
Research Article
Investigation of a Superscalar Operand Stack Using FO4 and
ASIC Wire-Delay Metrics

Christopher Bailey1 and Brendan Mullane2

1Department of Computer Science, University of York, Heslington, York YO10 5DD, UK
2Circuits and Systems Research Centre, University of Limerick, Limerick, Ireland

Correspondence should be addressed to Christopher Bailey; chrisb@cs.york.ac.uk

Received 3 June 2014; Revised 3 October 2014; Accepted 23 October 2014; Published 18 December 2014

Academic Editor: Kiyoung Choi

Copyright © 2014 C. Bailey and B. Mullane. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Complexity in processor microarchitecture and the related issues of power density, hot spots and wire delay, are seen to be a major
concern for designmigration into low nanometer technologies of the future.This paper evaluates the hardware cost of an alternative
to register-file organization, the superscalar stack issue array (SSIA). We believe this is the first such reported study using discrete
stack elements. Several possible implementations are evaluated, using a 90 nm standard cell library as a reference model, yielding
delay data and FO4 metrics. The evaluation, including reference to ASIC layout, RC extraction, and timing simulation, suggests a
4-wide issue rate of at least four Giga-ops/sec at 90 nm and opportunities for twofold future improvement by using more advanced
design approaches.

1. Introduction

Current trends in semiconductor technology, and in particu-
lar the International Technology Roadmap for Semiconduc-
tors [1], suggest that future concerns in microarchitecture at
the VLSI level will pose significant challenges. These include
increasing power density [2], progressively severe thermal
hot spots in increasingly complex designs [3], the impact of
growing static power [4], and the problemofwire versus gate-
delay and power scaling [5, 6]. Such problems are often most
acutely exposed in key mainstream processor components
such as cache, register related logic such as reorder buffers,
rename logic, and the register file itself. Any alternative
scheme to the traditional register-based computing paradigm
can therefore open up the possibility of new approaches
to these problems. However, register files are so highly
optimized thatmeasuring alternatives now requires complete
layout of an optimal design for comparison, followed by
timing and power analysis and nothing as simple as func-
tional comparison of abstract logic. This paper focuses upon
one possible unexplored option for operand storage which
is alternative in its structure to that of a register file. The
questions we examine are (a) can a LIFO (last-in-first-out)

stack support superscalar operand access and (b) what is its
performance relative to established mainstream approaches.

This work is undertaken with a 90 nm UMC CMOS
process library; however, we ultimately utilize FO4 as a delay
metric [7] in order to provide a general measure of perfor-
mance that can be scaled to other process nodes. The work
is undertaken using standard cell digital libraries and not at
the transistor level. Although this is not therefore an optimal
solution, it permits rapid assessment ofmultiple implementa-
tion schemes and semicustom design of the most promising
candidate. This also means that performance results act as a
conservative (lower) limit on potential performance.

Inevitably this work has some relevance to the age-
old argument of stack processors versus register machines,
particularly as significant improvements have been made in
stack-processor code efficiency and code optimization [8–10]
and in design of architectures capable of multiple instruction
issue with out-of-order completion and/or previous attempts
to parallelize stack structures [11–14].

However, the fundamental focus and aim of this paper
is not to compare two competing processor paradigms but
simply to establish in its own right the feasibility of a stack
structure capable of permitting efficient access to operands

Hindawi Publishing Corporation
VLSI Design
Volume 2014, Article ID 493189, 13 pages
http://dx.doi.org/10.1155/2014/493189

2 VLSI Design

in a superscalar access mode. It is also possible, for example,
to have stacks employed in situations where they are not the
basis for complete programmable processors. Therefore, the
application space for such a solution is recognizably, but not
exclusively, in the CPU design space.

In a traditional operand stack, multiple operands are
held in a stack area organized notionally as a pushdown
stack or LIFO buffer. Often the physical implementation
employs a pointer into a small memory area. However, this
leads to serious bottlenecks and there is little difference
between this approach and a register file, especially where
multiple operands need to be accessed in the same clock
cycle (a requirement for superscalar operand access). In CPU
oriented applications, it is not unusual to simplymap a virtual
stack onto an architectural register file, but undoubtedly this
offers a poor presentation of a stack-oriented system since
it is only an emulation of a true stack. It does however
potentially allow superscalar execution since register files can
be superscalar, thoughwith significant hardware cost in terms
of hazard avoidance and related logic. A true stack structure
therefore appears at first sight to be restricted in its ability to
act outside of its serial LIFO mode of operation. However,
in this paper we demonstrate a discrete stack with multiport
capability and superscalar functionality.

2. Superscalar Stack Issue Array (SSIA)

We propose a novel stack structure, the superscalar stack
issue array (SSIA), whereby a small number of independent
hardware stack cells are capable of being accessed collectively
by multiple ports concurrently. However, such operations are
inseparable from their stack effects (push, pop, or no effect).
Consequently, collective stack reordering is performed as a
single cycle internal operation, such that operands can be
dispatched and stack-state kept coherent even with mul-
tiple actions in a group. The use of a novel tag scheme
permits out-of-order write-back. All of these attributes can
be achieved with basic logic structures. An unexpected
benefit of destructive readout, usual in a stack structure,
is that it eliminates the RAW/WAR dependency problem
which hinders register-based processors to the extent as to
demand renaming and reorder buffers and virtual registers
with significant power, area, and thermal penalties.Therefore,
an SSIA module can support superscalar operand issue and
out-of-order completion without encountering RAW/WAR
hazards or requiring a renaming scheme for its contents.
These could conceivably be important benefits as described.

The tagging scheme allows delayed write-back to the
stack structure, whereby any uncommitted stack cell content
is supplanted by a unique tag which simply reserves and
occupies the stack cell in question until the write-back can
be completed. The unique aspect of this tagging scheme is
that tagsmovewith stack content, and therefore operands and
results are actually nomadic in their behavior, and we refer to
these incomplete contents as nomads. There is no possibility
ofmultiple writes being able to target the same reserved space
and hence no RAW/WAR.

If we consider how this looks at the logic level and
how it differs from a standard stack, it may become clearer.

a

b

c

d

Bit
cell

Bit
cell

Bit
cell

Bit
cell

4
m

1

a󳰀

b󳰀

c󳰀

d󳰀

4
m

1
4

m
1

4
m

1

Figure 1: Fundamental stack logic scheme.

