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Multiresolution analysis arising from Coalescence Hidden-variable Fractal Interpolation Functions (CHFIFs) is developed. The
availability of a larger set of free variables and constrained variables with CHFIF in multiresolution analysis based on CHFIFs
provides more control in reconstruction of functions in 𝐿

2
(R) than that provided by multiresolution analysis based only on Affine

Fractal Interpolation Functions (AFIFs). Our approach consists of introduction of the vector space of CHFIFs, determination of its
dimension and construction of Riesz bases of vector subspaces V

𝑘
, 𝑘 ∈ Z, consisting of certain CHFIFs in 𝐿

2
(R) ∩ 𝐶

0
(R).

1. Introduction

The theory of multiresolution analysis provides a powerful
method to construct wavelets having far reaching applica-
tions in analyzing signals and images [1, 2]. They permit
efficient representation of functions at multiple levels of
detail; that is, a function 𝑓 ∈ 𝐿

2
(R), the space of real valued

functions 𝑔 satisfying ‖𝑔‖
𝐿
2 = ∫

R
|𝑔(𝑥)|

2
𝑑𝑥 < ∞, could be

written as limit of successive approximations, each of which
is smoothed version of 𝑓. The multiresolution analysis was
first introduced by Mallat [3] and Meyer [4] using a single
function. The multiresolution analysis based upon several
functions was developed in [5–7]. In [8], multiresolution
analysis of 𝐿

2
(R)was generated from certain classes of Affine

Fractal Interpolation Functions (AFIFs). Such results were
then generalized to several dimensions in [9, 10]. In [11],
orthonormal basis for the vector space of AFIFs was explicitly
constructed. A few years later, Donovan et al. [12] constructed
orthogonal compactly supported continuous wavelets using
multiresolution analysis arising from AFIFs. Bouboulis [13]
generated multiresolution analysis of 𝐿

2
(R𝑑) using AFIF on

[0, 1]
𝑑 and constructedmultiwavelets which are orthonormal

but discontinuous. The interrelations among AFIFs, mul-
tiresolution analysis and wavelets are treated in [14]. In [15],

multiresolution analysis is developed for a Hilbert space
constructed from Hausdorff measures H𝑠, 0 < 𝑠 < 1 on R

and, in particuluar, on a Cantor set using linear contraction.
This development was later improved in [16] by employing a
nonlinear fractal system to construct wavelets with Fourier
basis with respect to some fractal measure. The details on
implementation of recent work on multiresolution analysis
with AFIF bases can be found in [17]. It is desirable [18] that
the wavelet function should reflect the features present in the
original function but AFIF based wavelets generally cannot
exhibit satisfactorily the features of functions simulating
natural objects or outcome of scientific experiments that
are partly self-affine and partly non-self-affine. The Coa-
lescence Hidden-variable Fractal Interpolation Functions
(CHFIFs) introduced in [19] are ideally suited for such
purposes. However, multiresolution analysis of 𝐿

2
(R) based

on CHFIFs has hitherto remained unexplored. In the present
work, such a multiresolution analysis using CHFIFs as basis
functions is developed. The availability of a larger set of
free variables and constrained variables in our multiresolu-
tion analysis based on CHFIFs additionally provides more
control in reconstruction of functions in 𝐿

2
(R) than that

provided by multiresolution analysis based only on affine
FIFs.
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The organization of the paper is as follows.The construc-
tion of aCHFIF is briefly summarized in Section 2.The vector
space ofCHFIFs is introduced in Section 3 and a few auxiliary
results, including a result on determination of dimension
of this vector space, are found in this section. In Section 4,
first Riesz bases of vector subspaces V

𝑘
, 𝑘 ∈ Z, consisting

of certain CHFIFs in 𝐿
2
(R)⋂𝐶

0
(R) are constructed. The

multiresolution analysis of 𝐿
2
(R) is then carried out in this

section in terms of nested sequences of vector subspaces
V
𝑘
, 𝑘 ∈ Z.

2. Construction of a CHFIF

In this section, a brief introduction on the construction
of CHFIF is given. A Coalescence Hidden-variable Fractal
Interpolation Function (CHFIF) is constructed as the graph
of the attractor of a suitably defined Iterated Function System
(IFS).

