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Let M be a monoid, and let L be a commutative idempotent submonoid. We show that we can find a complete set of orthogonal
idempotents ̂𝐿

0
of the monoid algebra A ofM such that there is a basis of A adapted to this set of idempotents which is in one-to-

one correspondence with elements of the monoid. The basis graph describing the Peirce decomposition with respect to ̂

𝐿

0
gives a

coarse structure of the algebra, of which any complete set of primitive idempotents gives a refinement, and we give some criterion
for this coarse structure to actually be a fine structure, which means that the nonzero elements of the monoid are in one-to-one
correspondence with the vertices and arrows of the basis graph with respect to a set of primitive idempotents, with this basis graph
being a canonical object.

1. Introduction

When we speak of a coarse structure, we mean the decompo-
sition of the monoid algebra into Peirce components cor-
responding to the elements of a commutative idempotent
submonoid. The fine structure is then the refinement which
occurs when one breaks down each of these idempotents into
a sum of primitive idempotents. The basic idea of this work
is to try to understand the semigroup representation theory
insofar as possible without delving into the group theory and
to determine criteria for monoids for which there is a coarse
structure which corresponds to the fine structure.

We assume that the field 𝐾 over which we are taking
representations of amonoid𝑀 is of characteristic which does
not divide the order of any of the maximal subgroups of 𝑒𝑀𝑒,
as 𝑒 runs over the idempotents of𝑀.ThenMaschke’s theorem
applies and the group algebras of the maximal subgroups are
all semisimple.

The irreducible representations of the semigroup corre-
spond to the disjoint union of the irreducible representations
of the various maximal subgroups. Thus, one condition we
will need for the coarse structure to coincide with the fine
structure is that the monoid be aperiodic, that is to say, that
maximal subgroups be trivial.

The quiver of a finite dimensional algebra is a combina-
torial object of central importance in studying its represen-
tations theory. There has been in recent years a great deal of
interest in determining properties of the quiver and relations
of the monoid algebra, as in the work of Saliola, [1] and of
Margolis and Steinberg [2]. The object used in this paper,
the basis graph, is closely related to the quiver. For some
purposes, particularly deformation theory, the basis graph is
preferable, and in this work we claim that for certain types
of monoids, the basis graph gives a much clearer picture
of the relationship between the monoid and the monoid
algebra than the quiver does.These are themonoids for which
the coarse structure described above can be obtained for a
complete set of primitive idempotents, and one of the main
results of the paper is that this happens when the monoid
is aperiodic and has commutative idempotents. Examples of
this phenomenon given below include thematrixmonoid and
the set of order-preserving and extensive maps from a finite
set into itself.

Let us comment that there has also been an other recent
work on trying to unravel the algebra structure of themonoid
algebra from invariants of the monoid. Thiéry [3] is able to
derive information about the Cartan matrix of the algebra
from combinatorial Cartan matrix 𝐶 of the monoid, and
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similarly the third section in Denton’s thesis [4] takes up
this theme.The anonymous referee pointed out the similarity
of our concept to the third section of [5], and we have in
fact switched from our original notation to a version of their
notation “lfix” and “rfix” to emphasize this similarity. In the
case given in our Section 5 in which the coarse and fine
structures coincide, the entries in the matrix 𝐶 appear to be
the sizes of what we call the Peirce sets of themonoid, defined
in our Section 3.

Let 𝑀 be a finite monoid, and let 𝐸(𝑀) be its set of
idempotents. We recall that the J-class of an element 𝑎 of
𝑀 is the set of all 𝑏 ∈ 𝑀 such the 𝑀𝑎𝑀 = 𝑀𝑏𝑀. A J-
class is regular if it contains an idempotent. Two idempotents
𝑒 and 𝑓 are called conjugate if they lie in the same J-class,
and this happens if and only if there are elements 𝑥 and 𝑦 in
the monoid such that 𝑒 = 𝑥𝑦 and 𝑓 = 𝑦𝑥.

2. The Basis Graph of a Finite
Dimensional Algebra

For any complete, orthogonal setE of idempotents in a finite
dimensional algebra𝐴with Jacobson radical 𝐽, we can define
a basis graph [6] to be the directed graph with one vertex
labeled 𝑓

𝑖
for each idempotent 𝑓

𝑖
and the following loops and

arrows:

(i) 𝑛0
𝑖𝑖
− 1 loops of weight zero,

(ii) 𝑛𝑘
𝑖𝑗
arrows or loops of weight 𝑘 for 𝑖 ̸= 𝑗 or 𝑘 > 0, where

𝑛

𝑘

𝑖𝑗
= dim

𝐾
(𝑓

𝑖
(

𝐽

𝑘

𝐽

𝑘+1
)𝑓

𝑗
) . (1)

Definition 1. A basis 𝐵 of 𝐴 which is a union of bases for
the different Peirce components 𝑓

𝑖
𝐴𝑓

𝑗
is said to respect the

idempotent set E.