Figure 1 illustrates a fundamental stack implementation
scheme. Each stack element bit is translated from its current
state {a, b, c, d} into its respective next state {a󸀠, b󸀠, c󸀠, d󸀠}
by use of a multiplexer arrangement, which performs local
reordering, to reflect the stack effect of the applied action.
In a standard scalar stack, the next state is fed back to the
state retention flip-flops. However, if multiple reorder-mux-
stages are cascaded, then the state feedback represents the
stack effects of a group of actions, and the intermediate stages
provide multiple operand pairs simultaneously, as illustrated
in Figure 2. It is also notable that only one state transition
is observed at the state retaining flip-flop, no matter how
many issue slots are cascaded. A superscalar stack will have
significantly fewer such transitions than a serial/scalar stack
given the same sequence of actions, in effect one that actually
saves dynamic flip-flop power by going from a scalar to a
superscalar structure. By adding logic to permit insertion of
a tag-matched value from a common data bus (CDB), it is
possible for stack cells to contain tags reserving locations for
delayed write-back values and for these to “retire” when a
CDB tag is matched.

The extra inputs on the 5-way multiplexers facilitate
placement of an immediate operand 𝑑

𝑛
via the topmost mul-

tiplexer or selection of an optional “stack fill” value mfn
from memory in the bottom-most multiplexer. How such
memory-to-stack data movement is handled has many
options, and we do not explore these here; however, even
trivial buffer schemes of small capacity or a memory queue
approach is a feasible solution [13, 15, 16]. Thus, this scheme
achieves the ability for in-order issue with out-of-order com-
pletion. This is investigated further in the literature [11, 13, 14,
17].

Analyzing this SSIA structure one can make several
observations; first of all it appears that each issue slot
contributes a logic delay to the overall cycle time of the
system. The logic delay for cascaded SSIA structures is
typically linear with respect to issue width, a fact that is not
true of register files; indeed area growth in register files can
be cubic or quadratic as a function of port count [18] and
have considerable impact in design scaling [19]. A further
observation is that SSIA operand access delays are unequal.
Again this is not true of a register file where all operands are
emitted from parallel read ports with approximately equal
latency. For a superscalar stack scheme, each operand pair
is accessed with a different latency, ranging from near zero
latency to a larger latency at the final issue slot. This may or

VLSI Design 3

Bit
cell

Bit
cell

Bit
cell
Bit
cell

a

b

c

d

CDB

d1 d2 d3 d4

5
m

1
5

m
1

4
m

1
4

m
1

{x, y}1 {x, y}2 {x, y}3 {x, y}4

mF1 mF2 mF3 mF4

a󳰀

b󳰀

c󳰀

d󳰀

5
m

1
5

m
1

4
m

1
4

m
1

5
m

1
5

m
1

4
m

1
4

m
1

5
m

1
5

m
1

4
m

1
4

m
1

Figure 2: Superscalar stack issue array (issue width = 4).

may not be exploitable to some advantage; we simply observe
the characteristic at this stage rather than speculating too
far. However, what we would expect to observe is a similar
story for power behavior where the peak power will not be a
linear multiple of issue width, because each slot will peak at a
different time and not at the same time. Total power over the
whole cycle should however scale with issue width.

3. Implementation Scope and Variations

It should be clear, by analyzing these several cases of advanced
stack operand stores, that the basic component building
block of such a system is a multiplexer of some given
characteristics, primarily the number of inputs or input-
ordinal. It also follows that the best multiplexer design (in
terms of speed, area, or power) will yield the best structure
for the proposed stack-operand management scheme for
the same optimization targets. An obvious choice is to use
standard cell multiplexer components; however, this proves
to be suboptimal where standard cell multiplexer choices are
limited to a few cases and not necessarily implemented in the
best way to facilitate ganging into suitable combinations. In
order to evaluate this, it is necessary to consider the building
block design at the logic level, its fan-out behavior, the logical
effort, localized wire delay, and ultimately the full structure
layout when a number of issue slots are cascaded and the logic
is duplicated to represent the “𝑛” bits of stack width (typically
16, 32, or 64 data bits per operand, for example).

We also note at this point that the depth of the discretely
implemented stack is usually much greater than four ele-
ments. The top four elements only represent the “hot-zone”
of the stack, where activity is more complex. Below this is
a region we refer to as the “tidal zone” whereby all elements
pop or push in unison, like ebb and flow of a tide, but are not
reordered. Figure 3 highlights this difference in stack element
zone behavior. It is noted that these deeper stack elements
may be clock-gated or subject to dynamic powermanagement
when they are “empty.” The nature of the stack makes this
easily identifiable. We do not consider this in the analysis
presented here however.

The tidal stack-element multiplexing arrangements are
less complex. A 3-to-1 multiplexer selects either the existing

S1
S2
S3
S4

S1
S2
S3
S4

Buffer

Mem

Mux {5, 4, 4, 5}

Mux {3, 3, 3, 3}

Various options

Standard

Hot zone

Tidal zone

Deep stack

Cache/mem

Figure 3: Functionally different regions of SSIA stack.

cell-state or one of two neighboring cells (above or below).
How deep this tidal zone should be is a matter for fur-
ther research. It should be as small as possible to reduce
area/power cost, but a tidal zone of say 4 or 8 elements might
not be sufficient to allow tags to achieve delayed write-back
within the deeper stack before content migrates into memory
or cache. This is an area for future research and we therefore
assume, for the present, a discrete stack portion consisting
of multiplexer ordinals as a set {3, 3, 3, 3, 5, 4, 4, 5} reading
bottom to top. The {5, 4, 4, 5} portion being the “hot-zone”
is symbolized by Figure 2 and the {3, 3, 3, 3} portion being a
“tidal zone” is as in Figure 3. This configuration is assumed
in the rest of the paper. There are numerous possibilities for
implementing multiplexers, each has its own advantage and
disadvantage. Some options are summarized below:

(1) combinational logic using AND/OR/MUX,

(2) tristate selection of multiple inputs,

(3) pass-gate transistor based solutions.

In this paper, we focus on cases (1) and (2), and we present
timings as an FO4 delay metric and as an absolute timing. In
both cases, we derive FO4 results from a 90 nm 1 volt process
but also quote absolute timing for comparison between
design choices. This allows FO4 delays to be comparable

4 VLSI Design

across process nodes up to a point. In later sections, we com-
pare the SSIA with alternatives using similar process nodes.

In this paper, we identify several standard cells of interest
for our design objectives and comparative implementations:

(i) AO22: dual two-input-AND feeding into an OR-gate,
(ii) AOI22: equivalent to AO22 but omits final inverter,
(iii) INV: an inverter,
(iv) INVT: inverter with tristate output,
(v) MUX2/MLX2: two input multiplexers, implemented

using pass-gate method,
(vi) MUX3/MLX3: 3 input versions of MUX2 and MLX2,

implemented as cascaded MUX2 and MLX2 circuit
implementation styles,

(vii) QDBAH: active low data latch.