Given an interpolation data {(𝑥
𝑖
, 𝑦
𝑖
) ∈ R2 : 𝑖 = 0, 1, . . . ,

𝑁}, where 0 = 𝑥
0

< 𝑥
1

< ⋅ ⋅ ⋅ < 𝑥
𝑁

= 1, a CHFIF is
constructed as follows. Consider a generalized interpolation
data {(𝑥

𝑖
, 𝑦
𝑖
, 𝑧
𝑖
) ∈ R3 : 𝑖 = 0, 1, . . . , 𝑁}, where 𝑧

𝑖
are

real numbers. We denote the interval [𝑥
0
, 𝑥
𝑁
] by 𝐼 and the

intervals [𝑥
𝑛−1

, 𝑥
𝑛
] by 𝐼

𝑛
for 𝑛 = 1, 2, . . . , 𝑁. Define the

functions 𝐿
𝑛
: 𝐼 → 𝐼

𝑛
and 𝐹

𝑛
: 𝐼 ×R2 → R2 by

𝐿
𝑛
(𝑥) = 𝑎

𝑛
𝑥 + 𝑏
𝑛
, (1)

𝐹
𝑛
(𝑥, 𝑦, 𝑧) = (𝛼

𝑛
𝑦 + 𝛽
𝑛
𝑧 + 𝑝
𝑛
(𝑥) , 𝛾

𝑛
𝑧 + 𝑞
𝑛
(𝑥)) , (2)

where 𝑎
𝑛
= (𝑥
𝑛
−𝑥
𝑛−1

)/(𝑥
𝑁
−𝑥
0
), 𝑏
𝑛
= (𝑥
𝑁
𝑥
𝑛−1

−𝑥
0
𝑥
𝑛
)/(𝑥
𝑁
−

𝑥
0
), and the functions 𝐹

𝑛
satisfy the join-up conditions:

𝐹
𝑛
(𝑥
0
, 𝑦
0
, 𝑧
0
) = (𝑦

𝑛−1
, 𝑧
𝑛−1

) , 𝐹
𝑛
(𝑥
𝑁
, 𝑦
𝑁
, 𝑧
𝑁
) = (𝑦

𝑛
, 𝑧
𝑛
) .

(3)

In (2), the variables𝛼
𝑛
, 𝛾
𝑛
are free variables,𝛽

𝑛
are constrained

variables such that |𝛼
𝑛
| < 1, |𝛾

𝑛
| < 1, |𝛽

𝑛
|+|𝛾
𝑛
| < 1, and𝑝

𝑛
(𝑥),

𝑞
𝑛
(𝑥) are linear polynomials given by

𝑝
𝑛
(𝑥) = 𝑐

𝑛
𝑥 + 𝑑
𝑛
, 𝑞

𝑛
(𝑥) = 𝑒

𝑛
𝑥 + ℎ
𝑛
. (4)

The desired IFS for construction of a CHFIF for the general-
ized interpolation data {(𝑥

𝑖
, 𝑦
𝑖
, 𝑧
𝑖
) ∈ R3 : 𝑖 = 0, 1, . . . , 𝑁} is

now defined as

{R
3
, 𝜔
𝑛
: 𝑛 = 1, 2, . . . 𝑁} , (5)

where

𝜔
𝑛
(𝑥, 𝑦, 𝑧) = (𝐿

𝑛
(𝑥) , 𝐹

𝑛
(𝑥, 𝑦, 𝑧)) . (6)

The following theorem gives the existence of an attractor
of the IFS defined by (5) associated with the generalized
interpolation data.

Theorem 1 (see [19]). Let {R3, 𝜔
𝑛

: 𝑛 = 1, . . . 𝑁} be
the IFS defined by (5) associated with the generalized data
{(𝑥
𝑖
, 𝑦
𝑖
, 𝑧
𝑖
) ∈ R3 : 𝑖 = 0, 1, . . . , 𝑁}. Let 𝛼

𝑛
, 𝛽
𝑛
and 𝛾

𝑛
in the

definition of 𝜔
𝑛
satisfy |𝛼

𝑛
| < 1, |𝛾

𝑛
| < 1 and |𝛽

𝑛
| + |𝛾
𝑛
| < 1

for 𝑛 = 1, . . . , 𝑁. Then there exists a metric 𝜏 onR3, equivalent
to the Euclidean metric, such that the IFS is hyperbolic with
respect to 𝜏. In particular, there exists a unique nonempty
compact set 𝐺 ⊆ R3 such that 𝐺 = ⋃

𝑁

𝑛=1
𝜔
𝑛
(𝐺).