A refinement E󸀠 of E is a complete set of orthogonal
idempotents such that every element 𝑒 of E is a sum of
elements of E󸀠. If we have such a refinement, then we get
a refinement of the basis graph, in which some of the loops
are replaced by vertices and arrows. For example, the upper
triangular 2 × 2 matrices over a field 𝑘, considered with
respect to a set of idempotents containing only the identity
matrix, would have a basis graph consisting of one vertex
and two loops, one of weight zero and one of weight 1. We
can take a refinement of the idempotent set consisting of
the idempotent diagonal matrices 𝐸

11
and 𝐸

22
. The refined

basis graph will have two vertices corresponding to the two
idempotents and one arrow of weight one.

The basis graph for any complete orthogonal set of
primitive idempotents is an invariant of the algebra, since
any two such sets are conjugate. If the algebra is basic, then
the quiver is with respect to right modules just the basis
graph with all arrows of weight greater than one erased,
since the quiver is defined by considering the dimension of
(𝑓

𝑖
(𝐽/𝐽

2
)𝑓

𝑗
) (if one uses leftmodules, onemust take the dual).

If the algebra is not basic, then all matrix blocks, together
with the arrows of weight zero representing matrix units,

must be shrunk to points in the quiver, with a corresponding
coalescence of arrows.

3. Finite Monoids with a Chosen Commutative
Idempotent Submonoid

Our aim in this section is to construct an alternative basis of
𝐴 which still corresponds one-to-one to the set of elements
of the monoid but which behaves well with respect to the
basis graph defined above. In particular, we will want the
idempotents to be orthogonal and the other basis elements
to respect the idempotent set as in Definition 1.

We now consider a finite monoid (𝑀,⬦) with a chosen
commutative idempotent submonoid 𝐿. If𝑀 has an absorb-
ing zero element 𝑍, we assume that 𝑍 is also in 𝐿. A trivial
choice would be to take 𝐿 to be the identity element, together
with 𝑍 if it exists. Because of the commutativity, the set 𝐿 is
partially ordered by the relation 𝑥 ⪯ 𝑦 ⇔ 𝑥 ⬦ 𝑦 = 𝑥 and
is a semilattice under this ordering, with the greatest lower
bound of two elements being their product. Since 𝐿 contains
a maximal element, the identity, then 𝐿 is also a lattice, since
the least upper bound of two elements 𝑥 and 𝑦 is the greatest
lower bound of all the elements of 𝐿 which dominate both 𝑥

and 𝑦, and this set is nonempty because the identity always
dominates both 𝑥 and 𝑦.

Definition 2. Let 𝑀 be a monoid with operation ⬦. Let 𝐿 be
a commutative idempotent submonoid. For an element 𝑎 of
the monoid 𝑀, the left 𝐿-idempotent lfix

𝐿
(𝑎) is the product

of all the idempotents 𝑒 in the lattice 𝐿 such that 𝑒 ⬦ 𝑎 = 𝑎.
Similarly, the right 𝐿-idempotent rfix

𝐿
(𝑎) is the product of all

the idempotents 𝑒 in the lattice 𝐿 such that 𝑎 ⬦ 𝑒 = 𝑎. At least
one such idempotent always exists, since the identity of the
monoid satisfies the condition.

Remark 3. If𝑀 has an absorbing zero𝑍, then𝑍 is not the left
or right idempotent of any element except itself.

We now pass to the reduced monoid algebra 𝐴 of the
monoid𝑀 over a field 𝐾, where 𝐾 is a field sufficiently large
that the quotient of 𝐴 by its radical 𝐽 splits completely as a
sum of matrix blocks over𝐾. One might, for example, take𝐾
to be algebraically closed. If𝑀 does not contain an absorbing
zero element, then we set 𝐴 = 𝐾𝑀 and 𝐵 = 𝐾𝐿 and define
𝑀

0
= 𝑀 and 𝐿

0
= 𝐿. If𝑀 does contain a necessarily unique

zero element 𝑍, then we let 𝐴 be the quotient 𝐾𝑀/𝐾𝑍

with subalgebra 𝐵 = 𝐾𝐿/𝐾𝑍. This reduction is made
because the full monoid algebra 𝐾𝑀 is isomorphic to a
direct product of an algebra isomorphic to 𝐴 and a copy
of the 𝐾 representing the ideal 𝐾𝑍, which gives, among
other disadvantages, an algebra which is decomposable and
disconnected quiver, where algebra representation theorists
prefer to work with indecomposable algebras. From the point
of view of representation theory the object of study is the
algebra 𝐴. We define sets 𝑀

0
= 𝑀 − {𝑍} and 𝐿

0
= 𝐿 − {𝑍}.

Note that in the second case 𝑀

0
and 𝐿

0
may no longer be

monoids, since the product of two elements different from 𝑍

might be 𝑍.



Journal of Discrete Mathematics 3

For each 𝑚 ∈ 𝑀, we let 𝑚 ∈ 𝐴 be equal 𝑚 in the case
without the absorbing zero and 𝑚 + 𝐾𝑍 in the case with the
absorbing zero.This will allow us to treat both cases together.
We take as bases of 𝐴 and 𝐵 the sets𝑀

0
= {𝑚 | 𝑚 ∈ 𝑀

0
} and

𝐿

0
= {𝑒𝑒 ∈ 𝐿

0
}, respectively.

