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Shannon’s Nyquist theorem has always dictated the conventional signal acquisition policies. Power system is not an exception
to this. As per this theory, the sampling rate must be at least twice the maximum frequency present in the signal. Recently,
compressive sampling (CS) theory has shown that the signals can be reconstructed from samples obtained at sub-Nyquist rate. Signal
reconstruction in this theory is exact for “sparse signals” and is near exact for compressible signals provided certain conditions
are satisfied. CS theory has already been applied in communication, medical imaging, MRI, radar imaging, remote sensing,
computational biology, machine learning, geophysical data analysis, and so forth. CS is comparatively new in the area of computer
based power system monitoring. In this paper, subareas of computer based power system monitoring where compressive sampling
theory has been applied are reviewed. At first, an overview of CS is presented and then the relevant literature specific to power

systems is discussed.

1. Introduction

Operation of electric power system has become increasingly
complex due to high load growth, increasing market pres-
sure, increasing interconnections of transmission lines, and
penetration of variable renewable energy sources. As a result,
system operators are forced to operate power grids near their
operating limits. The occurrence of major blackouts in many
power systems around the world has necessitated the use of
better system monitoring and control methodologies. The
analysis of the August 14, 2003, blackout has shown that
the problems developed hours before the system collapse.
If the system operators were aware of the overall worsening
system conditions that were developing, certain actions could
have been taken. Better system monitoring is only possible
if the operator has better knowledge about the grid. As a
result, power utilities are looking for new computer based
smart devices and smart solutions for grid monitoring and
control. An overview of smart grids can be found in [1, 2].
Computer technologies are being used to make traditional
power generation, transmission, and distribution systems
more efficient. Phasor Measurement Unit (PMU) based Wide
Area Measurement Systems (WAMS) are being installed to

monitor power system dynamics accurately. Communication
networks are being upgraded to allow two way communi-
cations and send more and more information to control
centers. Utilities are installing wireless smart meters [3, 4]
with communication facilities in distribution systems. In
[5], different smart grid communication technologies are
discussed. Wireless communication technologies are being
considered for distribution automation applications [5, 6].
Fiber optic based wired communication networks are con-
sidered most attractive for Wide Area Measurement Systems
(WAMS).

Compressive sampling (CS) has been used in many areas
including spectrum sensing for cognitive radio [7-10], med-
ical imaging [11-14], radar imaging [15-18], remote sensing
[19-21], computational biology [22, 23], machine learning
[24], and video transmission [25-27]. CS is a comparatively
new topic in the area of power system monitoring. In this
paper, subareas of computer based power system monitoring
where compressive sampling theory has been applied are
reviewed.

This paper is organized as below. In Section 2, overview of
CS is presented. In Section 3, basic mathematic formulation



of CS is presented. In Section 4, the results of this survey are
presented.

2. Compressive Sampling Overview

The Shannon’s Nyquist sampling theorem has always played
an important role in all types of real world signal acquisition
systems. Traditional power system signal processing heavily
depends on the Nyquist sampling theorem. As per this
theorem, the sampling frequency of a signal should be at least
twice the bandwidth of the signal to avoid aliasing. Signal
bandwidth is defined as the difference between highest and
lowest frequencies of a signal. Mathematically the Nyquist
sampling theorem can be written as

F,>F, @

where F is the sampling frequency and F, is the largest
frequency component of the signal. In (1), the lowest fre-
quency is assumed to be 0 Hz. Aliasing happens when signals
are sampled at sub-Nyquist rate or when condition (1) is
violated. Due to aliasing, higher frequencies appear as lower
frequencies in the sampled signal. The frequency components
estimated using aliased samples are erroneous. As a result,
reconstruction of original signal is not possible from the
aliased samples.

Recently, compressive sampling (CS) theory [28, 29] has
shown that the signals can be reconstructed from samples
obtained at sub-Nyquist rate. This signifies that accurate
signal reconstruction is also possible from aliased data using
CS. CS goes against the traditional data acquisition policies.
Nyquist sampling theorem is based on the rate of change
of a signal while CS is based on the information content
of a signal [30]. The sampling rate of CS depends on the
amount of information present in a signal. Redundancy in
the signal is removed by effective sampling process. Random
sampling is shown to reduce the effective sampling rate for
CS. Random sampling preserves the signal structure even at
sub-Nyquist rate. Traditional sampling is based on uniform
sampling whereas CS theory depends on random sampling.
The basic block diagram of CS is presented in Figure 1. CS
mainly consists of two major steps. The steps are as follows.