The following theorem is instrumental for precise defini-
tion of a CHFIS.

Theorem 2 (see [19]). Let 𝐺 be the attractor of the IFS for
the given interpolation data. Then G is graph of a continuous
function 𝑓 : 𝐼 → R2 such that 𝑓(𝑥

𝑖
) = (𝑦

𝑖
, 𝑧
𝑖
) for 𝑖 =

0, 1, . . . , 𝑁, that is, 𝐺 = {(𝑥, 𝑓(𝑥)) : 𝑥 ∈ 𝐼 𝑎𝑛𝑑 𝑓(𝑥) =

(𝑦(𝑥), 𝑧(𝑥))}.

Suppose 𝑓(𝑥) is written component-wise as 𝑓(𝑥) =

(𝑓
1
(𝑥), 𝑓
2
(𝑥)).Then the Coalescence Hidden-variable Fractal

Interpolation Function (CHFIF) is defined as follows.

Definition 3. TheCoalescence Hidden-variable Fractal Inter-
polation Function (CHFIF) for the given interpolation data
{(𝑥
𝑖
, 𝑦
𝑖
) : 𝑖 = 0, 1, . . . , 𝑁} is defined as the first component

𝑓
1
(𝑥) of the function 𝑓(𝑥).

It is easily seen that the graph of CHFIF 𝑓
1
(𝑥) is the

projection of the graph of 𝑓(𝑥) on R2.

3. Auxiliary Results

In order to develop the multiresolution analysis of 𝐿
2
(R)

based on CHFIF, the space of CHFIF is introduced in this
section. Further, a few auxiliary results and a result on the
dimension of the vector space of CHFIF are found here.

Let

𝑡
𝑛
= (𝑝
𝑛
, 𝑞
𝑛
) (7)

and 𝑡 = (𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑁
), where 𝑝

𝑛
and 𝑞

𝑛
are polynomials of

degree at most 1 given by (4). Then, 𝑇 = {𝑡 = (𝑡
1
, . . . , 𝑡

𝑁
) :

𝑡
𝑖
= (𝑝
𝑖
, 𝑞
𝑖
), 𝑝
𝑖
, 𝑞
𝑖
∈ P
1
, 𝑖 = 1, 2, . . . , 𝑁} is a vector space with

usual pointwise addition and scalar multiplication, whereP
1

is the class of polynomials of degree at most 1. It is easily seen
that on B(𝐼,R2), the set of bounded functions from 𝐼 to R2

with respect to maximummetric 𝑑∗(𝑓, 𝑔) = max
𝑥∈𝐼

{|𝑓
1
(𝑥) −

𝑔
1
(𝑥)|, |𝑓

2
(𝑥) − 𝑔

2
(𝑥)|}, the functionΦ

𝑡
defined by

(Φ
𝑡
𝑓) (𝑥) = 𝐹

𝑛
(𝐿
−1

𝑛
(𝑥) , 𝑓 (𝐿

−1

𝑛
(𝑥))) (8)

for 𝑥 ∈ 𝐼
𝑛
, 𝑛 = 1, 2, . . . , 𝑁, is a contraction map. Therefore,

by Banach contraction mapping theorem, Φ
𝑡
has a unique

fixed point𝑓
𝑡
∈ B(𝐼,R2). By join-up conditions (3), it follows

that 𝑓
𝑡
∈ C(𝐼,R2), the set of continuous functions from

𝐼 to R2. The following proposition gives the existence of
a linear isomorphism between the vector space 𝑇 and the
vector subspaceA ofC(𝐼,R2) defined byA = {𝑓 = (𝑓

1
, 𝑓
2
) ∈

C(𝐼,R2) : 𝑓
2
∘ 𝐿
𝑛
− 𝛾
𝑛
𝑓
2
∈ P
1
and 𝑓

1
∘ 𝐿
𝑛
− 𝛼
𝑛
𝑓
1
− 𝛽
𝑛
𝑓
2
∈

P
1
for all 𝑛 = 1, 2, . . . , 𝑁}.