For our experiments we always select the X1 variation of
the available standard cell. This is not the fastest option but
achieves low area cost. The trade-off between larger faster
cells and smaller slower cells is not straightforward: leakage-
power differs, and larger cells will lead to longer wires in the
full structure and alter RC loading effects. Using these cells,
we evaluate the ganged tristate approach of Figure 4, and also
four more typical implementations, based upon the schemes
illustrated in Figures 5(a), 5(b), 6(a), and 6(b). We had
predicted that the tristate selection method would perform
better than combinational logic, based upon initial logical
effort analysis. The tristate model assumes the preceding
decode stage generates one-hot selection signals. Other cases
assume encoded selection signals, generated in the same way.
We can thus define five initial models for evaluation, which
we will refer to using the notation given as follows:

(i) CEN: combinational logic, encoded select lines, and
noninverting logic,

(ii) CEI: combinational logic, encoded select lines, and
inverting logic where possible,

(iii) MEN: MUX2 based design, encoded select inputs,
and noninverting cell outputs,

(iv) MEI: MLX2 inverting mux used where possible,
encoded select inputs,

(v) TNN: tristate mux model with nonencoded select
inputs, and noninverting output per stage.

In addition to the basic switching structure, each model
has a constant delay associated with the state retention flip-
flop/latch and tag-match data-insertion multiplexer. Refer-
ring back to Figure 2, it can be shown that each multiplexing
stage cascades into its successor stage with fan-out of 5
(FO5C), with the exception of the final stage (or only stage
in a nonsuperscalar case). The final stage feeds in to the
storage bit cell, possibly via the tag match insert logic, which
can be placed either immediately before the bit-cell input
or immediately after the bit-cell output. Therefore, it has a
fan-out of 1 rather than the fan-out of 5 encountered when
cascading to further stages. We therefore have case FO1T
(feeding a tag-logic stage) and case FO1L feeding a latch stage.

a

b

c

d

e

S1

S2

S3

S4

S5

Figure 4: TNN-ganged tristate multiplexer scheme.

AO22

INVSEL

A
B

(a)

AOI22

INVSEL

A
B

(b)

Figure 5: Combinational logic gate schemes. (a) CEN-two-input
combinational Mux, (b) CEI-inverting equivalent.

SEL1

SEL1

SEL2 SEL3

(a)

SEL1

SEL1

SEL2 SEL3

(b)

Figure 6: Cascaded multiplexer schemes. (a) MEN-two-input cas-
caded Mux, (b) MEI-inverting equivalent.

The loading effect of these choices then result in three fan-out
loading cases that need to be calculated for each multiplexer
style, relating to the position in the cascade chain:

FO5C: fan-out 5 cascaded,

FO1T: fan-out 1 to tag insert mux,

FO1L: fan-out 1 to Latch.

We evaluate this worst case here and results of our evaluations
are presented in Table 1. From this initial analysis, it appears
that the TNN model has the best speed advantage, and that
either FO1T or FO1L variants are preferable for speed.

4. Tristate Multiplexer Models in Detail

In order to assess the tristate multiplexer strategy with as
much accuracy as possible, we utilized several evaluations.
First of all, evaluations based upon the 90 nm process data
sheets were used to generate an initial timing estimate for

VLSI Design 5

Table 1: Timing of 5m1 component models.

FO5C FO1T FO1L
CEN 291 ps 229 ps 270 ps
CEI 211 ps 149 ps 164 ps
MEN 225 ps 188 ps 208 ps
MEI 168 ps 130 ps 131 ps
TNN 125 ps 97 ps 97 ps

Table 2: Data-sheet predictions.

Gang Delay Tristate fF Inv fF
1 89 ps 2.67 fF 13.05 fF
2 98 ps 4.41 fF 13.05 fF
3 107 ps 6.15 fF 13.05 fF
4 116 ps 7.90 fF 13.05 fF
5 125 ps 9.64 fF 13.05 fF
6 134 ps 11.38 fF 13.05 fF
7 143 ps 13.13 fF 13.05 fF
8 152 ps 14.87 fF 13.05 fF

ganged tristate multiplexers, as shown in Table 2, using the
model introduced earlier in Figure 4.

The total load capacitance (Cload) driven by the active
tristate in the group was calculated as a function of fan-out
(𝐹) and ganging (𝐺) plus the next stage inverter, such that
load capacitance equated to

cload = 2.668 × 𝐹 + 1.743 × (𝐺 − 1) . (1)

The value 2.668 refers to input capacitance of the assumed
next stage (an Inverter INVX1 cell), whilst the value of 1.743
refers to the capacitance of the outputs of the other inverters
(referred to in the data sheet as input capacitance). Both
values are extracted from the cell-library data sheets. These
estimates appear to be sufficient for a first-order comparison
of implementationmethods.However, thismay not bewholly
accurate: signal behavior, layout, and wire effects have some
importance, as will be highlighted later in this paper.

Having evaluated the timing models in each case and
repeated the analysis for each of the FO5C, FO1T, and FO1L
output loading cases, we have enough data to perform an
evaluation of delay variation as a function of issue width.
However, a complete analysis still needs to incorporate the
constant delay of latch and tag insertion timing parameters
themselves and not just the effect they have on output loading
of preceding stages. This is outlined in the following Sections
4.1 and 4.2.

4.1. Tag Insertion Multiplexer. The MUX2 standard cell (X1
type) drives a single fan-out load for the data input of the latch
QDBAH (X1 type). QDBAHX1 has an input capacitance of
1.976 fF for the 𝐷 input node. This allows us to calculate a
delay of 70 ps using the straight-line fit toMUX2 propagation
delay data versus capacitive loading of the driven QDABHX1
latch input.

4.2. State Storage Latch. The latch itself has several important
timing requirements. Setup and hold time amounts to just

Table 3: Bit cell and tag timing data.

FO5 MUX2 MLX2 AO22 AOI22 INVT
D-Q 74 ps 76 ps 76 ps 76 ps 76 ps
Total 179 ps 181 ps 181 ps 181 ps 181 ps

Table 4: Example aggregate timing formulae.

IW Delay summation
1 Latch/tag + CEN.FO1T
2 Latch/tag + CEN.FO5C + CEN.FO1T
3 Latch/tag + (2 × CEN.FO5C) + CEN.FO1T
4 Latch/tag + (3 × CEN.FO5C) + CEN.FO1T

Table 5: Cycle times.

IW CEN CEI MEN MEI TNN

1 410 330 367 311 306
(9.1) (7.3) (8.1) (6.9) (6.8)

2 701 541 592 479 431
(15.5) (12.0) (13.1) (10.6) (9.5)

3 992 752 815 647 556
(22.0) (16.7) (18.1) (14.4) (12.3)

4 1283 963 1042 815 681
(28.5) (21.4) (23.1) (18.1) (15.1)

FO4 delays in brackets.

under 35 picoseconds. Data propagation from 𝐷 to 𝑄 varies
according to output load. This will be fan-out 5 in all cases
but the target cell could be any one of MUX2, MLX2, AO22,
AOI22, or INVT depending upon the implementation. We
therefore have a further table (Table 3) for values derived for
this latch propagation delay and also the final total with tag
logic included.

Examination of Table 3 presents the data latch and total
timing (tag stage plus latch timings). This shows that the
variation in timing of the bit cell latch for different input
variants is marginal.