(i) Sampling: the signal is randomly sampled at the send-
ing end. A signal of length N is randomly sampled
into an m dimensional vector (m < N). The random
samples are then transmitted to the receiver.

(ii) Reconstruction: the receiver reconstructs the signal
at higher rates using reconstruction algorithms and
the recovery of the original signal from the m dimen-
sional vector.

Successful signal reconstruction in CS depends on the
sparsity of the signals. The phrase “sparse signals” refer to
the class of signals which have few nonzero components.
Information content of a sparse signal may be much smaller
than that suggested by its bandwidth. CS is also applicable
for the signals which are sparse with respect to some basis
vector. CS is also applicable for compressible signals which
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FIGURE 1: Block diagram of compressive sampling.

have a few dominant components and many near-zero
components. Many real world signals belong to this category.
CS reconstruction is exact for sparse signals and is near exact
for compressible signals.

The CS theory started its journey with the several
important results by David Donoho, Emmanuel Candes,
Justin Romberg, and Terence Tao. One of the important
papers on CS theory is [31]. The basic formulation of CS
theory can be found in this paper. In [31], a computationally
efficient formulation was proposed for signal reconstruction.
In [31], the signal reconstruction problem was defined as ¢1-
minimization problem. Similar type of result was published
in an independent paper [32]. The name “Compressed Sens-
ing” was used for the first time in [32]. The idea of using the £1-
minimization instead of £0-minimization was motivated by
the results published in [33]. In [33], generalized uncertainty
principle was proposed and discussed in reference to the
signal recovery problems. In [33], the generalized uncertainty
principle was used to explain that “something unexpected
is possible; specifically, the recovery of a signal or image
despite significant amounts of missing information” It was
also shown that (using discrete-time uncertainty principle)
sparsity helps in the recovery of missing data. Random
sampling is the major key to the success of the CS theory. In
[33], it was mentioned (in a conjecture) that signal recovery
from a subset may be possible if the samples of the subset are
chosen in random. Duality property was also discussed in it.
However, this paper could not give definite proof/conditions
for sparse signal recovery. In this context, [31] was successful
to provide considerable amount of mathematical background
for CS theory. In [31] minimum number of samples required
for exact signal reconstruction was also presented. Till now
CS theory was mainly discussed for sparse signals. In [34], CS
theory was extended to the compressible signals which decay
with power laws. Initially, CS theory was mainly developed in
frequency domain. So the measurement matrix was Fourier
basis. In [34], other types of measurements ensembles, such
as Gaussian and Binary, were discussed. Another signifi-
cant contribution of [34] is the introduction of “Uniform
Uncertainty Principle” and “Exact Reconstruction Principle”
If these two principles are satisfied by the measurement
matrix, the solution of the ¢l-minimization problem gives
the original signal. Another popular condition to ensure
stable recovery is the “restricted isometry property” (RIP)
proposed in [35]. The main purpose of RIP is to make sure
that the geometry of sparse signals is preserved under the
action of the sampling matrix. Now, most of the real world
signals include noises. So, it is important for the CS theory
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to be stable in presence of noise. In [36], CS formulation
for noisy data was presented. In this paper, authors also
presented the condition for stable recovery for noisy data.
Once the theory of compressed sampling got established,
the next challenge was to find an eflicient reconstruction
algorithm. In compressive sensing, the major challenge is to
identify the subspace in which the measured signal lies in.
Once the correct subspace is determined, the nonzero signal
coefficients are calculated by applying the pseudoinversion
process.

