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While increased mine mechanization and automation make considerable contributions to mine productivity, unexpected
equipment failures and planned or routine maintenance prohibit the maximum possible utilization of sophisticated mining
equipment and require a significant amount of extra capital investment.This paper deals with aspects of maintainability prediction
forminingmachinery. A PC software called GenRel was developed for this purpose. In GenRel, it is assumed that failures of mining
equipment caused by an array of factors follow the biological evolution theory. GenRel then simulates the failure occurrences during
a time period of interest using genetic algorithms (GAs) coupled with a number of statistical techniques. A group of case studies
focuses on maintainability analysis of a Load Haul Dump (LHD) vehicle with two different time intervals, three months and six
months. The data was collected from an underground mine in the Sudbury area in Ontario, Canada. In each prediction case study,
a statistical test is carried out to examine the similarity between the predicted data set with the real-life data set in the same time
period. The objectives of case studies include an assessment of the applicability of GenRel using real-life data and an investigation
of the impacts of data size and chronological sequence on prediction results.

1. Introduction

With more and more technological advances made available
nowadays, the manufacturing industry is producing various
types of equipment worth billions of dollars for use by the
mining industry throughout the world. For instance, as per
the United States Census Bureau in 2008, American mining
equipmentmanufacturers shipped approximately $4.0 billion
worth of goods [1], compared to $2 billion in 2005 [2].Within
these 2008 figures, underground mining machinery (except
parts sold separately) accounted for $1.0 billion, or 25 percent.
It is worthwhile to mention that portable drilling rigs and
parts accounted for $1.7 billion or 42.5 percent. In some
mines, maintenance cost might take up to 50 to 60 percent of
total costs [3, 4]. Today, the global economic recession is forc-
ingmining companies tomodernize their operations through
increased mechanization and automation. To this end,
it is desirable to design and utilize mining equipment systems
with better reliability and maintainability both for engineers
and mining managers. Particularly in a state of economic

recession, mining companies are urged to make the best use
of enterprise resources including equipment and mainte-
nance crew while dealing with market volatility and share-
holders’ expectations of profitability. A number of crucial rea-
sons for improving mining equipment reliability and main-
tainability are summarized as follows [5]:

(1) to maximize profit;
(2) to reduce the cost of poor reliability/maintainability;
(3) to reduce the performance of mining equipment ser-

vices in an unplannedmanner because of short notice;
(4) to provide more accurate short-term forecasts for

equipment operating hours;
(5) to overcome challenges imposed by global competi-

tion;
(6) to take advantage of lessons learned fromother indus-

trial sectors such as aerospace, defense, and nuclear
power generation;

(7) to improve workplace safety.

Hindawi Publishing Corporation
Journal of Mining
Volume 2014, Article ID 528414, 10 pages
http://dx.doi.org/10.1155/2014/528414



2 Journal of Mining

Step 1. Initialization
Generate initial population 𝐼 at random or with prior knowledge
Step 2. Fitness evaluation
Evaluate the fitness for all individuals in 𝐼
Step 3. Selection
Select a set of promising candidates 𝐶 from 𝐼

Step 4. Crossover
Apply crossover to the mating pool 𝐶 for generating a set of offspring 𝑂
Step 5.Mutation
Apply mutation to the offspring set 𝑂 for obtaining its perturbed set 𝑂󸀠
Step 6. Replacement
Replace the current population 𝐼 with the set of offspring 𝑂󸀠
Step 7. Termination
If the termination criteria are not met, go to Step 2.

Pseudocode 1: Pseudocode of a simple genetic algorithm [13].

2. Maintainability

Theearliest occurrence of the termmaintainability was found
in a contract in the development of the Wright brothers’ air-
plane in which it was clearly stated that the aircraft should be
“simple to operate and maintain” [6]. Today maintenance
costs of sophisticated engineering systems are so high that
maintainability draws great attention from scientific re-
searchers to operations managers. For instance, a study [7]
shows that American manufacturers spend more than 300
billion U.S. dollars on plant maintenance and operations.
Therefore, it is understandable that the main objectives of
applying maintainability principles to engineering systems
are to reduce projected maintenance costs and time, to use
maintainability data to estimate system/equipment availabil-
ity/unavailability, and to determine labor-hours and other
related resources needed to perform the projected mainte-
nance.