Definition 4. Amultiplicative basis B in a finite dimensional
algebra 𝐴 is a basis such that the product of two elements of
the basis is either zero or an element of the basis. Thus B is
a multiplicative basis of 𝐴 if and only if 𝐴 is the semigroup
algebra ofB.

The basis 𝑀

0
is a multiplicative basis of the reduced

monoid algebra 𝐴 defined above and 𝐿

0
is a multiplicative

basis for 𝐵.
By the Munn-Ponizovskii theorem [7], the isomorphism

classes of simple modules are in one-to-one correspondence
with the simple modules of the various isomorphism classes
of maximal subgroups, one for each J-class, and we also
assume that the characteristic of𝐾 does not divide the orders
of any of the maximal subgroups.

It is a standard fact about rings that if 𝑒 and 𝑓 are
idempotents satisfying 𝑓 ⪯ 𝑒 then 𝑒 − 𝑓 is an idempotent
orthogonal to 𝑓. By a construction of Solomon [8], the
reduced monoid algebra 𝐵, which is a subalgebra of 𝐴, has
a basis of orthogonal idempotents in one-to-one correspon-
dence with the elements of 𝐿

0
, obtained by a process of

Moebius inversion. These idempotents are actually primitive
in 𝐵, but they are not necessarily primitive in 𝐴, as the
example of taking 𝐿 to be the identity demonstrates. The
Moebius function 𝜇(𝑓, 𝑒) for elements of a partially ordered
set is defined recursively to be 0 if 𝑓𝑒, to be 1 if 𝑓 = 𝑒, and to
be −∑

𝑓≤𝑧<𝑒
𝜇(𝑓, 𝑧) for 𝑓 < 𝑒.

Definition 5. For each 𝑒 ∈ 𝐿

0
, let 𝑒 = ∑

𝑓≤𝑒
𝜇(𝑓, 𝑒)𝑓 be the

corresponding primitive idempotent of 𝐵. The set of all the 𝑒
will be denoted by ̂𝐿

0
.

For any 𝑎 ∈ 𝑀

0
, let

𝑎 =

̂lfix
𝐿 (
𝑎) ⋅ 𝑎 ⋅

̂rfix
𝐿 (
𝑎) ∈ 𝐴.

(2)

Note that each idempotent is the sum of an element 𝑒 for
𝑒 ∈ 𝐿

0
with a linear combination of lower idempotents𝑓.The

set of all 𝑎 will be denoted by ̂

𝑀

0
, so that for each 𝑎 ∈ 𝑀

0
, we

have an element 𝑎 of the multiplicative basis𝑀
0
of 𝐴 and an

element of the set ̂𝑀
0
, also of 𝐴. Our aim in this section is to

prove that ̂𝑀
0
is an alternative basis of 𝐴 which behaves well

with respect to the basis graph.

Lemma 6. An idempotent 𝑒 ∈ 𝐿 is its own left and right 𝐿-
idempotent.

Proof. Obviously 𝑒 ⬦ 𝑒 = 𝑒. However, if𝑓 is any other element
of 𝐿
0
such that 𝑒 ⬦𝑓 = 𝑒, then by the definition of the partial

ordering on idempotents 𝑒 ⪯ 𝑓.This shows that 𝑒 is aminimal
right idempotent, and the proof on the left is dual.

We define a collection of subsets of𝑀 by

𝑆

0
= {𝑒

󸀠
⬦𝑀

0
⬦ 𝑒

󸀠󸀠
| 𝑒

󸀠
, 𝑒

󸀠󸀠
∈ 𝐿

0
} . (3)

This is the full collection of 𝐿-Peirce sets of 𝑀 if there is no
zero in themonoid.When there is a zero𝑍, there would be an
additional Peirce set {𝑍}, which we ignore because it vanishes
under the passage to the reduced monoid algebra. In mild
abuse of notation, we refer to the sets in 𝑆

0
as 𝐿
0
-Peirce sets.

We impose a linear ordering on 𝑆

0
which is subordinate

to the natural partial ordering on 𝐿

0
× 𝐿

0
and then a linear

ordering on 𝑀

0
which is subordinate to the ordering on 𝑆

0
.

We impose the same ordering on 𝑀

0
. We now make the

following claim.

Lemma 7. The linear transformation 𝑓 : 𝐴 → 𝐴 which
maps 𝑎 ∈ 𝑀

0
to 𝑎, written in the ordered basis 𝑀

0
, is upper

triangular with 1 on the diagonal and thus invertible.

Proof. By the construction of the primitive idempotents of
𝐾𝐿

0
, the idempotent 𝑒 is given by 𝑒 with coefficient 1 and a

linear combination of lower idempotents. Thus 𝑎 is the sum
of 𝑎with coefficient 1 and a linear combination of elements of
𝑀

0
from strictly smaller 𝐿

0
-Peirce sets.This gives the desired

result.

Proposition 8. The set ̂

𝑀

0
= {𝑎 | 𝑎 ∈ 𝑀

0
} is a basis for

𝐴 whose elements lie in the components of the Peirce decom-
position of 𝐴 by the idempotent set ̂𝐿

0
. Thus the dimension of

each Pierce component ̂𝑒󸀠𝐴̂

𝑒

󸀠󸀠 can be obtained from themonoid
by calculating the number of elements with left idempotent 𝑒󸀠
and right idempotent 𝑒󸀠󸀠.

