ℎ [𝑢



01
+ 𝑢


00
] , 𝑢
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= ℎ𝑢
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,

𝑢
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= ℎ [𝑢
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−

𝑖𝜔

4

𝑢
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+ 𝐴𝑢


00
+ 𝑢
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]

at 𝑦 = 0,

𝑢
00
→ 0, 𝑢

01
→ 0, 𝑢

10
→ 0, 𝑢

11
→ 0

as 𝑦 → ∞.

(19)

The solutions of (18) relevant to the above boundary condi-
tions are presented as follows:

𝑢
00
= 𝐶
8
𝑒
−𝛼
6
𝑦
+ 𝐴
1
𝑒
−𝐴
1
𝑦
+ 𝐴
2
𝑒
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2
𝑦
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𝑢
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= 𝐶
10
𝑒
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6
𝑦
+ 𝐴
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4
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1
𝑦
+ 𝐴
5
𝑒
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2
𝑦
,

𝑢
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= 𝐶
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𝑒
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8
𝑦
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6
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7
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8
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9
) 𝑒
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𝑒
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6
𝑦
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+ 𝑖𝐴
12
) 𝑒
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1
𝑦
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+ 𝑖𝐴
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2
𝑦
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+ 𝑖𝐴
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2
𝑦
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+ 𝑖𝐴
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4
𝑦
,

𝑢
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= 𝐶
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𝑒
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8
𝑦
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+ 𝑖𝐴
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) 𝑒
−𝛼
6
𝑦
+ 𝑖𝐴
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𝑦𝑒
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6
𝑦

+ (𝐴
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+ 𝑖𝐴
40
) 𝑒
−𝐴
1
𝑦
+ (𝐴
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+ 𝑖𝐴
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) 𝑒
−𝐴
2
𝑦

+ (𝐴
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+ 𝑖𝐴
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) 𝑦𝑒
−𝛼
8
𝑦
+ (𝐴
45
+ 𝑖𝐴
46
) 𝑒
−Pr𝑦

+ (𝐴
47
+ 𝑖𝐴
48
) 𝑒
−Sc𝑦

+ (𝐴
49
+ 𝑖𝐴
50
) 𝑒
−𝛼
2
𝑦

+ (𝐴
51
+ 𝑖𝐴
52
) 𝑒
−𝛼
4
𝑦
.

(20)

The constants of the solutions are not presented here for the
sake of brevity.

Knowing the velocity field, the shearing stress at the plate
is defined as

Sh = [

𝜕𝑢

𝜕𝑦

− 𝑘{

1

4

𝜕
2
𝑢

𝜕𝑦𝜕𝑡

− (1 + 𝜖𝐴𝑒
𝑖𝜔𝑡
)

𝜕
2
𝑢

𝜕𝑦
2
}]

𝑦=0

. (21)

The effects of gravity modulation on free convective
flow of an elastico-viscous fluid with simultaneous heat and
mass transfer past an infinite vertical porous plate under the
influence of transverse magnetic field have been analyzed.
Figures 2 to 5 represent the pattern of velocity profile against
𝑦 for various values of flow parameters involved in the
solution. The effect of viscoelasticity is exhibited through
the nondimensional parameter “𝑘.” The nonzero values of
𝑘 characterize viscoelastic fluid, where 𝑘 = 0 character-
izes Newtonian fluid flow mechanisms. In this study, main
emphasis is given on the effect of viscoelasticity on the
governing fluid motion and also on the difference in flow
pattern of both Newtonian and non-Newtonian fluids in the
presence of various physical properties considered in this
problem.