5. First-Order Timing Projections

With timings projected for each component under all of the
encountered input and output conditions, it is possible to
assemble a timing analysis for a stack issue-logic slice for
each of the component models introduced. At this stage, the
subcomponent delays can simply be summed according to
the configurations used. So, for example, the CEN model
using combinational noninverting logic has configurations
with respect to issue width as given in Table 4.

Replacing “CEN” with any of the other models allows
the same cascading to be used to calculate the respective
delays of each model. These are given in Tables 5 and 6 and
plotted as graphs in Figures 7 and 8. Tables 5 and 6 show the
absolute timing for the chosen 90 nm process, and the FO4
delay figure extracted on the basis that FO4 delay for 90 nm
technology is 45 ps. Byway of confirmation, our experimental
timing measures derived an average FO4 delay of around

6 VLSI Design

Table 6: Access times.

IW CEN CEI MEN MEI TNN

1 0 ps 0 ps 0 ps 0 ps 0 ps
0 0 0 0 0

2 291 ps 211 ps 225 ps 168 ps 125 ps
6 5 5 4 3

3 582 ps 422 ps 450 ps 336 ps 250 ps
6/13 5/9 5/10 4/7 3/5

4 873 ps 633 ps 675 ps 504 ps 375 ps
6/13/19 5/9/14 5/10/15 4/7/11 3/5/8

FO4 delays shown beneath for issues slots 2/3/4.

43 ps for timing combined tpHL and tpLH. The results show
that TNN is the best choice with this level of analytical detail.
The combinational logicmodel CEN is by far theworst option
even for a scalar issue model, and TNN is almost twice as fast
as CEN for the highest issue width examined.

6. ASIC Layout and Core Evaluations

After performing timing estimates based primarily upon
reported standard cell characteristics, it appeared that the
tristate model offered the best delay characteristics without
resorting to full custom cell design. This implementation
model was then evaluated further during a collaborative
visit to the Circuits and Systems Research Centre (CSRC),
University of Limerick, by one of the authors.

VHDL coded descriptions of the 5m1 multiplexer, using
tristate internal selection, were synthesized to create a
standard-cell based mux core. After manually tidying up, the
5m1 cell appeared as illustrated in Figure 9.

Examining the cell critical wires as in Figure 10, wire
lengths approximate to 13.7𝜇m(gangedwire), 2.7𝜇m(input),
and 2.0 𝜇m (output). After DRC and LVS checks, the 5m1 cell
was cropped and rechecked by removal or addition of one or
more tristates to create a range of cells from 2m1 through to
8m1. At this stage, a number of effects were then considered in
order to get an accurate delay estimate for the building block.
These are outlined as follows.

6.1. Slew Rates. Our tests revealed that input slew rates of
the input test signals have an appreciable effect on timings,
adding more than 10 ps to measurements for a conservative
slew rate of 100 ps. We used a buffer chain to condition the
input test signals and give realistic signal properties for our
tests.

6.2. Standard Cell RC Delay. With RC behavior included,
the delays for our multiplexer combinations are increased
noticeably. The data sheets only provide for transistor char-
acteristics and not layout related to wire and metal effects.
Adding wire-related delays for the ganging interconnect in
the multiplexer further increases the delay. Simulation data
for these measurements is given in Table 7.

6.3. Fan-Out Conditions. Delays were measured under a fan-
out of five-tristate inverter load, to match the anticipated

0
150
300
450
600
750
900

1,050
1,200
1,350

D
el

ay
 (p

s)

1 2 3 4

Issue width

30

25

20

15

5

0

D
el

ay
 (F

O
4

)

CEN
MEN
CEI

MEI
TNN

10

Figure 7: Issuewidth versus cycle time for various implementations.

1000

900

800

700

600

500

400

300

200

100

0

D
el

ay
 (p

s)

20

18

16

14

12

10

8

6

4

2

0

D
el

ay
 (F

O
4

)

CEN MEN CEI MEI TNN

7, 8
5, 6
3, 4

1, 2

Figure 8: Issue width versus access time for stack using various
implementation schemes. Showing operand access time for operand
pairs 1-2, 3-4, 5-6, and 7-8, where operand pairs 1-2 have zero access
time.

Figure 9: 5m1 tristate multiplexer layout.

output gate loading conditions. At this stage it becomes
obvious that the initial timing projections given in Section 5
are conservative when compared against real layout and RC
extracted timings (as shown in Table 7). Examination of the
internal behavior of a 5m1 ganged tristate multiplexer core
shows the effect of ganging and the unequal switching times
for tPHL and tPLH transients. This is illustrated in Figure 11,

VLSI Design 7

8,004 nm

3
,0

08
nm

Figure 10: Significant wires in the 5m1 tristate cell, with dimensions
in nm.

Table 7: Delays with and without local wires, for TNNMUX.

Data sheets (FO5) Cell delays (FO5) Cell and wire (FO5)
2m1 89 ps 105 ps 117 ps
3m1 98 ps 121 ps 136 ps
4m1 107 ps 134 ps 155 ps
5m1 116 ps 150 ps 173 ps
6m1 125 ps 164 ps 190 ps
7m1 143 ps 179 ps 208 ps
8m1 152 ps 192 ps 225 ps

which shows an input signal of matched slew rate, causing
internal node switching on the ganged tristate, which in turn
drives the final output inverter. Both tPHL and tPLH are
shown; it is clear that the transient on the internal node is
the critical issue for this design. Using a dynamic precharging
method on the ganged bus (when all tristates are disabled)
might have a significant impact on this problem, allowing
faster operation. This would certainly be an area for further
investigation.

6.4. Fully Cascaded Structure and Bus Interconnect. To make
comparative analysis easier, we derived a model for tristate
behavior under given output loading conditions and mul-
tiplexer input counts. We began with the plot shown in
Figure 12, which shows schematic timings data (blue), RC
extracted data (red), and our final model (green: Figure 13)
incorporating a distribution bus metal structure suitable for
driving a 5-4-4-5multiplexer row, which is the requiredworst
case for the cascaded n-wide issue structure described in this
paper. We also performed simulations of multiplexer cores at
schematic and layout levels, and with cascaded cells, to derive
timings approaching those for a full ASIC implementation.
The data in Figure 13 is used for the final performance
estimates, leading to the revised component timings for the
TNN model, as given in Tables 8(a), 8(b), and 8(c), with
wire effects of Table 9 and predicted access and cycle times
in Table 10. This incorporates schematic derived timing data
for the latch and tag stage (see Tables 8(b) and 8(c)), and wire
effects (Table 9).

The full layout structure is shown in several figures
given as follows: a single row of hot-zone elements is shown
in Figure 14. When several of these rows are stacked one
below another, interlocking the input and output bus lines,

Table 8: (a) Timing models, various simulation modes. (b) Simu-
lation timings for TNN multiplexer driving various next stages. (c)
Schematic timings for LATCH and TAG-MUX components.