A system with better maintainability would inherently
provide the benefit of lower maintenance costs, less time to
recover with lower breakdown frequency (design for sim-
plicity), less complexity of maintenance tasks, and relatively
reduced man-hours [8].

Most maintainability functions use the time to repair as
independent variable. It is common to use probabilistic or
statistical concepts to define a maintainability function, for
example, the probability density function. Let 𝑡 denote the
time. Assuming a repair starts at 𝑡 = 0 and completes at time
𝑇, the maintainability can be mathematically defined [2] as
follows:

𝑀(𝑇) = ∫

𝑇

0

𝑓
𝑟
(𝑡) 𝑑𝑡 (1)

or
𝑀(𝑇) = 𝐹

𝑟
(𝑡 ≤ 𝑇) , (2)

where𝑀(𝑇) is the maintainability function, 𝑇 and 𝑡 are time,
𝑓
𝑟
(𝑡) is the repair time probability density function, and 𝐹

𝑟
(𝑡)

is the repair time cumulative distribution function.
From the above, maintainability is the probability of car-

rying out a repair within a known time period. In maintain-
ability studies, the variable of interest is time to repair (TTR),

whereas, in reliability studies, the variable of interest is time
between failures (TBF). As a clarification, reliability is defined
as the probability of a product, system, or service to perform
its expected task under the specified conditions of use over an
intended period of time [10–12].

3. Genetic Algorithms and Their Applications

In 1975, Hollandwrote a ground-breaking book adaptation in
natural and artificial systems in which he described a general
framework for understanding the mechanisms behind adap-
tive behaviors in a number of systems over a broad range of
timescales [14]. Later on, a series of further researchwork [15–
17] revealed further characteristics and potential applications
of genetic algorithms (GAs).

A genetic algorithm imitates a biological evolution pro-
cess and is often used to seek optimal solution to a practical
problem, expressed by the best fitted individual string of val-
ues (representing parameters of the practical problem). GAs
encode the decision variables (or input parameters) of the
underlying problem into strings. Each string, called individ-
ual, is a candidate solution. To differentiate good candidate
solutions from bad candidate solutions, a fitness function is
needed as a measure. A fitness function could be a mathe-
matical expression, or a complex computer simulation, or in
terms of subjective human evaluation and guide the evolution
of solutions to the problem. Pseudocode 1 shows the pseu-
docode of a simple genetic algorithm [13].

In each of the procedures, three genetic operators will be
implemented in each individual candidate solution: selection,
crossover (or recombination), and mutation. In a selection
operation, superior individuals will be given a better chance
to reproduce the next generation, since the fitter gene has
tendency to yield good quality offspring which means a
better solution to any problem. In a crossover procedure, the
individuals obtained from the selection procedure will ex-
change and combine partial solutions at a certain crossover
probability. In a mutation procedure, a small portion of
offspring genes is altered to form the new solution.

Research on GAs has a wide spectra from computer
science [18, 19] to engineering [15, 20] and, more recently, to
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Figure 1: A schematic illustration of data flow in GenRel.

fields such asmolecular biology, immunology, and economics
[21–23]. In the mining engineering field, GAs have been used
also for ore grade estimation [24], ore grade optimization
[25], solving scheduling and open-pit design problems [26],
coal mine production scheduling [27], and open pit equip-
ment selection [28].

Reliability and maintainability models with or without
covariates are based on the use of rigorous and complicated
statistical techniques which include, for instance, theoretical
probability distribution fitting and trend and serial corre-
lation tests and require assumptions of homogeneous or
nonhomogeneous Poisson process or assumptions of propor-
tionality of the hazard rate. The assumptions and statistical
constraints of probabilistic models limit the ability of these
models to accurately represent and fit all real life mining
conditions [29]. The authors’ research offers an alternative
method to the above conventional/statistical methods and
provides an approach that can complement the existing
maintainability techniques in an effort to contribute to better
understanding of failures of capital intensive mining equip-
ment systems over time.

