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The optimum material gradient of a rectangular plate made of functionally graded material (FGM) is determined in this study.
Elastic modulus of functionally graded (FG) rectangular plate is assumed to vary continuously throughout the height of the plate,
according to the volume fraction of the constituent materials based on the power law, exponential model I, exponential model
^, or sigmoid functions. The difference between these distribution functions for the constituents’ volume fraction is discussed in
this study. To determine the optimum material gradient of a rectangular plate made of FGM, the finite element method and the
optimization techniques are used. In this study, von Mises stress, shear stress, and deformation in FGM case with the power law,
exponential model I, exponential model ^, or sigmoid functions are investigated. Simulation results indicate that the optimum
material gradient for FG rectangular plate can be described by using a modified sigmoid function. The maximum values of von
Mises stress, shear stress, and deformation in FG rectangular plate with the optimummaterial gradient are reduced compared with
the pure material case by around 22%, 11%, and 24%, respectively.

1. Introduction

Because of the demand of conflicting property requirement
in engineering applications, pure metals are of little use. To
satisfy the high performance of industrial demands and to
eliminate the stress singularities (Hirano and Yamada [1];
Niino and Maeda [2]), one way to achieve these objectives is
to use “functionally graded materials (FGMs)” [3, 4].

Before FGMs were found, over the past three decades in
Japan thin layers or laminates were used in plane structures,
but temperature variation occurred through the thickness.
This temperature variation could produce thermal deforma-
tion and the thin layers separated, so engineers decided to
find a new idea using different materials or a new method to
avoid the cause of separation. After engineers did some expe-
rimental tests, a new material was developed, which was
defined as FGM. FGMs are microscopically inhomogeneous
in which the mechanical properties vary smoothly and conti-
nuously from one surface to the other [5, 6].

Power law function (Yung and Munz [7]; Jin and Paulino
[8]) and exponential function (Delale and Erdoogan [9], Jin
and Noda [10], Jin and Batra [11], Erdogan and Wu [12], Gu

and Asaro [13], and Erdogan and Chen [14]) are commonly
used to describe the material properties variations of FGMs.
A stress concentration appears due to abrupt changes of
the distribution for the volume fractions in both power law
and exponential functions. Chung and Chi [15] proposed a
sigmoid function to define a new distribution for the volume
fractionwhich can be used to reduce the stress intensity factor
(Chi and Chung [16]).

The primary objective of this study is to discuss the
difference between these distribution functions for the con-
stituents’ volume fraction and using the optimization tech-
niques that are available in the ANSYS package [17] to dete-
rmine the optimum material gradient of a rectangular plate
made of FGM. Very few investigators have studied the diffe-
rence between the power law, exponential, or sigmoid func-
tions for the constituents’ volume fraction. To the best of the
author’s knowledge, there are no references available in the
literature which deal with the determination of the optimum
material gradient of a rectangular plate made of FGM.

The present investigation deals with this problem itself. In
this study, a two-dimensional casewhere a rectangular plate is
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Figure 1: FG rectangular plate of (a) P-FGM, E-FGMmodel I, and S-FGM cases and (b) E-FGMmodel ^ case.

put under uniaxial tension with the two unloaded edges held
fixed is considered. Elastic modulus of a rectangular plate is
assumed to vary continuously throughout the height of the
plate, according to the volume fraction of the constituent
materials based on the power law, exponential, or sigmoid
functions. Delale and Erdoogan [9] indicated that the effect of
Poisson coefficient on the deformation is much less than that
of Young’s modulus. Thus, the value of Poisson coefficient is
constant and was set to 0.3 in this study.

2. Material Gradient of FGM Plates

The material properties of FGMs vary smoothly from one
surface to another. The power law function, exponential
function model I, exponential function model ^, or sigmoid
function are used by most researchers to describe the volume
fraction. In this paper, a rectangular plate made of FGMwith
all previous functions will be considered. Let us consider
the case of a rectangular plate of length 𝐿 and total height
ℎ with coordinate system as shown in Figure 1. Figure 1(a)
shows the plate of the power law, exponential functionmodel
I, and sigmoid function cases. Figure 1(b) shows the plate of
the exponential function model ^ case. In the present work,
elastic modulus of FG rectangular plate is assumed to vary
according to power law, exponential function model I, or
sigmoid function. The values of elastic modulus at 𝑦 = −ℎ/2
and at 𝑦 = ℎ/2 are 𝐸

2
and 𝐸

1
, respectively, as shown in

Figure 1(a). Also, elastic modulus of FG rectangular plate is
assumed to vary according to exponential function model^.
In this case, the material properties vary over the plate from
𝐸
1
= 𝐴 = 200GPa to 𝐸

𝑛
, as shown in Figure 1(b).