Proof. By Lemma 7, the matrix mapping𝑀
0
to ̂

𝑀

0
is invert-

ible. Since𝑀
0
is a basis of 𝐴, so is ̂𝑀

0
.

Since every 𝑎 has left and right idempotents from ̂

𝐿

0
, the

set ̂𝑀
0
respects the set of idempotents ̂𝐿

0
as in Definition 1,

and each 𝑎 lies in an ̂

𝐿

0
-Peirce component. Since they are

linearly independent, the number of 𝑎 in any ̂

𝐿

0
-Peirce

component of ̂

𝑀

0
is less than or equal to the dimension,

but since the total number of elements in ̂

𝑀

0
is equal to the

dimension of 𝐴, each inequality must in fact be equality.

This proposition demonstrates the possibility of choosing
a coarse set of idempotents which, after conversion to appro-
priate representation algebra idempotents using inclusion-
exclusion methods, will give a one-to-one correspondence
between semigroup elements and basis elements for a basis
of the monoid algebra respecting ̂

𝐿

0
, thus indicating that

the aspects of the monoid algebra visible at this level of
refinement are natural to the semigroup. To get themaximum
use out of the proposition, one should choose the coarse set of
idempotents as fine as possible without losing commutativity.
The best situation of all is that in which the set of idempotents
̂

𝐿

0
is actually a complete set of primitive idempotents, and we

will address that case in the last section.
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4. Examples

In general ̂

𝑀

0
will not be a multiplicative basis, and even

when it is, as in Example 1 below, the multiplication will not
necessarily coincide with the multiplication in the monoid,
that is, we may have 𝑎̂𝑏 ̸=

̂

𝑎𝑏.
Our first example is a very natural one, in which ̂

𝐿

0
is a

complete set of primitive idempotents.

Example 1 (monoid with multiplicative basis in which the
⋅̂-operator does not respect multiplication). Let 𝑀 be the
monoid of 𝑛 × 𝑛 matrix units {𝐸

𝑖𝑗
}

𝑛

𝑖,𝑗=1
, together with an

identity element 1 and a zero element 𝑍. The monoid 𝐿 is
taken to be the matrix units of the diagonal, together with
1 and 𝑍, while 𝐿

0
= 𝐿 − {𝑍}. The reduced monoid algebra

𝐴 is isomorphic to the semisimple algebra 𝐾 ⊕ 𝑀

𝑛
(𝐾). In

this case, since the poset of idempotents is given by 𝑍 ≤ 𝐸

𝑖𝑖

for all 𝑖 = 1, . . . , 𝑛, the inclusion and exclusion processes are
very simple, giving 𝐸

𝑖𝑖
− 𝑍 for 𝑖 = 1, . . . , 𝑛, 𝑍 for 𝑍, and

1−∑

𝑛

𝑖=1
𝐸

𝑖𝑖
+(𝑛−1)𝑍. Dividing𝐾𝑀 by the ideal𝐾𝑍 to get𝐴,

we then have ̂

𝐸

𝑖𝑖
= 𝐸

𝑖𝑖
= 𝐸

𝑖𝑖
+ 𝐾𝑍 for 𝑖 = 1, . . . , 𝑛. The basis

graph is a directed graph with an isolated vertex for 1 and
𝑛 vertices 𝑒

𝑖𝑖
, 𝑖 = 1, . . . , 𝑛, with one arrow in each direction

between any pair of the 𝑛 vertices. In this case the basis ̂𝐿
0
is

multiplicative, since ̂

𝐸

𝑖𝑗
̂

𝐸

𝑘ℓ
=

̂

𝐸

𝑖𝑗
𝐸

𝑘ℓ
and ̂

1 ⋅

̂

𝐸

𝑖𝑗
=

̂

𝐸

𝑖𝑗
⋅

̂

1 = 0.
Note that this last equation shows that we do not always have
𝑎 ⋅

̂

𝑏 =

̂

𝑎𝑏, even when the basis is multiplicative.

This monoid has three J-classes, one containing all the
matrix units, one containing the identity, and one containing
only 𝑍. The quiver of 𝐴 consists of two points, since the
equations 𝐸

𝑖𝑖
= 𝐸

𝑖𝑗
𝐸

𝑗𝑖
and 𝐸

𝑗𝑗
= 𝐸

𝑗𝑖
𝐸

𝑖𝑗
show that all

of the idempotents in 𝐿

0
are conjugate, as defined in the

Introduction.
Example 1 represents one extreme possibility, in which

almost all idempotents of 𝐿
0
are in a single J-class. The

opposite extreme, in which each element of 𝐿
0
corresponds

to a different J-class, is actually a common situation for the
important class of linear algebraic monoids, which have been
extensively studied by Putcha [9].

Definition 9. A cross-section lattice 𝐿 for𝑀 is a commutative
idempotent submonoid which contains exactly one element
from each regularJ-class.

Linear algebraic monoids arise as the Zariski closures of
linear algebraic groups, but there are more general examples.
The cross section lattices in the linear algebraicmonoids arise
as the set of idempotents inside a maximal torus. Most linear
algebraic monoids are infinite, but they have finite versions
defined over finite fields.