The main algorithmic challenge in CS theory is the
reconstruction from the received samples. There are many
approaches for solving the sparse approximation problems.
Convex relaxations were the initial approach for signal recon-
struction in CS theory. Here, sparse signal is reconstructed via
solving a convex optimization problem. The most common
approaches involve projected gradient methods [37-40],
NESTA [41], or iterative thresholding [42-46]. Probabilistic
methods use probabilistic models and statistical inference
for sparse reconstruction. Bayesian compressive sensing [47-
50] belongs to this category. In wireless sensor networks, a
large number of information sources are distributed over an
area. In [51-54], CS algorithms for wireless sensor networks
are presented. Greedy pursuit methods iteratively refine the
current estimate of the vector x by modifying one or several
coeflicients that give a substantial improvement in approxi-
mating the signal. Examples include active-set method [55],
stage wise OMP [56], and regularized OMP (ROMP) [57].
ROMP is an improved version of greedy algorithm. The
results of ROMP are further improved in compressive sam-
pling matching pursuit (CoSaMP) [58] and subspace pursuit
(SP) [59] algorithms. CoSaMP and SP algorithms are very
much similar in nature and provide rigorous performance
guarantees in terms of recovery and program runtime. They
are also deterministic in nature. In [60-63], model based
CS has been proposed. CS reconstruction usually uses fixed
orthogonal basis. Many times, fixed orthogonal basis vectors
are not flexible enough to match the actual sparsity of the
sound signals and natural images. In [64-67], best basis
extension of CS reconstruction has been proposed. In this
approach, best basis adapted to the signal is chosen from a
set of basis.

3. Compressive Sampling Formulation

3.1. Problem Formulation. Suppose a time domain signal
f(t) is being measured. The measurement process can be
represented as [68]

fork=1,2,...,N

Ve = {fr o)
or y=¢f,

2)

where y, f are N x 1 vectors and ¢ is the sensing waveform
of dimension N x N. N can be considered as data window. If
@y is the Dirac delta functions (spikes), for example, then y is
a vector of sampled values of f in the time domain.
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FIGURE 2: Procedures in compressive sampling [68].

Now, suppose the signal f is s-sparse (at most “s” nonzero
elements in ¥ domain) and is mathematically represented

using basisy = [y, v, -+ y,]as

f@= Zkak or f=yx, 3)

k=1
where x is the coefficient sequence of f, x; = (f, ;).
Thus,

y=¢yx or y=Ax, (4)

where A = gy (N x N matrix).

Given y and A, one may find solutions for x.

Now, we are interested in undersampled situations in
which the number of measurements (1) is much smaller than
the signal dimension N. Thus,

7 = gyx = Ax, (5)

where 7 is m x 1 matrix, x is N x 1 matrix, and A, o
are m X N matrix. Accurate reconstruction of x from m
measurements looks difficult, as one would need to solve an
underdetermined linear system of equations.

The appeal of compressive sampling (CS) is that, in
many situations where the signal is sparse or has sparse
representation in some basis, one can actually recover x
exactly from y. CS theory mainly consists of two major steps
which are depicted in Figure 2 [68]. The steps are as follows.

(1) Sampling: in this step m numbers of samples are
derived from a block of N (i < N) number of source
samples. This is achieved by multiplying the sensing
matrix with source signal. The derived samples are
then sent over communication channel to a receiver.

(2) Recovery: the received samples are then processed by
a recovery algorithm (RA) to reconstruct the source
signal.

One of the theoretically simplest ways to recover x from ¥ is
to solve the £0-minimization problem [31]:
Min Il o
— (6)
subject to  y = Ax,

where [[x[l, = [{i : x; # 0}].



This problem is numerically infeasible as the optimization
problem is nonconvex and its solution usually requires an
intractable combinatorial search. One major approach to find
numerically feasible alternative to this NP-Hard problem is
basis pursuit which relaxes the £0-minimization problem to
£1-minimization problem as below [31]:

Min Il Il

— 7)
subject to  y = Ax,

where [|x||; denotes £1 norm of vector x.

3.2. Conditions for Success of CS Theory. The degree of
undersampling achievable in CS theory or the minimum
value of “m” allowing successful reconstruction depends on
the choice of sensing (@) and basis matrix (y). Sensing matrix
and the basis matrix should be incoherent to each other for
lower value of “m”. Smaller number of measurements (1) is
needed when the incoherence between @ and vy pair is larger.
The mutual coherence between sensing and basis matrix is
defined as [29]

u(@v) = \/Zn,lj}x|<¢k%>| (8)

In [35] restricted isometry hypothesis was introduced as a
condition for exact recovery of sparse signals. RIP is closely
related to the incoherence property between ¢ and y. It says
that exact recovery occurs if matrix A obeys the restricted
isometry property (RIP). The matrix A is said to satisfy the
s-restricted isometry property (s is the sparsity of the signal)
with restricted isometry constant §,, when there exists a
constant &, such that, for every m x s submatrix A of A and
for every x [29],

(1-8) IxlE < A" <@+ o) iz

RIP mainly requires that every set of columns with cardinality
less than s approximately behaves like an orthonormal. So,
a small restricted isometry constant should be achieved
while acquiring a s-sparse signal. Fortunately, many types of
random matrices have excellent restricted isometry behavior.
Random Gaussian, Bernoulli, and partial Fourier matrices
satisfy the restricted isometry condition with number of
measurements nearly linear in the sparsity level. The most
common types of random matrices used in CS theory are as
follows.