2.1. Characteristics of the Power (P-FGMs) Plates. Thevolume
fraction Ψ(𝑦) of the power (P-FGM) is assumed to obey the
following power function:

Ψ (𝑦) = (
𝑦 + ℎ/2

ℎ
)

𝑤

, (1)
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Figure 2: The variation of Young’s modulus in a P-FGM plate.

where “𝑤” is the material gradient index and “ℎ” is the height
of the plate. After the volume fraction Ψ(𝑦) of the power (P-
FGM) is defined, the material properties can be determined
by the rule of mixture as follows:

𝐸 (𝑦) = Ψ (𝑦) 𝐸
1
+ [1 − Ψ (𝑦)] 𝐸

2
, (2)

where 𝐸
1
and 𝐸

2
are the elastic modulus at (𝑦 = ℎ/2) and at

(𝑦 = −ℎ/2), respectively.The variation of Young’s modulus in
the height direction (𝑦-direction) of the power (P-FGM)plate
is shown in Figure 2. Figure 2 shows that near 𝑦 = −ℎ/2 for
𝑤 > 1 the elastic modulus changes rapidly and near 𝑦 = ℎ/2
for 𝑤 < 1 increases quickly.

2.2. Characteristics of the Exponential (E-FGM) Plate Model
I. The exponential function is used by many researchers to
describe the variation in elastic modulus as follows [9]:

𝐸 (𝑦) = 𝐴𝑒
𝐵(𝑦+ℎ/2)
, (3)

where 𝐴 = 𝐸
2
and 𝐵 = (1/ℎ) ln(𝐸

1
/𝐸
2
).
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Figure 3: The variation of Young’s modulus in an E-FGMmodel I.
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Figure 4:The variation of Young’s modulus in an E-FGMmodel^.

The variation in𝐸(𝑦) in the height direction (𝑦-direction)
of the (E-FGM) plate model I is shown in Figure 3.

2.3. Characteristics of the Exponential (E-FGM) Plate Model
^. The variation in elastic modulus for the exponential (E-
FGM) plate model ^ case can be defined by the following
expression:

𝐸 (𝑦) = 𝐴𝑒
𝐵𝑦
, (4)

where 𝐴 is the initial modulus of elasticity of FGM and 𝐵 is
the coefficient of graded in modulus of elasticity of FGM.

In the present work, the value of initial modulus of
elasticity of FGMwas set to 200GPa and the value of Poisson’s
ratio was set to 0.3. In the exponential (E-FGM) plate model
^, the material properties vary over the plate from 𝐸

1
=

𝐴 = 200GPa to 𝐸
𝑛
. Figure 4 shows the variation of elastic

modulus in the height direction (𝑦-direction) of the (E-FGM)
plate model ^.

2.4. Characteristics of the Sigmoid (S-FGMs) Plate. The
stress concentrations appear due to abrupt changes of the
distribution for the volume fractions in both power law
and exponential functions. Chung and Chi [15] proposed a
sigmoid function to define a new distribution for the volume
fraction which can be used to reduce the stress intensity
factor and to ensure smooth distribution of stresses among
all the interfaces (Chi and Chung [16]). The behavior of a
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Figure 5: The variation of Young’s modulus in an S-FGM plate.

sigmoid function is defined by two power law functions as
follows:

Ψ
1
(𝑦) = 1 −

1

2
(
ℎ/2 − 𝑦

ℎ/2
)

𝑤

for 0 ≤ 𝑦 ≤ ℎ
2
,

(5)

Ψ
2
(𝑦) =
1

2
(
ℎ/2 + 𝑦

ℎ/2
)

𝑤

for − ℎ
2
≤ 𝑦 ≤ 0.

(6)

By using the rule of mixture, the elastic modulus of the
sigmoid (S-FGM) can be evaluated as follows:

𝐸 (𝑦) = Ψ
1
(𝑦) 𝐸
1
+ [1 − Ψ

1
(𝑦)] 𝐸

2

for 0 ≤ 𝑦 ≤ ℎ
2
,

(7)

𝐸 (𝑦) = Ψ
2
(𝑦) 𝐸
1
+ [1 − Ψ

2
(𝑦)] 𝐸

2

for − ℎ
2
≤ 𝑦 ≤ 0.