Example 2 (monoid with cross section lattice). If 𝐴 is any
finite dimensional algebra, then its monoid (𝐴, ⋅) is a linear
algebraic monoid. Over a finite field, this will be a finite
monoid. Let {𝑒

1
, . . . , 𝑒

𝑛
} be a complete set of primitive

idempotents for 𝐴 as an algebra, ordered so that {𝑒
1
, . . . , 𝑒

𝑘
},

with 𝑘 ≤ 𝑛 being representatives of conjugacy classes of

idempotents. If, as a concrete instance of this construction,
𝐴 was the𝑚×𝑚matrix monoid over a field of two elements,
then the matrix units 𝐸

𝑖𝑖
, 𝑖 = 1, . . . , 𝑛 would be such a set of

primitive idempotents, but they would all be conjugate, so we
would have 𝑘 = 1.

Returning to the general case, every subset 𝐼 ⊆ {1, . . . , 𝑘},
let 𝑒
𝐼
= ∑

𝑖∈𝐼
𝑒

𝑖
. Then {𝑒

𝐼
| 𝐼 ⊆ {1, . . . , 𝑘}} is a cross section

lattice of (𝐴, ⋅). There are 2𝑘 regularJ-classes in (𝐴, ⋅).

Most finite monoids do not have cross section lat-
tices. When a cross-section lattice exists, it is a natural
but not inevitable choice for the commutative idempotent
submonoid 𝐿.

Example 3 (another monoid with cross section lattice). Let
(𝑃, ⪯) be a poset with 𝑛 elements 𝑥

1
, . . . , 𝑥

𝑛
arranged so that

𝑥

𝑖
⪯ 𝑥

𝑗
implies that 𝑖 ≤ 𝑗. Let 𝑀 be a submonoid of the

𝑛 × 𝑛 matrices over the field F
2
of two elements, in which an

element 𝑎
𝑖𝑗
= 0 if 𝑥

𝑖
󳠢 𝑥

𝑗
. In particular, all the matrices in

𝑀 are upper triangular. Let 𝐿 be the set of all 2𝑛 diagonal
matrices, which are all idempotents because 0 and 1 are
idempotents of the field. The submonoid 𝐿 contains the zero
matrix and is a cross section lattice as in Definition 9 above.

The idempotents 𝑒 in ̂

𝐿

0
are primitive only when the

diagonal matrix has only one nonzero entry. Otherwise the
submonoid 𝑒𝑀𝑒 has a nontrivial maximal subgroup 𝐺, and
in order to find a set of primitive idempotents for 𝑒𝐴𝑒, we will
have to decompose𝐾𝐺 into its irreducible representations.

In an earlier paper, [10], we proposed an even coarser set
of idempotents based on intervals along the diagonal.

There are many important examples of cross section
lattices. The one we will consider with particular care, which
motivated our search for a general coarse structure, is the
monoid of endofunctions on a finite set. This monoid has no
zero element.

Example 4 (obtaining a complete decomposition of the iden-
tity into orthogonal idempotents for a specific representation
of 𝑇
𝑛
). Let 𝑇

𝑛
be the monoid of functions from the set 𝑁 =

{1, 2, . . . , 𝑛} into itself, acting on the right, with composition
as the operation. The monoid 𝑇

𝑛
has 𝑛

𝑛 elements. This
monoid has a natural filtration by the two-sided ideals

𝐿

𝑖
= {𝑓 ∈ 𝑇

𝑛
|

󵄨

󵄨

󵄨

󵄨

𝑁 ⋅ 𝑓

󵄨

󵄨

󵄨

󵄨

≤ 𝑖} , (4)

with 𝐿
𝑛
= 𝑇

𝑛
. We define a representation 𝜌 of 𝑇

𝑛
as operating

from the right on a vector space 𝑉 = ⟨V
1
, . . . , V

𝑛
⟩ by sending

𝑓 ∈ 𝑇

𝑛
to 𝜌(𝑓), the matrix with entries 1 in positions (𝑖, 𝑖 ⋅ 𝑓),

and 0 everywhere else. Then 𝑓 ∈ 𝐿

𝑖
if and only if 𝜌(𝑓) has

rank 𝑖. If we denote the constant map with unique image 𝑗 by
𝑗, then 𝜌(𝑗) is the matrix with all ones in column 𝑗. These are
the only matrices in the image of 𝜌 of rank 1, so

𝐿

1
= {1, . . . , 𝑛} . (5)
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These constant maps will play a special role in what follows,
so we note for future reference that if 𝑠 is an arbitrary element
of 𝑇
𝑛
, then

𝑠 ∘ 𝑖 = 𝑖,

𝑖 ∘ 𝑠 = 𝑖 ∘ 𝑠.

(6)

We now fix a distinguished index 1 and define embed-
dings 𝛼

𝑖
of𝑇
𝑖
in𝑇
𝑛
by letting 𝛼

𝑖
(𝑓) be the element of𝑇

𝑛
which

acts like 𝑓 on {1, . . . , 𝑖} and is constant, equal to 1, on the
remaining elements. This embedding is a homomorphism of
semigroups, though not a homomorphism of monoids. If we
let id
𝑖
represent the identity element of 𝑇

𝑖
, then we set

𝑒

𝑖
= 𝛼

𝑖
(id
𝑖
) . (7)

Note that 𝑒
1
= 𝛼

1
(id
1
) = 1 and 𝑒

𝑛
= id
𝑛
.