It is seen from Figure 2 that both Newtonian and non-
Newtonian fluid flows accelerate asymptotically in the neigh-
bourhood of the plate and then they experience a decline
trend as we move away from the plate. The nonzero value of
velocity profile at 𝑦 = 0 represents the strength of slip at the
plate. Also, it can be concluded that the growth in viscoelas-
ticity slows down the speed of fluid flow. Effects of gravity
modulation parameter 𝑎 on the governing fluid motions are
shown in Figure 3 and it is observed that as 𝑎 increases, the
speed of fluid flow increases along with the increasing values
of 𝑘 = (0, 0.2 and 0.4). Application of transverse magnetic
field leads to the generalization of Lorentz force and its effect
is displayed by the nondimensional parameter, 𝑀. Figure 4
shows the impact of magnetic parameter on the fluid flow
against the displacement variable 𝑦. As magnetic parameter
increases, the strength of Lorentz force rises and, as a result,
the flow is retarded. It is also noticed that, as𝑀 decreases, the
effect of viscoelasticity is seen prominent.
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Figure 3: Pr = 10, Sc = 7, Gm = 5, Gr = 10,𝑀 = 2, 𝑒 = 0.01, ℎ = 0.1,
𝜔 = 5, 𝐴 = 1, 𝜔𝑡 = 𝜋.

Grashof number is defined as the ratio of buoyancy force
to viscous force and its positive value identifies the flow past
an externally cooled plate and the negative value characterizes
the flow past an externally heated plate. Figure 5 shows that
as Gr increases, the resistance of fluid flow diminishes, and as
a consequence the speed enhances along with the increasing
values of visco-elastic parameter. Again, when the flow passes
an externally heated plate (Gr = −10), a back flow is noticed
in case of both Newtonian and non-Newtonian fluids.

4. Results and Discussions

Knowing the velocity field, it is important from a practical
point of view to know the effect of viscoelastic parameter
on shearing stress or viscous drag. Figures 6 to 8 depict
the magnitude of shearing stress at the plate of viscoelastic
fluid in comparison with the Newtonian fluid for the various
values of flow parameters involved in the solution. The
figures notify that the growth in viscoelasticity subdues the
magnitude of viscous drag at the surface. Prandtl number
plays a significant role in heat transfer flow problems as it
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Figure 4: Pr = 10, Sc = 7, Gm = 5, Gr = 10, 𝑒 = 0.01, ℎ = 0.1, 𝜔 = 5,
𝐴 = 1, 𝜔𝑡 = 𝜋.
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𝜔𝑡 = 𝜋,𝑀 = 2.

helps to study the simultaneous effect of momentum and
thermal diffusion in fluid flow. Effect of Prandtl number on
the magnitude of shearing stress is seen in Figure 6 and it can
be concluded that the magnitude of shearing stress increases
rapidly for Pr < 8 of both Newtonian and non-Newtonian
fluids, but for higher values of Pr (>8) it increases steadily. In
mass transfer problems, the importance of Schmidt number
cannot be neglected as it studies the combined effect of
momentum and mass diffusion. The same phenomenon as
that in case of growth in Prandtl number is experienced
against Schmidt number for various values of viscoelastic
parameter (Figure 7). Effect of gravity modulation parameter
𝑎 on the viscous drag is shown in Figure 8 and it is revealed
that as 𝑎 increases, themagnitude of shearing stress increases.

The rate of heat transfer and rate of mass transfer are not
significantly affected by the presence of viscoelasticity of the
governing fluid flow.

5. Conclusions

From the present study, we make the following conclusions.

(i) Both Newtonian and non-Newtonian fluid flows
accelerate asymptotically in the neighbourhood of the
plate.

(ii) Growth in viscoelasticity slows down the speed of
fluid flow.
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Figure 7: Pr = 10, Gm = 10, Gr = 7,𝑀 = 2, 𝑒 = 0.01, 𝑎 = 1, ℎ = 0.3,
𝜔 = 5, 𝐴 = 6, 𝜔𝑡 = 𝜋.

(iii) Effect of viscoelasticity is seen prominent during the
lower order magnitude of magnetic parameter.

(iv) A back flow is experienced in the motion governing
fluid flow past an externally heated plate.

(v) As gravity modulation parameter 𝑎 increases, the
magnitude of shearing stress experienced by Newto-
nian as well as non-Newtonian fluid flows increase.
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