(8)

Figure 5 shows that the variation of elastic modulus is given
by (7) and (8) which represent the sigmoid distribution.

3. Finite Element Analysis and
Optimization Technique

The finite element analysis and optimization were performed
using the ANSYS package [17]. In this study, the model was
built in ANSYS Rel.12.1 by means of the Parametric Design
Language (APDL) to easily manage the properties of the
FGM. To model the FGM in the finite element software, the
model is divided to a number of homogeneous materials
in which the material properties vary due to power law,
exponential functionmodel I, exponential functionmodel^,
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or sigmoid function. A computer program is developed using
ANSYS Parametric Design Language (APDL) to calculate the
elastic modulus for power law function, exponential function
model I, exponential functionmodel^, and sigmoid function
cases using equations from (1) to (8). Plane elements (PLANE
182) were used to generate the model in 𝑥-𝑦 plane.

The discrete size of the mesh is 0.1mm. Sensitivity
analysis of a mesh size is carried out. The mesh with discrete
size of 0.5, 0.3, and 0.1mm, respectively, is applied for a
rectangular plate model. It is found that the meshes with 0.3
and 0.1mm discrete size yield almost identical results, and
the maximum von Mises derived from the mesh of 0.3mm
discrete size has a discrepancy of 0.3% to that with 0.1mm
discrete size. On the other hand, with 0.5mmdiscrete size the
mesh has substantial difference in terms of vonMises to those
from meshes with 0.1 and 0.3mm discrete size. Thus, the
present work adopts the mesh with a discrete size of 0.1mm.
The final model constituted 16000 elements and 16281 nodes.
In this study, a rectangular plate is put under uniaxial tension
of a magnitude of 10N with the two unloaded edges held
fixed, as shown before in Figure 1.

The primary objective of this study is to discuss the differ-
ences between the distribution functions for the constituents’
volume fraction. After that, the procedure of optimization
technique was applied in combination with the above FE
model using the ANSYS FE program in order to optimize
the material gradient of the FG rectangular plate. The design
objective is to minimize the maximum von Mises stress in
the plate model. The design variable for this problem is the
volume fractionΨ(𝑦) of the power (P-FGM) and the sigmoid
(S-FGM), which is described by the material gradient index
“𝑤.” Thus, the objective function for this problem is to
minimize the maximum von Mises stress in a rectangular
plate model which is put under uniaxial tension with the two
unloaded edges held fixed. The constrains for this problem
are

(i) tomaintain the value of the design variable “𝑤”within
the limits used in the literature [18, 19] as 0 ≤ 𝑤 ≤ 10;

(ii) to maintain the maximum shear stress in the plate
model less than or equal to the initial value obtained
for pure material (𝐸 = 200GPa);

𝜏
𝑃
≥ 𝜏FGM, (9)

where 𝜏
𝑝
is the maximum shear stress which is obtained for

pure material and 𝜏FGM is the maximum shear stress which is
obtained for FGM.

4. Results and Discussion

The primary objective of this study is to discuss the differ-
ences between the distribution functions for the constituents’
volume fraction. After that, the procedure of optimization
technique was applied using the ANSYS FE program in order
to optimize the material gradient of the FG rectangular plate.
In this section the responses of P-FGM and S-FGM plates for
different values of “𝑤” are compared but the E-FGM plate
model I and E-FGMplate model^ are compared to the other

two functions for 𝑤 = 1 because of their characteristics of
being independent of “𝑤” [20]. In the final of this section,
optimal material gradient for FG rectangular plate is carried
out.

4.1. Comparison of the Responses of P-FGM and S-FGM Plates
for Different Values of “𝑤”. In the P-FGMs case for small “𝑤,”
the plate will be rich in material, which has a large Young’s
modulus, and as a result its maximum values of von Mises
stress, shear stress, and deformation will be small. However,
for large “𝑤,” the plate will be rich in material, which has a
small Young’smodulus, and itsmaximumvalues of vonMises
stress, shear stress, and deformationwill be larger. Simulation
cases of P-FGMplates for different values of “𝑤” are shown in
Figure 6. The results show that the best value of the material
gradient index “𝑤” is 0.1. With𝑤 = 0.1, the maximum values
of von Mises stress, shear stress, and deformation equal to
40.378MPa, 16.308MPa, and 0.000122, respectively.