Since each 𝑒

𝑖
is the image of an idempotent under a

homomorphism of semigroups, it is itself an idempotent.
Furthermore,

𝑒

𝑖
∘ 𝑒

𝑗
= 𝑒min(𝑖,𝑗), (8)

so that, under the ordering of idempotents in a semigroup by
which

𝑓 ⪯ 𝑒 ⇐⇒ 𝑒 ∘ 𝑓 = 𝑓 = 𝑓 ∘ 𝑒, (9)

we have that the ordering of 𝑒
𝑖
is according to the ordering of

the indices and by the order of J-classes. Furthermore, the
set 𝐿 = {𝑒

𝑖
} is, in fact, a cross section lattice in 𝑇

𝑛
. We define

𝑓

1
= 𝑒

1
= 1,

𝑓

𝑖
= 𝑒

𝑖
− 𝑒

𝑖−1
, 𝑖 = 2, . . . , 𝑛,

(10)

which is the Moebius inversion for a chain. Then the idem-
potent 𝑓

𝑖
is orthogonal to all the 𝑒

𝑗
with 𝑗 < 𝑖 and thus to all

the idempotents𝑓
𝑗
with 𝑗 < 𝑖. A simple telescoping argument

shows that

𝑓

1
+ ⋅ ⋅ ⋅ + 𝑓

𝑛
= id
𝑛
, (11)

so {𝑓

1
, . . . , 𝑓

𝑛
} is a complete, orthogonal set of idempotents

for 𝐴.

Definition 10. The right rank rr(𝑓) of a map f is the width of
its image, that is, the largest number in the image. If rr(𝑓) =
𝑖, then the last 𝑛 − 𝑖 columns of 𝜌(𝑓) are zero and the 𝑖th
column is nonzero. The left rank lr(𝑓) of a map is the index
of the largest number 𝑗 such that 𝑗 ⋅𝑓 ̸= 1 ⋅𝑓, unless themap is
a constant; in such case the left rank is 1. In terms of matrices,
this means that 𝑗 is the lowest row of 𝜌(𝑓) which is not equal
to the first row.

In fact, the right rank of 𝑓 is the smallest 𝑖 such that
𝑓 ∘ 𝑒

𝑖
= 𝑓, since 𝑒

𝑖
acts as the identity on the first 𝑖 columns

and the “tail” of 𝑒
𝑖
does not act because all those columns are

zero. The product is composition, but because the action is
from the right, first 𝑓 acts and then 𝑒

𝑖
. The left rank of 𝑓 is

the smallest 𝑖 such that 𝑒
𝑖
∘ 𝑓 = 𝑓, since the first 𝑖 elements go

as they go in 𝑓, and the remainder go to 1 ⋅ 𝑓. The constant
map 𝑗 has right rank 𝑗 and left rank 1.The left and right ranks
of 𝑒
𝑖
are 𝑖.
The basis graph of𝑇

1
is the point𝑓

1
.The basis graph of𝑇

2

with respect to the idempotent set {𝑓
1
, 𝑓

2
} consists of the two

vertices, an arrow from𝑓

1
to𝑓
2
given by themap ̂2, and a loop

at𝑓
2
given by themap𝑓which transposes 1 and 2.Thiswill be

the appropriate coarse structure. If we refine this by splitting
𝑓

2
into two primitive idempotents, then the loop vanishes

to produce the second idempotent and the arrow comes out
of only one of the primitive idempotents, corresponding to
the nontrivial representation of the corresponding maximal
subgroup 𝐶

2
.

It should be pointed out that, where a choice is involved
in the selection of the lattice 𝐿, the operation of sending
𝑎 to 𝑎 may behave strangely with regard to the J-classes.
In the example of the mappings, 𝑇

𝑛
, all the constant maps

are idempotents lying in the lowest J-class. By the choice
we made of the lattice 𝐿, 1 =

̂

1 remains an idempotent,
whereas all the other ̂𝑗 = 𝑗 − 1 become arrows in the radical.
All the various choices are conjugate, obtained one from the
other by permutations of the underlying set {1, 2, . . . , 𝑛} on
which the mappings act. From the point of view of algebra
representation theory this is quite natural, since the difference
between two conjugate idempotents in a basic algebra is
a linear combination of nonlooped arrows. However, it
does mean that not all members of a J-class have similar
representations in the basis graph.

One solution to this problem, then, would be to restrict
ourselves to J-trivial monoids, those for which there is
a unique idempotent in each regular J-class. However,
Example 1 above shows that this would be too restrictive.