(i) Gaussian matrices: the elements of this matrix are
identically and independently sampled from a stan-
dard normal distribution.

(ii) Partial Fourier matrices: This is obtained by randomly
selecting rows from the N x N Fourier matrix. That
means samples are chosen in random from source
signal.

The number of samples required for exact reconstruction is
(i) m = Cslog(N/s) for Gaussian matrices,

(ii) m > Cs(log N )* for partial Fourier matrices,
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FIGURE 3: Basic architecture of WAMS [69].

where C is a constant which varies from instants to instants.
The value of C is usually small.

3.3. CS Theory for Nonsparse Compressible Signals. Till now
we have mainly discussed CS theory with respect to sparse
signals. Now, there are many practical signals which are
compressible but not sparse. These signals are characterized
by few dominant components and other components being
very small in magnitude but nonzero. Noisy signal is an
example to this. In [34], CS theory is extended to the
compressible signals which decay with power laws. In these
cases CS theory can successfully reconstruct signals with
respect to s dominant components. The reconstruction errors
depend on the nondominant components of the signals.

4. Applications of CS in Power Systems

4.1. Wide Area Measurement Systems (WAMS). One of the
recommendations from the United States-Canada Task Force
on the blackout was to use the time synchronized measure-
ments (synchrophasors) [70] for grid monitoring. Phasor
Measurement Unit (PMU) based WAMS can measure power
system phasors synchronously and accurately. The main
advantage of PMU over conventional SCADA measurement
system is that PMU can accurately measure phase angles
of power system phasors while conventional instruments
cannot measure phase angles directly. The measurement rates
of PMUs are much higher than the rates of SCADA. A generic
WAMS architecture is shown in Figure 3.

PMUs compute and send computed synchrophasors to
phasor data concentrators (PDCs). A PDC collects syn-
chrophasors from PMUs and aligns synchrophasors accord-
ing to their time tags and then sends them to the control
center PDC. In the control center PDC, synchrophasors are
used in various applications.

Expensive and dedicated communication networks are
needed to bring synchrophasors from far locations. Band-
width requirement of synchrophasor communication net-
work increases with the number of installed PMUs. Power
utilities often find it difficult to arrange large investments
to build/upgrade communication networks to meet the
increased bandwidth demand [69]. Bandwidth requirements
of synchrophasor communication networks also increase
with increasing synchrophasor reporting rates. Higher syn-
chrophasor reporting rates are often uneconomical for many
power utilities.
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The papers [68, 69] identify the areas of synchrophasor
communications which can be improved by the application
of compressive sampling (CS). The sparsity of synchrophasor
data has been discussed in [68, 69] to justify the application
of CS.

In [69], it is shown that the CS can be effective in
reducing the bandwidth requirements of WAMS networks.
Synchrophasors corresponding to various power system sce-
narios are considered. Performances of CS during various
power system steady and dynamic scenarios are investigated.
Mathematical models of different system dynamics are taken
from IEEE Standard C37.118.1-2011 [71]. Results show that
the CS can reconstruct synchrophasors with sufficient accu-
racies during various power system scenarios. In [69], CS
sampling is designed to minimize communication delays
while sending synchrophasors. It is proposed that PMUs send
synchrophasors as soon as they are computed (not in batch).
In control center PDC, reconstruction process starts as soon
as synchrophasor data arrives. Missing and bad data often
pose challenges to the WAMS applications. In [69], it is shown
that missing or bad synchrophasors can be successfully
estimated using CS. It is demonstrated that CS performs
satisfactorily in presence of noise. In [69], the performance
of CS has been compared with existing interpolation and
compression techniques. It is concluded that CS has multiple
benefits over interpolation and compression methods in the
context of WAMS communications.