(a)

Mux Data sheet Schematic Cell + wire With bus
3m1 107 ps 121 ps 136 ps 156 ps
4m1 116 ps 134 ps 155 ps 176 ps
5m1 125 ps 150 ps 172 ps 195 ps

(b)

3m1 4m1 5m1

FO5C 156 ps 176 ps 195 ps
(3.4) (3.9) (4.3)

FO1T 127 ps 144 ps 159 ps
(2.8) (3.2) (3.5)

FO1L 127 ps 144 ps 159 ps
(2.8) (23.2) (3.5)

Includes std cell RC effects, intercell wires, and interrow/slot distribution
bus. Bracketed data gives equivalent FO4 delays.

(c)

LATCH TOMUX2 106 ps Total
237 psMUX to {5, 4, 4, 5} row FO4 132 ps

MUX2 to latch 102 ps Total
238 psLATCH to {5, 4, 4, 5} row 135 ps

Table 9: Delay data for simple wire of length 0 um–60 um.

Wire 0 um 20 um 40 um 60 um
Delay ∼ 3.0 ps 6.2 ps 8.7 ps

Table 10: Cycle/access times versus issue width.

IW 1 IW 2 IW 3 IW 4
Access 0 ps 195 ps 390 ps 585 ps
Time (0) (4.3) (8.7) (13.0)
Cycle 397 ps 592 ps 787 ps 982 ps
Time (8.8) (13.1) (17.5) (21.8)

the structure appears as in Figure 15, which represents a 4-
wide “hot-zone” structure for a single bit of stack word width.

Hot-zone control wire supply lines are required for each
issue slot, 20 per issue slot. These are capable of being routed
over the cells via a higher metal layer (seen running vertically
top to bottom in Figure 15).These control lines do not impact
upon the structure’s overall area and standard cell packing
density and have no influence on the dimensions of buses
used to connect critical data paths between stacked issue
slots. Finally, Figure 16 shows the additional cells, added to
the left hand side of the layout, representing the {3, 3, 3, 3}
“tidal” stack zone attached to each hot-zone issue slotmodule,
with shared control lines coming from the left-hand side
in this case (though over-cell routing is possible). The
practical consideration to be made here is what impact the
interconnect buses (between hot-zone modules) have upon

8 VLSI Design

1.00

0.75

0.50

0.25

0.00

116 ps

38ps 58ps

48ps

(V
)

Figure 11: External and internal signals relationships for 5m1 RC
extracted simulation. CADENCE timing data plot (redrawn for
clarity).

240

220

200

180

160

140

120

100

80

D
el

ay
 (p

s)

2m1 3m1 4m1 5m1 6m1 7m1 8m1

5.4
5.0
4.6
4.2
3.8
3.4
3.0
2.6
2.2
1.8

D
el

ay
 (F

O
4

)

Data sheet
Schematic

Figure 12: Data sheet versus schematic driven timings. Data sheet
(Blue) measured schematic (red).

240

220

200

180

160

140

120

100

80

D
el

ay
 (p

s)

5.4
5.0
4.6
4.2
3.8
3.4
3.0
2.6
2.2
1.8

D
el

ay
 (F

O
4

)

Data sheet
Full RC sim

2m1 3m1 4m1 5m1 6m1 7m1 8m1

Figure 13: Data sheet versus RC delay with bus metal. Data sheet
(blue) distribution bus (green).

Figure 14: Hot-zone row {5, 4, 4, 5} configuration, and interconnect
bus detail. Four outputs at the bottom are used to drive the four bus
lanes of the next cell (equivalent to those at the top of this cell).

Figure 15: 4-wide {5, 4, 4, 5} issue structure.

Figure 16: Complete {3, 3, 3, 3, 5, 4, 4, 5} × 4-slot structure, showing
metal layers only.

signal delay due to added capacitance. These bus lines are
singularly driven but fan out to 5 destinations.We performed
simulation of cascaded rows using the bus structure shown
in Figure 16 in order to account for this and found that bus
related delays were typically of the order of 20 ps.

7. Comparative Performance

In previous sections, we developed a structural model for
a superscalar operand stack and presented timing estimates
for five different (relatively straightforward) implementation
strategies. The next question to pose is to ask how fast
a superscalar stack is with respect to register file alterna-
tives. However, given the radically different nature of the
superscalar operand store, as compared to the register file
paradigm, blind like-for-like comparisons are difficult to
assert. Consider a likely configuration of our superscalar
stack unit, with perhaps four top-of-stack “hot-zone” ele-
ments (representing the {5, 4, 4, 5}multiplexer arrangement)
and between four and eight deeper “tidal” stack elements

VLSI Design 9

implemented with 3-to-1 multiplexers. If we take the latter
case then we have a total of 12 stack elements. The question
is raised: is this SSIA equivalent to a register file of 12 registers?
Our rationale for comparison is as follows.

7.1. Word Count. Such a stack as described above can push
operands deeper than the 12 discrete elements implemented
directly in logic, so it may not be accurate to describe it
as having equivalent capacity to a register file of 12 words.
Conversely, the number of “useful” registers in a register file
under certain workloads is a small fraction of full capacity.
Many registers are either awaiting write-back or contain
dead data that will never be read again. Useful lifespans are
typically measured in low 10’s of clock cycles [39], so much
so that some researchers have even proposed discharging
unused registers to save power [40]. Stack content is almost
exclusively live and useful, and it is much rarer to have
dead “nomads”; thus, direct comparison ismisleading. Empty
stack elements are always identifiable easily and this corre-
lates with our early comment about empty stack elements
being able to be power or clock gated in a more sophisticated
SSIA solution. However, we note that the fact that redundant
register content is seen as a significant concern for static
power wastage suggests that the stack approach has potential
here as it rarely contains redundant content, which could be
exploited for static/dynamic power reductions.

7.2. Port Count. Typical superscalar register files are arranged
into “𝑛” write ports and “2𝑛” read ports. A 12-port register file
is often organized as 8 read ports and 4 write ports. Such a
configuration matches the expectations of a 4-issue machine,
with 4 pairs of operands (8 reads) and 4 possible results
(4 writes). An SSIA will have an identical read-port count
(a 4-issue stack provides 8 operands). However, each stack
element is capable of retiring an uncommitted value to the
SSIA, so it might be thought that there are “𝑛” write ports
for an 𝑛-deep discrete logic stack portion. However, there are
limitations on practical numbers of retirement buses, and in
practice the ability to retire 2, 3, or 4 results to the stack is
more realistic and has an impact on the design of the tag
match logic (which we have not considered in this analysis)
and therefore makes low orders of concurrent writes more
desirable.