Returning to the question of multiplicative bases, it is
not hard to check, by direct calculation, in the case of 𝑇

2

of Example 4 above that the basis ̂

𝑀

0
is multiplicative. We

turn now to𝑇
3
and the 14-dimensional component with right

and left idempotents 𝑓
3
, in order to show that ̂𝑀

0
is not, in

general, a multiplicative basis.The elements not in the radical
correspond to the six permutations of 1, 2, and 3, and the
elements in the radical-squared correspond under the map-
ping of 𝑎 to 𝑎 to all the arrangements of two distinct numbers
such that 3 is among them, and the first and last numbers are
different. These are 311, 322, 133, 233, 331, 332, 113, and
223. Let us set 𝑤 = 231 and calculate

𝑤 ⬦ 𝑤. (12)

A slightly tedious calculation of the sixteen elements in the
product shows that eight cancel each other out, and the
remaining eight correspond to

̂

312 −

̂

322 =
̂
𝑤⬦𝑤 −

̂
𝑤⬦ 𝑒

2
⬦ 𝑤 ∉

̂

𝑀

0
. (13)

Thus the basis is not multiplicative.



6 Journal of Discrete Mathematics

5. The Fine Structure

In semigroup theory, a pseudovariety is a collection of finite
semigroups closed under homomorphic images, subsemi-
groups, and finite direct products. Although we have been
studying monoids, the property of being a monoid is not
stable under taking subsemigroups, aswe see fromExample 1,
since the matrix units together with 𝑍 are a semigroup.
Since every semigroup can be converted into a monoid by
adjoining an identity element, we will content ourselves with
trying to find pseudovarieties for which there is a coarse
structure which coincides with the fine structure. The point
at which this correspondence most readily breaks down is
at the point where the local subgroups are broken down
into irreducible representations. Thus for discussing the fine
structure we will consider only semigroups for which the
maximal subgroups are all trivial. This is the pseudovariety
A of aperiodic semigroups.

Example 5 (aJ-trivial monoid). Consider the monoid of all
partial 1-1 maps from 𝑁 = {1, 2, . . . , 𝑛} to itself for some
natural number 𝑛. This has a submonoid𝑀, consisting of all
the partial maps 𝑓 which are order preserving and extensive,
which means that if 𝑖𝑓 is defined for some 𝑖 ∈ 𝑁, then 𝑖𝑓 ≥ 𝑖.
These monoids are not just aperiodic, they are actually J-
trivial [5].

For this particular example, the connected components of
the basis graph are determined by a natural number 𝑑 which
is the commondimension of the domain and image.The right
and left idempotents are the identitymaps on the domain and
image.The quiver is theHasse diagram of the partial order on
subsets 𝑆 and 𝑇 of size 𝑠 given by 𝑆 ≥ 𝑇 if there is an order-
preserving, extensive𝑓 : 𝑆 → 𝑇.The basis graph is the entire
diagram generated by the partial order.

The representation theory of J-trivial monoids has
received considerable attention recently, [5]. There is a
homomorphism from a J-trivial monoid into its lattice
of idempotents, and when this is extended to the monoid
algebras, the kernel corresponds to the radical in the rep-
resentation algebra. There is a one-to-one correspondence
between the idempotents of the monoid and the irreducible
representations in the representation algebra. See [5] for
details.

The idempotents of aJ-trivial monoid do not, in general,
commute and thus we cannot apply our theory to every J-
trivial monoid. However, in Example 5 the idempotents are
partial identity maps, which do commute with each other.
Thus the idempotents in that example form a lattice in which
the meet is given by multiplication. We conclude that the
idempotents 𝑒 are all primitive and thus, by Proposition 8, the
coarse and fine structures coincide.

The simplest case in which we can find a semilattice of
idempotents is a case like Example 5 where all the idempo-
tents commute, the variety IC. Ash [11] proved that if a semi-
group lies in this pseudovariety, then it is a homomorphic
image of a subsemigroup of an inverse semigroup, one for
which to each element 𝑠 is associated a unique element 𝑠−1
such that 𝑠𝑠−1𝑠 = 𝑠 and 𝑠

−1
𝑠𝑠

−1
= 𝑠

−1. By uniqueness, since

for any idempotent the choice 𝑠 = 𝑠

−1 satisfies this condition,
each idempotent is its own partial inverse.

Example 6 (monoid where the coarse and fine structures
coincide). Let 𝑁 = {1, 2, . . . , 𝑛} for some natural number 𝑛,
and let 𝑀 be the set of one-to-one order-preserving partial
maps 𝑓 : 𝑁 → 𝑁. The idempotents in this monoid
are the partial identity maps and thus commute with each
other. It is aperiodic because, for any idempotent 𝑒, the only
element in 𝑒𝑀𝑒 is 𝑒, itself, for if 𝑆 is the common domain and
range of 𝑒, the only order-preserving one-to-one map from
𝑆 to itself is the identity. Although aperiodic, the monoid is
not J-trivial. The J-classes are determined by the number
𝑖 of elements in 𝑆, so that the J-class of 𝑒 contains the
idempotents corresponding to all the 𝑛!/𝑖!(𝑛 − 𝑖)! subset of𝑁
with 𝑖 elements, as well as all order-preserving partial maps
whose domain and range have 𝑖 elements. Since for each
pair of sets 𝑆 and 𝑇 with 𝑖 elements there is a unique one-
to-one order-preserving map between them, the principal
factor corresponding to each J-class has a reduced algebra
isomorphic to the matrix algebra of the size of the number
of idempotents in J. Since these matrix algebras generate
the matrix blocks of the Munn-Ponizovskii theorem, the
idempotents 𝑒 are in fact primitive, since they correspond to
the diagonal idempotents of the matrix blocks.