GAs offer several key advantages over conventionalmath-
ematical models including simplicity of randomized searches
while retaining important historical information with the
population, computational simplicity; GAs search from a
population of solutions, not just from a single solution, and
they can handle any kind of objective function linear or
nonlinear constraints defined in discrete, continuous, or
mixed search spaces [15, 30].

4. Overview of GenRel

GenRel is a computer software developed for reliability/
maintainability prediction based on genetic algorithms using

historical data. It was developed at Laurentian University
Mining Automation Laboratory (LUMAL) and runs in the
Microsoft Excel environment.

In a typical genetic algorithm, variables of interest are
coded. Afterwards, the processes of mate selection, crossover,
and mutation circulate until the fitness function yields des-
ired values [15]. The application of GAs in GenRel can be
illustrated in Figure 1.

In GenRel, the user can define the maximum number
of iterations, the convergence limit, and the probability of
mutation; see Figure 2.

The raw data used in GenRel is derived from historical
records in terms of time to repair (TTR). TTR measures the
time needed to fix a failure. The distribution fitting process
using the software BestFit by PalisadeCorporation [31] selects
the best fitted probability distribution function 𝐹(𝑥) to the
raw data. For example, take the exponential distribution [32]

𝐹 (𝑥) = 1 − 𝑒
−(𝑥−𝛾)/𝛽

, (3)

where 𝑥 is a TTR value, 𝛽 is the mean, and 𝛾 is the location
parameter. We divide the entire raw data into two equal sets,
the raw input data set and the raw evaluation data set.The raw
input data set is used to generate new data sets, while the raw
evaluation data is used in the evaluation process of the gen-
erated data set. Suppose

𝐹 (𝑥) = 1 − 𝑒
−(𝑥−𝛾0)/𝛽0 , 𝑥 ∈ [𝛾

0
,∞) , (4)

𝐹 (𝑥) = 1 − 𝑒
−(𝑥−𝛾0)/𝛽0 , 𝑥 ∈ [𝛾

0
,∞) , (5)

where 𝛽
0
and 𝛽

0
are the means, 𝛾

0
and 𝛾

0
are the location

parameters, and 𝐹(𝑥) and 𝐹(𝑥) are the best fitted probability
distribution functions for the raw evaluation data set and for
the raw input data set, respectively. In order to generate new
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Step 1. perform the continuous or discrete 
    distribution fitting for the input data

(discrete distribution fitting for integer input)

Step 2. Start simulation with GA
343.0000 Step 3.  Calculate and view data statistics6.4446

Raw input data standard deviation 5.1301 Step 4.  View convergence summary
New generated data mean 6.0156
New generated data variance 5.5355

Step 5.  View graph of convergence

5.6338
Raw evaluation data variance 4.6600

Step 6.  View final iteration results

Step 7.  View detailed final convergence graph

Maximum # of GA iterations 15

Convergence limit of GA
Probability of mutation
Shape parameter 𝛼1, (for beta model)
Shape parameter 𝛼2, (for beta model) 
Boundary parameter min, (for beta model) 
Boundary parameter max, (for beta model) 

The convergence limit for the genetic algorithm, to compare the difference between the mean
of the generated population against the raw evaluation data mean, must be between 0 and 1.

Calculated parameters of the input data

Raw input data mean

Raw evaluation data mean

Population size

0.25

0.62434

26.698

0.050
0.0500

00000

Genetic algorithm (GA) model setup-step by step

Data statistics

Convergence summary

Graph of convergence

Final iteration results

Final convergence graph

Help on inverse transform technique

Continuous distribution fitting

Start simulation

Return to input menu

Rep?

Discrete distribution fitting

Input parameters entered by the user

0 ≤ the probability of mutation ≤ 1.