The IEEE standard C37118.1-2011 specifies accuracy
requirements for the synchrophasors. In this standard, the
synchrophasor reporting rates which are below 10 frames/s
rate are exempted from the dynamic requirements of the
standard. Nyquist criterion gets violated for reporting rates
below 10 frames/s when maximum synchrophasor oscillation
frequency is 5Hz. As a result, synchrophasors reported
at lower reporting rates cannot be used in the dynamics
monitoring applications due to possible violation of the
Nyquist theory. In [68], it is shown that the CS can be
used to reconstruct power system dynamics at higher rates
using synchrophasors reported at sub-Nyquist rate. This
signifies that the sub-Nyquist reporting rates can also be
useful in the dynamic monitoring applications. This cannot
be achieved in the conventional interpolation theory due to
aliasing. As an example, assume that PMUs are computing
synchrophasors at random intervals at 8 frames/s rate. Now,
the power system is going through amplitude and frequency
modulated oscillations of 5 Hz. In this case aliasing happens
as oscillating synchrophasors, with 5 Hz amplitude and fre-
quency modulation, are reported at 8 frames/s rate. In PDC,
CS uses this aliased signal to reconstruct the oscillating signal
at 24 frames/s rate. The original (at 24 frames/s rate) and the
reconstructed signals are shown in Figure 4 [68]. In Figure 4,
the system dynamics is accurately reconstructed from the
aliased signal by applying CS.

4.2. Distribution Systems. In the context of distribution
systems, CS has been mainly proposed for wireless commu-
nication of consumer meter data.

In [72], CS has been proposed for wireless reading of
large number of smart meters installed in a distribution

Synchrophasors reported at sub-Nyquist rate (8 frames/s)
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+-- Reconstructed data @ 24 frames/s in PDC

FIGURE 4: Reconstruction of the synchrophasor reported at 8
frames/s rate [68].

system. In [72], it is assumed that each smart meter sends
out measurements only when there is a significant change
in the load. As a result, only a small number of meters
among the large number of operational meters send mea-
surements at a particular time. This makes load data sparse
in nature and suitable for CS. In [72], communication delays
and security issues are mainly investigated for wireless CS
communication. The paper [72] does not present any result
on the accuracies of the reconstructed load data.

Recently, TV-band white space is being considered for
wireless communication of smart meter data [73]. Cognitive
radio is the most suitable technology to use the white space
for smart grid communication. In [73-78], cognitive radio
networks have been proposed for smart grid communica-
tions. Cognitive radio network is often considered as the fifth
generation [73] (5G) wireless technology. Demand for higher
data rate is increasing [79] continuously due to introduction
of new devices and applications. However, the space in the
frequency spectrum is limited. So, static frequency allocation
schemes are not suitable to support large number of devices
with higher data rate. The cognitive radio provides a solution
to the congestion problem by using unused frequency spec-
trum adaptively and intelligently. Spectrum sensing is one of
the major challenges [79] in cognitive radio systems. CS has
been proposed [8, 9, 80, 81] for spectrum sensing of cognitive
networks.

4.3. Identification of Transmission Line Outages. Lack of
situational awareness is one of the major reasons behind
power system blackouts. Detection of power line outages
is important to know the topology of power systems. Syn-
chrophasor based line outage detection algorithms have been
proposed in [82, 83]. However, these algorithms have very
high computational complexity. So to solve the complexity
problem, a CS based outage detection algorithm has been
proposed in [84]. Sparse vectors can be formed considering
line conditions as only a few lines experience outages. It
is found that the number of phasor angle measurements
needed to obtain all line conditions gets reduced [85] when
CS algorithm is applied.



The paper [85] extends the results of [84]. The paper [85]
extends [84] to the case where transmission line parameters
are to be tracked in real time using voltage phasor angle
data from a limited number of PMUs. In [85], a method
based on compressive sensing homotopy is proposed to track
transmission line parameter changes. The paper [85] claims
that the algorithm [85] is a preferable method when multiple
line changes are tracked and located.

5. Conclusion

CS has generated significant interest in the signal processing
community due to its ability to reconstruct signals from
data sampled at sub-Nyquist rate. CS goes against the tradi-
tional data acquisition policies. CS has already been applied
in communication, medical imaging, MRI, radar imaging,
remote sensing, computational biology, machine learning,
geophysical data analysis, and so forth. CS is comparatively
new in the area of power system monitoring. In this paper,
subareas of computer based power system monitoring where
compressive sampling theory has been applied are reviewed.
The survey shows that the CS theory has been already applied
in the following areas of computer based power system mon-
itoring: synchrophasor communications of WAMS, wireless
meter readings of smart distribution systems, and power line
outage detections.
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