A further complication is that each issue slot can write an
operand to the stack, albeit only to the top element. Do each
of these write channels count as write ports in the traditional
sense? With the restricted nature of the destination (top of
stack only) it seems that it makes sense not to count these
as true write ports in their own right. The postulated 12-deep
stack with an issue width of four could retire four ALU results
and also accept up to four new data values, whilst reading out
8 operands.The extreme interpretation is that this is therefore
an 8+8 port operand store. Given that the 8write channels are
actual two groups of four channels with functionally different
behaviors, we do not think this is the best way to compare
like-for-like (as far as this is possible). We therefore come to a
fairly loose conclusion: a suitable SSIAmodel for comparison
would assume the equivalent of 1 write port and two read

FO
4

de
la

y

24

20

16

12

8

4

0

All data
Best
Linear (all data)
Expon. (best)

Worst
SSIA
Power (worst)
Linear (SSIA)

0 3 6 9 12 15 18 21 24

Read + write ports

(a)

FO
4

de
lay

24

20

16

12

8

4

0
0 3 6 9 12 15 18 21 24

Read + write ports

All
SSIA
Linear (SSIA)

(b)

Figure 17: Comparison between SSIA and register file timing. (a)
Access times and (b) cycle times, plotted on same scales.

ports per issue slot. Note that the stack size has no direct
impact on the number of write ports assumed as this is largely
a function of issue width; however, this is a parameter that
could be investigated further.

To perform a comparison of SSIA versus register file
performance, we collated a range of over forty FO4 timing
data citations and timings for register files as reported in the
literature [20–37]. These are detailed in Table 11. Access-time
data appears to be more widely reported than cycle times
(28 citations versus 13 in our sample). We consider both the
access time and the cycle time of our SSIA in comparison
to the register file. The population of access-time data for
register files (from Table 11) was large enough to derive both
best-case and worst-case envelopes and also a general trend
for port count versus access delay, based on the whole data
set. The data for cycle time was not sufficiently populated
to support meaningful trend extrapolation. However, the
position of the SSIA cycle time predictions within the group
highlights its relative timing behavior. Plotting this analysis
gives the graph shown in Figures 17(a) and 17(b), which show
the population of register file FO4 characteristics for access
time (Figure 17(a)) and cycle time (Figure 17(b)) alongside

10 VLSI Design

Table 11: Reported register file delay times.

Reference Portsa Tot (R + W) TREAD
b (FO4) TCYCLE

b (FO4) Comments
[20, 21] 10 (5 + 5) 22 250 nm CMOS, AMD K7 88 × 90 bit
[20, 22] 8 (4 + 4) 7 130 nmCMOS, 256 × 32 bit
[20, 23] 5 (3 + 2) 7 18 250 nm CMOS, 16 × 64 bit
[20, 24] 5 (3 + 2) 8 250 nm CMOS, 32 × 64 bit, IBM PowerPC
[20, 25] 8 0 13 500 nm CMOS, 32 × 64 bit
[20] 6 (4 + 2) 11 15 32 × 64 bit logical effort model
[20] 9 (6 + 3) 11 16 32 × 64 bit logical effort model
[20] 12 12 17 32 × 128 bit logical effort model
[26] 12 (8 + 4) 17 100 nm CMOS, 16 × 32 bit, low power
[26] 12 8 100 nm CMOS, 16 × 32 bit, high speed
[27] 8 (6 + 2) 5 250 nm SOI, 32 × 64 bits
[28] 12 (4 + 4) 11 100 nm, 160 × 64, two-bank, 440 reg
[28] 12 (4 + 4) 14 100 nm, 160 × 64, two-bank, 80 reg
[28] 24 (16 + 8) 15 100 nm, 160 × 64, two-bank, 40 reg
[28] 24 (16 + 8) 21 100 nm, 160 × 64, two-bank, 80 reg
[29] 17 18 1 um CHMOS, 128 × 64 bit,
[30] 14 (10 + 4) 19 400 nm, 116 × 64 bit
[31] 16 (10 + 6) 23 110 nm CMOS, 34 × 64 bit
[32] 24 (16 + 8) 23 130 nm, 512 reg
[33] 10 10 16 80 × 64 bit, various 250–35 nm
[34] 16 (12 + 4) 15 75 nm CMOS, 128 register,
[35] 2 (1 + 1) 11 180 nm, 160 reg 8 bank
[35] 2 (1 + 1) 10 180 nm, 160 reg 4 bank
[35] 8 (4 + 4) 15 180 nm, 160 reg, 1 bank
[35] 8 (4 + 4) 12 180 nm, 100 reg, 1 bank
[35] 8 (4 + 4) 10 180 nm, 60 reg, 1 bank
[35] 8 (4 + 4) 10 180 nm, 60 reg, 4 bank
[36] 5 (3 + 2) 19 500 nm CMOS, 128 reg
[36] 6 (3 + 3) 20 500 nm CMOS, 128 reg
[36] 7 (4 + 3) 21 500 nm CMOS, 128 reg
[36] 8 (4 + 4) 22 500 nm CMOS, 128 reg
[37] 12 (8 + 4) 14 500 nm CMOS, 48 reg,
[37] 12 (8 + 4) 16 500 nm CMOS, 96 reg
aPorts are stated as T (R +W) where T is port total, and bracketed figures (R +W) represent read and write ports where known.
bDelays are stated as FO4 delay, assuming 1 FO4 delay equates to an approximation scale of 2 nm per ps [38].

the same timing characteristics for the tristate-multiplexer
SSIA model.

The comparative analysis presented in Figure 17 shows
that the predicted models for the proposed SSIA configu-
ration have a delay characteristic that is very competitive
with register file for both access time and cycle time. This
is certainly true for operand pair issue widths of 1, 2, 3,
and 4 (equating to port counts of 3, 6, 9, and 12). One can
observe that SSIA model appears to have increased delay
penalty relative to register file for extreme port counts. For
cycle times, where data was only available for register files up
to 12 ports, the SSIA model appears competitive across the
issue width/port count range plotted. Overall, it can be stated,
based upon the data available in this comparison, that SSIA
has highly competitive performance across both access and
cycle times for up to 8 read ports and issue widths up to 4.

Taking the worst case delays from Table 10 (cycle times),
it is possible to make tentative frequency estimates for a
pipelined architecture limited by the superscalar store, with
frequencies of around 2.5GHz, 1.7 GHz, 1.3 GHz, and 1.0GHz
for issue widths of 1, 2, 3, and 4, respectively. A complete
layout for one bit of an n-wide SSIA is given in Figure 18.

8. Conclusions

In this paper, we have considered a novel approach to
operand management, using a stack based approach with a
scheme which we believe is a new and novel approach for
multiple operand issue, permitting superscalar in-order issue
and out-of-order completion. Our methodology has been
detailed and a model for building suitable stack structures is
demonstrated.

VLSI Design 11

Figure 18: Suggested abutted multiplexer row/issue slot structure
for 4-wide issue. Rows represent issue slots. Core area is ∼32 ×
11.9𝜇m = 378 𝜇m2 per bit (top four cells).