𝛼1 > 0 this is the shape parameter for the beta distribution.
𝛼2 > 0 this is the shape parameter for the beta distribution.
Min > 0 this is the lower boundary parameter for the beta distribution.
Min > 0 this is the upper boundary parameter for the beta distribution.

Figure 2: User interface for GenRel to set relevant configurations.

data from the raw input data, we use the inverse transform
technique, or ITT [33], by transforming the exponential dis-
tribution function into the inverse format and by generating a
uniformly distributed random variable 𝑅 ∼ 𝑈(0, 1). Then, six
sets of generated data can be yielded by 𝑥 = −𝛽

0
ln(1−𝑅)+𝛾

0

(from (5), an inverse of the function can be expressed as
𝑥 = −𝛽

0
ln(1−𝐹)+𝛾

0
, where𝐹 ∈ [0, 1]; substituting𝐹with the

random variable 𝑅 yields the expression) After six simulation
runs, the created six sets of new data are considered adequate
for the prediction process within GenRel.

The generated data is then used for mate selection and
crossover in which a random number determines the posi-
tions and total number of crossovers, yielding offspring data.
Afterwards, mutation is performed at a specified rate defined
by the user as mutation probability. Six sets of new offspring
data follow the respective best fitted exponential probability
distribution functions, denoted by parameter pairs (𝛽

𝑖
, 𝛾
𝑖
),

(𝑖 = 1, 2, 3, . . . , 6), where 𝛽
𝑖
and 𝛾
𝑖
represent mean and loca-

tion of the respective probability distribution functions. A
fitness function

𝑓 =

󵄨󵄨󵄨󵄨𝛽𝑖 − 𝛽0
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝛾𝑖 − 𝛾0
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛽0
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝛾0
󵄨󵄨󵄨󵄨

(𝑖 = 1, 2, 3, . . . , 6) (6)

is designed tomeasure the fitness of each individual offspring
data set; for detailed discussion of this procedure, see [34].

If the smallest value of the six fitness function values is
not greater than the user-defined convergence limit, then the
iterative process is terminated and GenRel is considered
applicable for prediction of future data; otherwise, another
iteration will be implemented as long as the preset maximum
number of iterations is not exceeded and the smallest fitness

function value is within a user-defined convergence limit.The
convergence limit is the upper limit of deviation between the
probability distribution function of the generated data set and
the probability distribution function of the raw evaluation
data set.

Overall, after the above described algorithmic process is
successful, GenRel can be applied to predict future data. Oth-
erwise, GenRel is considered not acceptable for prediction of
future data based on the raw data under study. For details
of the algorithmic procedure applied in GenRel, see [35].
Besides the exponential probability distribution, GenRel also
includes other probability distribution functions (e.g., log-
normal, weibull).

5. Implementation of GenRel

Implementation ofGenRel normally encompasses fourmajor
procedures: data preparation, validation of independent and
identical distribution (iid) assumption, verification of conver-
gence, and prediction.

5.1. Data Preparation. To fit the data into the maintenance
analysis, the original data is processed in the form of time to
repair (TTR).

5.2. Trend Test and Serial Correlation Test. Prior to statistical
analysis and probability distribution fitting, the data should
be tested for trends and serial correlations [3].The purpose of
these tests is to verify the assumption that the data is indepen-
dent and identically distributed (IID). This step is critical for
the probabilistic modeling approach. If the data presents
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a trend or serial correlation, then the data is considered not
independent and not identically distributed [33, 36]. In
this case, nonstationarymaintainability/reliabilitymodels are
more appropriate than models based on probability distribu-
tion fitting to analyze the data.

5.3. Verification of the Applicability of GenRel. If a specific
probability distribution function can fit the raw input data,
then we can utilize the inverse transform statistical technique
[33] to generate new sets of data which conform to the same
type of probability distribution function but with slightly dif-
ferent probability distribution function parameter values. In
our study, six sets of generated data having the same size as the
raw input data set are considered sufficient to mimic the
biological process for the prediction of future failures.