On the other hand, simulation cases of S-FGM plates for
different values of “𝑤” are shown in Figure 7.The results show
that the best value of the material gradient index “𝑤” is 8.
With 𝑤 = 8, the maximum values of von Mises stress, shear
stress, and deformation equal to 41.356MPa, 16.561MPa, and
0.000176, respectively.

4.2. Comparison of the Responses of P-FGM, E-FGM Model
I, E-FGM Model ^, and S-FGM . The responses of E-FGM
model I and E-FGMmodel ^ are compared to the other two
functions P-FGM and S-FGM for 𝑤 = 1 because of their
characteristics of being independent of “𝑤” [20]. Figure 8
shows the simulation cases of P-FGM, E-FGM model I, E-
FGM model ^, and S-FGM responses in 𝑤 = 1. The results
show that theminimumvalues ofmaximumvonMises stress,
shear stress, and deformation are found in the P-FGM and
S-FGM cases. As shown in Figure 8 the minimum values of
maximum von Mises stress, shear stress, and deformation
equal to 42.194MPa, 16.812MPa, and 0.000156, respectively.

4.3. The Optimum Material Gradient. In the present work,
the procedure of optimization was applied using ANSYS FE
program in order to optimize the material gradient of the FG
rectangular plate. In the case of P-FGM, the optimum value
of material gradient index “𝑤” equals 0.049685946. In this
case the maximum values of von Mises stress, shear stress,
and deformation equal to 40.2792498MPa, 16.28MPa, and
0.000109, respectively. On the other hand, in the case of S-
FGM, (5) and (6) are modified and become

Ψ
1
(𝑦) = 1 −

1

2
(
ℎ/2 − 𝑦

ℎ/2
)

𝑤

for 0 ≤ 𝑦 ≤ ℎ
2
,

(10)

Ψ
2
(𝑦) =
1

2
(
ℎ/2 + 𝑦

ℎ/2
)

𝐷

for − ℎ
2
≤ 𝑦 ≤ 0,

(11)
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Figure 6: Simulation cases of P-FGM plates for different values of “𝑤” (a) maximum von Mises stress, (b) maximum shear stress, and (c)
maximum deformation.
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Figure 7: Simulation cases of S-FGM plates for different values of “𝑤” (a) maximum von Mises stress, (b) maximum shear stress, and (c)
maximum deformation.

where the optimum values of the material gradient indexes
“𝑤” and “𝐷” equal to 0.34116 and 9.1872, respectively. In
this case, the maximum values of von Mises stress, shear
stress, and deformation equal to 40.872MPa, 16.436MPa,
and 0.000141, respectively. For two cases P-FGM and

S-FGM, Figure 9 shows the optimummaterial gradient of FG
rectangular plate.

Although the results show that the maximum values
of von Mises stress, shear stress, and deformation in the
P-FGM case are less than in the S-FGM case, the material
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Figure 8: Comparison of P-FGM, E-FGM model I, E-FGM model ^, and S-FGM responses in 𝑤 = 1 (a) maximum von Mises stress, (b)
maximum shear stress, and (c) maximum deformation.
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Figure 9: The optimum material gradient of FG rectangular plate.

distributions as shown in Figure 9 show that the first step of
the variation of Young’s modulus in the P-FGM case changed
abruptly from 200GPa to 374GPa. So the optimum material
gradient of FG rectangular plate can be descried by using (10)
and (11), putting the values of material gradient indexes “𝑤”
and “𝐷” equal to 0.34116 and 9.1872, respectively.

5. Conclusion

The following observations can bemade based on the present
work.

(1) Simulation cases of P-FGM plates for different values
of “𝑤” are investigated, and the best value of material
gradient index “𝑤” is 0.1.

(2) Simulation cases of S-FGM plates for different values
of “𝑤” are investigated, and the best value of material
gradient index “𝑤” is 8.

(3) Simulation cases of P-FGM, E-FGMmodel I, E-FGM
model ^, and S-FGM in 𝑤 = 1 are investigated, and
the minimum values of maximum von Mises stress,
shear stress, and deformation are found in the P-FGM
and S-FGM cases.

(4) The procedure of optimization techniquewas applied.
The optimum material gradient of FG rectangular
plate can be described by using (10) and (11), putting
the values of material gradient indexes “𝑤” and “𝐷”
equal to 0.34116 and 9.1872, respectively.

(5) Themaximum values of vonMises stress, shear stress,
and deformation in FG rectangular plate with the
optimum material gradient are reduced compared
with the pure material case by around 22%, 11%, and
24%, respectively.
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