The cascading nature of the logic structure has two
aspects: first of all, it allows a linear growth in logic cost and
area, as well as delay characteristics and power consumption,
which are potentially advantageous. However, the cascading
nature also means that at some point (an issue width of 8,
equivalent to a port count of 20, for example) the SSIA as pre-
sented here becomes less desirable as those costs accumulate.
However, with realistic issue widths the cascading effect does
not reach an uncompetitive behavior. Delay evaluations have
beenmade, utilizing industry standard tools for core building
block characterization, and making reasonable assumptions
for configurations of systems equating to various issuewidths.
We have compared our projected performance data against
a range of existing register file models and found compara-
ble performance is viable. There are a number of possible
enhancements that could bemade to this base design in order
to improve performance. These include

(i) advanced bit-cell design,
(ii) ganged pass gates rather than tristates,
(iii) look-ahead schemes to reduce cascading,
(iv) dynamic precharge of common node,
(v) selective clock-gating of empty cells.

Combining these possibilities, we envisage that cycle delays
might be halved and perhapsmore.This suggests that a 2GHz
4-wide issue stack is conceivable with 90 nm CMOS with
careful optimization and more innovative design, implying
operand issue bandwidth somewhere in the region of 8 to
12 Gigawords per second at 90 nm. Naturally, more advanced
processes will offer further performance gains.

One of the most interesting aspects of the superscalar
stack is its ability to deliver issue slot operands at different
times within the cycle time window, a unique behavior which
we believe will allowmore freedom in layout floor planning at
a higher level of abstraction. This is particularly interesting if
wire pipelining is introduced [41]. We also expect to observe
(and perhaps to enhance further) a power-spreading effect
that reduces peak power over machine cycle time scales due
to the ripple-through effects of logic in our structures. This
has some potential to reduce power density hot spots in the
operand store as well as reducing peak power spikes. When
combined with the knowledge that “useful” register lifespans

are often a small fraction of the power-hungry register file
[39, 40, 42], SSIA starts to look more interesting as a possible
candidate upon which to base superscalar systems. Work on
more advanced multiplexer design continues to be a current
topic [43], and there is substantial scope to learn from this
and improve upon the implementations reported here.

In the wider context, it has been fashionable to consider
the stack machine as outdated. However, the potential for
such architectures to deliver complex operand and instruc-
tion issue models highlights fresh opportunities and offers a
new twist in the development of stack machines and related
queue machines. Combining this with significantly better
stack code optimization frameworks and models highlighted
earlier [8–10, 14, 15] suggests that stack machines might
be overdue a fresh examination in view of the trend for
many simpler cores per chip rather than fewer but more
complex ones. We believe that new avenues have been
opened up by our initial study, in answering one question we
have uncovered many others. A more comprehensive VLSI
oriented study is a highly desirable next step in this work.
Collectively these objectives will allow a complete design
characterization for a prototype superscalar stack processor
to be achieved. We therefore expect to continue to evaluate
these new and novel SSIA architectures in the future and hope
to report further findings in due course.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This paper was supported by work undertaken via visiting
academic spells hosted by the Circuits and Systems Research
Centre, University of Limerick.

References

[1] http://www.itrs.net/links/2011itrs/home2011.htm.
[2] G. Venkatesh, J. Sampson, N. Goulding-Hotta, S. K. Venkata,

M. B. Taylor, and S. Swanson, “QsCores: trading dark silicon
for scalable energy efficiency with quasi-specific cores,” in Pro-
ceedings of the 44th Annual IEEE/ACM Symposium on Microar-
chitecture (MICRO ’44), pp. 163–174, ACM, December 2011.

[3] R. J. Ribando and K. Skadron, “Many-core design from a ther-
mal perspective,” in Proceedings of the 45th Design Automation
Conference (DAC ’08), pp. 746–749, Anaheim, Calif, USA, June
2008.

[4] D. Sylvester and H. Kaul, “Future performance challenges in
nanometer design,” in Proceedings of the 38th Design Automa-
tion Conference, pp. 3–8, ACM, June 2001.

[5] H. O. Ron, K. W. Mai, and A. Fellow, “The future of wires,” Pro-
ceedings of the IEEE, vol. 89, no. 4, pp. 490–504, 2001.

[6] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam,
and D. Burger, “Dark silicon and the end of multicore scaling,”
in Proceedings of the 38th Annual International Symposium on
Computer Architecture (ISCA ’11), pp. 365–376, IEEE, 2011.

12 VLSI Design

[7] I. E. Sutherland, R. F. Sproull, and D. F. Harris, Logical Effort:
Designing Fast CMOS Circuits, Morgan Kaufmann, 1999.

[8] P. Koopman, “A preliminary exploration of optimized stack
code generation,” in Proceedings of the Rochester Forth Confer-
ence, Rochester, NY, USA, 1992.

[9] B. Chris, “Inter-boundary scheduling of stack operands: a pre-
liminary study,” in Proceedings of the EuroForth, pp. 3–11, 2000.

[10] M. Shannon and C. Bailey, “Global stack allocation: register
allocation for stack machines,” in Proceedings of the Euroforth
Conference, 2006.

[11] C. Bailey and M. Weeks, “An experimental investigation of
single and multiple issue ILP speedup for stack-based code,” in
Proceedings of the EuroForth Conference, pp. 19–24, 2000.

[12] US Patent 6148391: System for Simultaneously Accessing one or
More Stack Elements by multiple functional units, and related
US patent 6026485: Instruction Folding for A Stack-Machine.

[13] C. Bailey, “A proposed mechanism for super-pipelined instruc-
tion-issue for ILP stack machines,” in Proceedings of the
EUROMICRO Systems on Digital System Design (DSD ’04), pp.
121–129, IEEE, September 2004.

[14] C. Bailey andH. Shi, “Instruction level parallelism of stack-code
under varied issue widths, and one-level branch prediction,” in
Proceedings of the IADIS International Conference on Applied
Computing (AC ’05), pp. 23–30, Algarve, Portugal, February
2005.

[15] C. Bailey, R. Sotudeh, andM.Ould-Khaoua, “The effects of local
variable optimisation in A C-based stack processor environ-
ment,” in Proceedings of the 1994 Euroforth Conference, 1994.

[16] T. J. Stanley and R. G. Wedig, “A performance analysis of auto-
matically managed top of stack buffers,” in Proceedings of the
14th Annual International Symposium on Computer Architecture
(ISCA ’87), pp. 272–281, ACM, 1987.

[17] C. Bailey, “A proposed mechanism for super-pipelined instruc-
tion-issue for ILP stackmachines,” in Proceedings of the Euromi-
cro Symposium on Digital System Design (DSD ’04), pp. 121–129,
IEEE, 2004.