To carry out the verification process of GenRel based on
historical data, it is necessary to determine the convergence
criteria, including the convergence limit, the probability of
mutation, and the maximum number of iterations. If the
smallest fitness function value of an initially generated data
set through the inverse transform statistical technique falls
within the convergence limit, then the verification process is
considered successful; otherwise, we proceed to the crossover
and mutation process, iterating the initially generated data
sets, aiming to yield a set of data with acceptable fitness func-
tion value, without exceeding the user-defined number of
iterations and the probability of mutation. In the case studies
proposed in this paper, the following configuration is applied
by the end user of GenRel in all verification and prediction
processes:

(i) maximum number of GA iterations: 15;
(ii) convergence limit of GA: 0.05;
(iii) probability of mutation: 0.05.

5.4. Prediction of Data for the Period of Interest. After the
successful completion of the verification process for the input
data, GenRel then can be applied to predict future data.
GenRel is then run to generate the initial offspring data set of
the same size as the raw input data set with the parameters
values obtained from the raw input data distribution fitting
process. In GenRel, six data sets are considered sufficient. In
these six data sets, selection, crossover, and mutation are per-
formed until either of the following two criteria is satisfied:
(1) the fitness value of the best offspring data set falls within
the user-defined convergence limit; (2) total iterations run in
GenRel reaches the user-defined maximum number of itera-
tions. Upon completion of the prediction, the t-test is used to
examine the statistical similarity of the predicted data set with
the raw evaluation data set; see [32].

6. LHD Vehicles in Mining

A Load Haul Dump vehicle (LHD), also known as a scoop
tram, is a specialized loading machine manufactured for the
underground mining industry. LHDs are used to scoop
extracted ore, with a bucket, load it into the bucket, and dump
it in the bottom of the mine to undergo primary crushing

before being hoisted to the surface out of the mine. Figure 3
shows the design layout of a typical LHD vehicle.

The Load Haul Dump vehicle concept was introduced to
undergroundmining operations during the late 1960s.With a
large bucket in front, the LHDoperator sits transversely in the
control compartment and drives the LHD in either direction
as required. LHD vehicles are designed to perform not only
loading but also the hauling function since the haulage
distances underground for LHDs are relatively short. They
have a large carrying capacity to vehicle size ratio. With the
central pin joining design, LHD vehicles can achieve smaller
turning radius compared to other similar size vehicles. These
features make the LHD a particularly versatile machine.
LHDs are mainly diesel powered.

Literature of applications of GenRel to analyze LHD
vehicles’ reliability can be found in [35, 37, 38] based on TBF
data compiled from historical records. Yet, to the best knowl-
edge of the authors, little has been done with regard to pre-
diction of maintainability of LHD vehicles.

7. Data Collection and Preprocessing

Data was gathered from a mine site in Sudbury area in
Ontario, Canada, on a daily basis. Operators recorded equip-
ment hours for usage and delays every shift.This information
was gathered and reviewed by mine management and orga-
nized into a spreadsheet for further analysis [39]. An excerp-
tion of the originally obtained data is shown in the leftfive col-
umns in Table 1.

Since this group of case studies is about the maintainabil-
ity characteristics of the LHD vehicle, time to repair (TTR)
value should be obtained. To this end, several assumptions are
made as follows.

(1) If a shift is missing from the data set, then the shift is
added and it is assumed that there is no failure during
the added shift.

(2) Machine standby time during a shift is registered
separately. Table 1 illustrates an example of the final
database. The example shows the date, shift code,
cumulative time between failures (CTBF), work
group, failure code (type of failure), time to repair
(TTR), time between failures and machine standby
time during a shift.

(3) If a failure code is missing for a repair on a specific
shift and it is less than 3 hours, an AV status code is
assumed.

The case studies discussed below are based on the col-
lected data sets. Some of the data may not be considered as
sufficiently large for statistical analysis (e.g., probability fit-
ting); however, the applicability and usefulness of the pro-
posed methodology can be demonstrated.

8. Results and Discussion

8.1. Prediction of TTR Data for Three Months Time Period.
Two case studies are considered: prediction of TTR data for
the period from April 1 to June 30, 2006 based on historical
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Figure 3: This picture presents the schematic design of a typical LHD vehicle commonly used in modern mining industry [9].