For any semigroup 𝑆, an ideal 𝐼 is a subset closed
under multiplication by elements of 𝑆, and the Rees quotient
semigroup 𝑆/𝐼 is the semigroup obtained by replacing the
elements of 𝐼 by a single zero element 𝑍. The principal factor
of a semigroup corresponding to aJ-class 𝐽 is 𝑆𝐽𝑆/𝑁, where
𝑁 = 𝑆𝐽𝑆 − 𝐽 and if 𝑁 = 0 then we understand the quotient
to be 𝐽.The semigroups which can appear as principal factors
are of a limited number of types.They can be semigroupswith
zero multiplication, 0-simple semigroups, or ideal simple
semigroups.

Proposition 11. Let 𝑀 be a monoid with zero 𝑍. If the
monoid is aperiodic and has commuting idempotents, the
coarse structure of 𝑀 with respect to the set of all non-zero
idempotents will coincide with its fine structure.There is a one-
to-one correspondence between the non-zero elements of the
monoid and the set of vertices and arrows of the basis graphs.

Remark 12. The monoid thus belongs to A ∩ IC, the inter-
section of the pseudovariety A of aperiodic semigroups
and the pseudovariety IC of semigroups with commuting
idempotents. We mention this notation because some of the
theorems we rely on are phrased in the language of varieties.

Proof. Because we are in the pseudovariety ICwe can choose
𝐿 to be the set of all idempotents and it will be a submonoid.
We let {𝐽

1
, . . . , 𝐽

𝑚
} be the set of regular J-classes in 𝑀,

where 𝐽

1
is the class of 1 and 𝐽

𝑚
is the class of 𝑍. By

the Munn-Ponizovskii theorem, the radical quotient of the
representation algebra 𝐴 of𝑀 is of the form

𝐴

󸀠
=

𝑚−1

⨁

𝑖=1

𝑀

𝑎𝑖
(𝐾𝐺

𝑖
) , (14)
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where the 𝐺

𝑖
are the maximal subgroups of the regular J-

class 𝐽
𝑖
and 𝑎

𝑖
is a number depending on the structure of the

class 𝐽
𝑖
. We have assumed that the maximal subgroups are

trivial, so each regular J-class gives a single matrix block.
Furthermore, by the standard reference [12], we find that 𝑎

𝑖

for a monoid in IC is exactly the number of idempotents in
theJ-class.

By general properties of the semigroups in the pseudova-
riety IC, the set Reg(𝑀) of elements in regular J-classes
is a submonoid of 𝑀. Since each of these regular J-classes
contains an idempotent, the regular principal factors cannot
have zero multiplication, and since we have assumed that 𝑀
has a zero, it cannot be ideal simple, so it must be 0-simple,
and, in fact, completely 0-simple since it contains a regular
regularJ-class. A regular semigroup with commuting idem-
potents is an inverse semigroup; that is, every element 𝑠 has
a unique inverse 𝑠−1 belonging to the sameJ-class as 𝑠. Each
regular factor is thus also an inverse subsemigroup and is, in
fact, a Brandt semigroup, a completely 0-simple semigroup
which is an inverse semigroup. It is also aperiodic, and a finite
aperiodic Brandt semigroup is a semigroup of matrix units.
Thus, for each regular J-class 𝐽 for a monoid in IC ∩ A, the
principal factor is a matrix unit semigroup. If 𝑒 and 𝑓 are
equivalent idempotents, there must be elements 𝑥 ∈ 𝑒𝑀𝑓

and 𝑦 ∈ 𝑓𝑀𝑒 such that 𝑒 = 𝑥𝑦 and 𝑓 = 𝑦𝑥. In this
case 𝑥 and 𝑦 are unique and are precisely the matrix units
which transfer from 𝑒 to 𝑓 and back. The degree is equal to
the number of idempotents equivalent to 𝑒. The basis graph
for the corresponding matrix block is the complete directed
graph with a number of vertices equal to the degree of the
matrix block, where for a directed graph, completeness gives
one arrow in each direction between any pair of vertices.

Thus for each regular J-class, the orthogonal idempo-
tents obtained by inclusion-exclusion from the idempotents
in the J-class are equal in number to the dimension of the
matrix block. If so, they must be primitive, and the coarse
structure determined by this choice of idempotents does
indeed coincide with the fine structure. Thus, by applying
Proposition 8, we have a one-to-one correspondence between
the elements of themonoid and the vertices and arrows of the
basis graph.

If we were to require the semigroup idempotents to
be primitive, then the regular part would have to be an
annihilating sum of Brandt semigroups, as mentioned in
the remark after Theorem 3 of [13]. However, since we only
require the algebra idempotents after inclusion-exclusion to
be primitive, we have access to a much richer collection of
semigroups.

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

References

[1] F. V. Saliola, “The quiver of the semigroup algebra of a left reg-
ular band,” International Journal of Algebra and Computation,
vol. 17, no. 8, pp. 1593–1610, 2007.

[2] S. Margolis and B. Steinberg, “Quivers of monoids with basic
algebras,” Compositio Mathematica, vol. 148, no. 5, pp. 1516–
1560, 2012.
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