[18] C. Jesshope, “Microthreading a model for distributed instruc-
tion-level concurrency,” Parallel Processing Letters, vol. 16, no. 2,
pp. 209–228, 2006.

[19] S. Galal and M. Horowitz, “Energy-efficient floating-point unit
design,” IEEE Transactions on Computers, vol. 60, no. 7, pp. 913–
922, 2011.

[20] N. Burgess, “Logical Effort analysis of multi-port register file
architectures,” inProceedings of the Conference Record of the 37th
Asilomar Conference on Signals, Systems and Computers, vol. 1,
pp. 887–891, IEEE, November 2003.

[21] M.Golden andH. Partovi, “500MHz, write-bypassed, 88-entry,
90-bit register file,” in Proceedings of the Symposium on VLSI
Circuits, pp. 105–108, IEEE, June 1999.

[22] R. K. Krishnamurthy, A. Alvandpour, G. Balamurugan, N. R.
Shanbhag, K. Soumyanath, and S. Y. Borkar, “A 130-nm 6-GHz
256 × 32 bit leakage-tolerant register file,” IEEE Journal of Solid-
State Circuits, vol. 37, no. 5, pp. 624–632, 2002.

[23] R. L. Franch, J. Ji, and C. L. Chen, “A 640-ps, 0.25-𝜇m CMOS,
16 × 64-b three-port register file,” IEEE Journal Solid State
Circuits, vol. 32, no. 8, pp. 1288–1292, 1997.

[24] O. Takahashi, J. Silberman, S. Dhong, P. Hofstee, and N.
Aoki, “690ps read-access latency register file for a GHz integer
microprocessor,” in Proceedings of the 1998 IEEE International
Conference on Computer Design, pp. 6–10, Austin, Tex, USA,
October 1998.

[25] W. Hwang, R. V. Joshi, and W. H. Henkels, “A 500-MHz, 32-
word x 64-bit, eight-port self-resetting CMOS register file,”
IEEE Journal of Solid-State Circuits, vol. 34, no. 1, pp. 56–67, 1999.

[26] C. H. Hua and W. Hwang, “Low power multiple access port
register file design in 100 nmCMOS technology,” in Proceedings
of the 14th VLSI/CAD Symposium, Hualien, Taiwan, August
2003.

[27] R. V. Joshi, W. Hwang, S. C. Wilson, and C. T. Chuang, ““Cool
low power” 1 GHz multi-port register file and dynamic latch in
1.8 V, 0.25 𝜇m SOI and bulk technology,” in Proceedings of the
International Symposium on Low Power Electronics and Design
(ISLPED ’00), pp. 203–206, July 2000.

[28] M. Kondo and H. Nakamura, “A small, fast and low-power
register file by bit-partitioning,” in Proceedings of the 11th
International SymposiumonHigh-PerformanceComputerArchi-
tecture (HPCA-11 ’05), pp. 40–49, IEEE, February 2005.

[29] R. D. Jolly, “A 9-ns, 1.4-gigabyte/s, 17-portedCMOS register file,”
IEEE Journal of Solid-State Circuits, vol. 26, no. 10, pp. 1407–1412,
1991.

[30] C. Asato, “A 14-port 3.8-ns 116-word 64-b read-renaming regis-
ter file,” IEEE Journal of Solid-State Circuits, vol. 30, no. 11, pp.
1254–1258, 1995.

[31] N. Tzartzanis, W. W. Walker, H. Nguyen, and A. Inoue, “A
34word× 64b 10R/6W write-through self-timed dual-supply-
voltage register file,” in Proceedings of the IEEE International
Solid-State Circuits Conference, Digest of Technical Papers
(ISSCC '02), vol. 2, pp. 338–537, San Francisco, Calif, USA,
February 2002.

[32] N. S. Kim and T.Mudge, “Themicroarchitecture of a low power
register file,” in Proceedings of the International Symposium on
Low Power Electronics and Design (ISLPED ’03), pp. 384–389,
August 2003.

[33] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger,
“Clock rate versus IPC: the end of the road for conventional
microarchitectures,” in Proceedings of the 27th Annual Interna-
tional Symposium on Computer Architecture (ISCA ’00), vol. 28,
pp. 248–259, ACM, New York, NY, USA, 2000.

[34] K. Puttaswamy and G. H. Loh, “Implementing register files
for high-performance microprocessors in a die-stacked (3D)
technology,” inProceedings of the IEEEComputer SocietyAnnual
Symposium on Emerging VLSI Technologies and Architectures,
IEEE, Karlsruhe, Germany, March 2006.

[35] R. Balasubraamonian, S. Dwarkadas, and D. H. Albonesi,
“Reducing the complexity of the register file in dynamic
superscalar processors,” in Proceedings of the 34th ACM/IEEE
Annual International Symposium onMicroarchitecture (MICRO
’01), pp. 237–248, December 2001.

[36] J. Curz, A. Gonzalez, M. Valero, and N. P. Tophan, “Multi-
banked register file architectures,” in Proceedings of the 27th
International Symposium on Computer Architecture (ISCA ’00),
Vancouver, Canada, June 2000.

[37] K. I. Farkas, N. P. Jouppi, and P. Chow, “Register file design con-
siderations in dynamically scheduled processors,” in Proceed-
ings of the 2nd International Symposium on High-Performance
Computer Architecture (HPCA ’96), pp. 40–51, February 1996.

[38] D. Chinnery and K. Keutzer, Closing the Gap between ASIC
& Custom: Tools and Techniques for High-Performance ASIC
Design, Springer, 2002.

[39] P. Montesinos, W. Liu, and J. Torrellas, “Using register lifetime
predictions to protect register files against soft errors,” in Pro-
ceedings of the 37th Annual IEEE/IFIP International Conference

VLSI Design 13

on Dependable Systems and Networks (DSN ’07), pp. 286–295,
IEEE, June 2007.

[40] L. Jin, W.Wu, J. Yang, C. Zhang, and Y. Zhang, “Reduce register
files leakage through discharging cells,” in Proceedings of the
24th International Conference on Computer Design (ICCD ’06),
pp. 114–119, IEEE, October 2006.

[41] V. Nookala and S. S. Sapatnekar, “Designing optimized
pipelined global interconnects: Algorithms and methodology
impact,” in Proceedings of the IEEE International Symposium on
Circuits and Systems (ISCAS ’05), pp. 608–611, IEEE, May 2005.

[42] Z. Hu and M. Martonosi, “Reducing register file power con-
sumption by exploiting value lifetime characteristics,” Proceed-
ings of the Workshop on Complexity-Effective Design (WCED
’00), vol. 1, pp. 1829–1841, 2000.

[43] R. Singh, G.-M. Hong, M. Kim, J. Park, W.-Y. Shin, and S.
Kim, “Static-switching pulse domino: a switching-aware design
technique for wide fan-in dynamic multiplexers,” Integration,
the VLSI Journal, vol. 45, no. 3, pp. 253–262, 2012.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