Table 1: Original LHD vehicle delay records from mine site.

Date Shift CTBF Group Failure type TTR TBF Available time
2-Jan-06 7 8218.6 Mobile MH 4 0.0 8.0
2-Jan-06 8 8220.0 Mobile AV 0 1.4 10.6
3-Jan-06 7 8228.7 Mobile AV 0 8.7 3.3
3-Jan-06 8 8237.4 Mobile AV 0 8.7 3.3
4-Jan-06 7 8246.1 Mobile AV 0 8.7 3.3
4-Jan-06 8 8254.8 Mobile AV 0 8.7 3.3
5-Jan-06 7 8263.4 Mobile AV 0 8.7 3.3
5-Jan-06 8 8263.4 Mobile MM 12 0.0 0.0
6-Jan-06 7 8272.1 Mobile AV 0 8.7 3.3
6-Jan-06 8 8280.8 Mobile AV 0 8.7 3.3
7-Jan-06 1 8288.8 Mobile AV 0 8.0 0.0
7-Jan-06 2 8289.5 Mobile MM 2 0.7 5.3
7-Jan-06 3 8289.5 Mobile MM 2 0.0 6.0
8-Jan-06 7 8300.2 Mobile AV 0 10.6 1.4
8-Jan-06 8 8310.8 Mobile AV 0 10.6 1.4
CTBF: cumulative time between failures; TTR: time to repair; TBF: time between failures.
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Table 2: Delay data overview in the periods from January to March
2006 and from October to December 2006.

Failure
type

January–March 2006 October–December 2006

Time Frequency Percent
age (%) Time Frequency Percent

age (%)
AV 6.3 3 1.06 56.6 10 14.37
ME 6 2 1.01 40.7 5 10.34
MH 78.1 12 13.13 4 1 1.02
MM 389 42 65.42 4.5 1 1.14
MP 107.2 10 18.03 208 19 52.82
OW 8 1 1.35 80 8 20.31
Total 594.6 70 100 393.8 44 100
AV: available. ME: electrical down. MH: hydraulic down.
MM: mechanical down. MP: planned maintenance. OW: other.

data from January 1, toMarch 31, 2006, and prediction of TTR
data for the period from January 1, toMarch 31, 2007, based on
historical data from October 1, to December 31, 2006. With
preliminary manipulations, Table 2 shows an overview of the
historical delay data composition in two different time peri-
ods, inwhichAV stands for available,ME for electrical failure,
MH for hydraulic failure, MM for mechanical failure, MP
for planned maintenance, and OW for other.

8.1.1. Verification of Applicability of GenRel to the Data Sets
under Study. Before GenRel is run, the validity of indepen-
dent and identical distribution (iid) assumption for the data
sets should be checked. Graphical tests show that the data sets
under study are independent and identically distributed.
Then, the verification process is aimed at providing a pre-
screening result of GenRel’s applicability to the data set under
study. In the first case, TTR data for the period of January 1, to
March 31, 2006 is the data set of interest, which is to be used as
raw input data set to predict repair data for the period of April
1, to June 30, 2006, if GenRel is to be found applicable through
the verification process.

As described in Section 5.4, in the data input interface,
TTR data for the period of January to March 2006 is divided
chronologically into two parts with equal number of data
entries, 35.

The first step is to find the best fitting distribution func-
tion for the raw input data set. The best fitting distribution
function, given by @Risk [31], is the normal distribution for
the raw input data, with mean 𝜇 = 8.0057 and standard devi-
ation 𝜎 = 4.115.

In the environment of Microsoft Excel with Visual Basic
for Applications, a builtin function NORMINV can be dir-
ectly called to generate random variables from the best fitted
normal distribution with location parameter 𝜇 and scale
parameter 𝜎. In light of this convenient ready-to-use func-
tion, GenRel produces six sets of data with size identical to
that of the raw input data set. These six sets of data generated
through the inverse transform statistical technique constitute
the initial population for the crossover and mutation opera-
tions to follow.

Next, the initial population of six sets of generated data as
parents starts to cross over and mutate at a rate of the user-
defined mutation probability, 0.05. Elite individuals which
possess smaller cost function values have better chance to sur-
vive and to be selected to reproduce offspring through selec-
tion, crossover, and mutation. These genetic operations iter-
ate until either the maximum number of iterations, which is
15, or the convergence limit, which is 0.05, has been reached.
In this case, after one iteration, the fitness function value
falls within the user-defined convergence limit, as shown in
Table 3.

Therefore, it is concluded that GenRel is applicable to
analyze the data set from January to March 2006. Similarly
and after four iterations GenRel is found applicable to analyze
the data set from October to December 2006, as shown in
Table 4.

8.1.2. Prediction of TTR Data for the Time Periods from April
to June 2006 and from January to March 2007. After one
iteration, GenRel returns a set of TTR data as the prediction
of failures on the LHD vehicle during the time period from
April to June 2006. Fitting results from @Risk show that
the Normal probability distribution fits the predicted data
set best. Parameters of the normal probability distribution
include 𝜇 = 8.541 and 𝜎 = 4.1901. At a level of significance
of 5%, 𝑡-test statistic is 1.99 with a degree of freedom of 140.
Based on the result of the 𝑡-test, it is concluded that there is
no significant difference between generated data set and raw
evaluation data set in terms of mean at a given level of sig-
nificance of 5%.

After one iteration in GenRel, a set of TTR data is
acquired to project the maintenance characteristic of the
LHD vehicle during the period from January to March 2007
based on historical records during the time period from
October to December 2006. The software @Risk is used to
seek the probability distribution function that best fits the
predicted data set. The fitting result shows the normal proba-
bility distribution function is the best fit with parameters 𝜇 =
8.9502 and 𝜎 = 3.5633. At a level of significance of 5%, 𝑡-test
statistic is 0.63 with a degree of freedom of 100. Based on the
result of the 𝑡-test, it is concluded that there is no significant
difference between generated data set and raw evaluation data
set in terms of mean at a given level of significance of 5%.

The maintainability function of the LHD vehicle during
the time periods fromApril to June 2006 and from January to
March 2007 to describe the failure characteristic with respect
to repair time can be expressed mathematically in the follow-
ing equations:

𝑀(𝑡) =
1

2
[1 + erf ( 𝑡 − 8.541

4.1901√2

)] ,

𝑀 (𝑡) =
1

2
[1 + erf (𝑡 − 8.9502

3.5633√2

)] .

(7)

Figures 4 and 5 representmaintainability profiles for these
two time periods, respectively.

Table 5 shows maintainability function values at some
representative TTR.The second row representsmaintainabil-
ity values with respect to TTR from April to June 2006, and
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Table 3: Iteration result of TTR data for the period from January to March 2006.

Iteration Sum of distribution parameters Upper limit Lower limit Deviation of generated data Accepted convergence?
1 12.1207 0.606035 0 0.1452 Yes

Table 4: Iteration result of TBF data for the period from October to December 2006.

Iteration Sum of distribution parameters Upper limit Lower limit Deviation of generated data Accepted convergence?
1 7.97248 0.398624 0 0.40962 No
2 7.97248 0.398624 0 0.40962 No
3 7.97248 0.398624 0 0.40962 No
4 7.97248 0.398624 0 0.05513 Yes

Table 5: A table of maintainability function values with representative TTR values.

TTR (hours) 3 5 7 9 11 13 15
Maintainability 0.41% 4.55% 23.10% 58.67% 87.97% 98.33% 99.90%
Maintainability 0.04% 1.33% 13.68% 51.11% 87.50% 98.85% 99.97%

Table 6:Delay data composition for the period from January to June
2006.

Type of
delay

January–June 2006 May–October 2006

Time Frequency Percent
age (%) Time Frequency Percent

age (%)
AV 28.3 9 2.17 102 21 10.48
ME 74 10 5.69 44.7 7 4.59
MH 294.1 32 22.60 279.6 27 28.73
MI 4 1 0.31 4 1 0.41
MM 720.9 74 55.40 480.9 46 49.41
MP 172 16 13.22 62 7 6.37
OW 8 1 0.61 0 0 0.00
Total 1301.3 143 100 973.2 109 100

the third row represents maintainability values with respect
to TTR from January to March 2007.

8.2. Prediction of TTR Data for Six Months Time Period.
In order to compare with the results obtained for a three-
month period, a group of predictions of TTR data for six
months period is carried out. Two case studies are considered:
prediction of TTR data for the period from July 1, to
December 31, 2006, based onhistorical data from January 1, to
June 30, 2006, and prediction of TTRdata for the period from
November 1, 2006, to April 30, 2007, based on historical data
from May 1 to October 31, 2006. Table 6 shows an overview
of the historical delay data composition in two different time
periods.

8.2.1. Verification of Applicability of GenRel to the Data Sets
under Study. Similar graphical testing processes as afore-
mentioned are implemented and show that the two data sets
under study are both independent and identically distributed.
Tables 7 and 8 show that after one iteration, GenRel yields
an offspring data set within the convergence limit in the two
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Figure 4:The maintainability profile of the LHD vehicle during the
time period from April to June 2006.
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Figure 5:The maintainability profile of the LHD vehicle during the
time period from January to March 2007.

cases, respectively.Therefore, GenRel is considered applicable
to predict future repair data set based on the given historical
data sets under this set of configurations.

8.2.2. Prediction of TTR Data for the Time Period from July to
December 2006. With one iteration, GenRel renders a set of
TTR data to project the maintainability characteristic of the
LHD vehicle during the time period from July to December
2006. It is found that this set of TTR data follows the normal
probability distribution, according to the fitting result from



Journal of Mining 9

Table 7: Iteration result of TTR data for the period from January to June 2006 (verification).

Iteration Sum of distribution parameters Upper limit Lower limit Deviation of generated data Accepted convergence?
1 12.2817 0.614085 0 0.316 Yes

Table 8: Iteration result of TTR data for the period fromMay to October 2006 (verification).

Iteration Sum of distribution parameters Upper limit Lower limit Deviation of generated data Accepted convergence?
1 12.9152 0.64576 0 0.1336 Yes

Table 9: A table of maintainability function values with representative TTR values.

TTR (hours) 3 5 7 9 11 13 15
Maintainability 0.03% 1.13% 12.57% 49.50% 86.91% 98.80% 99.97%

@Risk. The normal probability distribution is defined with
the parameters 𝜇 = 9.0221 and𝜎 = 3.5256. For the prediction
of TTR from November 2006 to April 2007, GenRel also
yields a set of data which falls within the user-defined limit. It
is found that the best fitting result is the exponential probabil-
ity distribution defined with the parameters 𝛽 = 7.8884 and
𝛾 = 0.88779.

Thus, the maintainability functions are shown as follows:

𝑀(𝑡) =
1

2
[1 + erf (𝑡 − 9.0221

3.5256√2

)] ,

𝑀 (𝑡) = 1 − 𝑒
−(𝑡−0.88779)/7.884

.

(8)

Figures 6 and 7 reveal maintainability profiles of the LHD
vehicle during the time periods from July to December 2006
and from November 2006 to April 2007, respectively. Table 9
gives maintainability function values at representative TTRs.

9. Conclusion

In historical TTR data, mechanical failures (MM) consume
the most repair time in all the time periods under consid-
eration. The case studies discussed in this paper indicate a
successful application of a genetic algorithms based software,
GenRel, to predict maintenance characteristics of an LHD
vehicle, expressed in terms of maintainability. Two separate
groups of case studies at time intervals of three months and
six months both present acceptable prediction results at a
given level of confidence, 5%. At each time interval, two case
studies are investigated and no significant impact of chrono-
logical sequence on prediction results is found. Further
study is required to investigate how to incorporate the pre-
dicted results to improve preventative maintenance policies
in practice in underground hard rock mines.
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