Proposition 4. ThemappingΘ : 𝑇 → A ⊂ C(𝐼,R2) defined
by Θ(𝑡) = 𝑓

𝑡
is a linear isomorphism.
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Proof. Theassertion of the proposition is proved by establish-
ing

(i) (𝑎𝑓
𝑡
+ 𝑓
𝑠
)
𝑖
(𝑥) = 𝑎𝑓

𝑡,𝑖
(𝑥) + 𝑓

𝑠,𝑖
(𝑥), 𝑖 = 1, 2, where 𝑓

𝑡
and

𝑎𝑓
𝑡
+ 𝑓
𝑠
are written component-wise as 𝑓

𝑡
= (𝑓
𝑡,1
, 𝑓
𝑡,2
) and

𝑎𝑓
𝑡
+ 𝑓
𝑠
= ((𝑎𝑓

𝑡
+ 𝑓
𝑠
)
1
, (𝑎𝑓
𝑡
+ 𝑓
𝑠
)
2
), (ii) (𝑎𝑓

𝑡
+ 𝑓
𝑠
) = 𝑓
𝑎𝑡+𝑠

, (iii)
Θ is onto and (iv) Θ is one-one.

The identity (i) follows by equating the components of left
and right hand side in the identity (𝑎𝑓

𝑡
+ 𝑓
𝑠
)(𝑥) = 𝑎𝑓

𝑡
(𝑥) +

𝑓
𝑠
(𝑥).
(ii) (𝑎𝑓

𝑡
+ 𝑓
𝑠
) = 𝑓
𝑎𝑡+𝑠

: By the definition ofΦ
𝑡
:

(Φ
𝑎𝑡+𝑠

(𝑎𝑓
𝑡
+ 𝑓
𝑠
)) (𝑥)

= 𝐹
𝑛
(𝐿
−1

𝑛
(𝑥) , (𝑎𝑓

𝑡
+ 𝑓
𝑠
) (𝐿
−1

𝑛
(𝑥)))

= (𝛼
𝑛
(𝑎𝑓
𝑡
+ 𝑓
𝑠
)
1
(𝐿
−1

𝑛
(𝑥)) + 𝛽

𝑛
(𝑎𝑓
𝑡
+ 𝑓
𝑠
)
2
(𝐿
−1

𝑛
(𝑥))

+ (𝑎𝑝
𝑛
+ 𝑝
𝑛
) (𝐿
−1

𝑛
(𝑥)) , 𝛾

𝑛
(𝑎𝑓
𝑡
+ 𝑓
𝑠
)
2
(𝐿
−1

𝑛
(𝑥))

+ (𝑎𝑞
𝑛
+ 𝑞
𝑛
) (𝐿
−1

𝑛
(𝑥))) .

(9)

Using identity (i), it follows that

(Φ
𝑎𝑡+𝑠

(𝑎𝑓
𝑡
+ 𝑓
𝑠
)) (𝑥)

= (𝛼
𝑛
(𝑎𝑓
𝑡,1
(𝐿
−1

𝑛
(𝑥)) + 𝑓

𝑠,1
(𝐿
−1

𝑛
(𝑥)))

+ 𝛽
𝑛
(𝑎𝑓
𝑡,2
(𝐿
−1

𝑛
(𝑥)) + 𝑓

𝑠,2
(𝐿
−1

𝑛
(𝑥)))

+ (𝑎𝑝
𝑛
(𝐿
−1

𝑛
(𝑥)) + 𝑝

𝑛
(𝐿
−1

𝑛
(𝑥))) ,

𝛾
𝑛
(𝑎𝑓
𝑡,2
(𝐿
−1

𝑛
(𝑥)) + 𝑓

𝑠,2
(𝐿
−1

𝑛
(𝑥)))

+ (𝑎𝑞
𝑛
(𝐿
−1

𝑛
(𝑥)) + 𝑞

𝑛
(𝐿
−1

𝑛
(𝑥)))) .

(10)

The above equation gives the following on simplification:

(Φ
𝑎𝑡+𝑠

(𝑎𝑓
𝑡
+ 𝑓
𝑠
)) (𝑥)

= 𝑎 (𝛼
𝑛
𝑓
𝑡,1
(𝐿
−1

𝑛
(𝑥)) + 𝛽

𝑛
𝑓
𝑡,2
(𝐿
−1

𝑛
(𝑥)) + 𝑝

𝑛
(𝐿
−1

𝑛
(𝑥)) ,

𝛾
𝑛
𝑓
𝑡,2
(𝐿
−1

𝑛
(𝑥)) + 𝑞

𝑛
(𝐿
−1

𝑛
(𝑥)))

+ (𝛼
𝑛
𝑓
𝑠,1
(𝐿
−1

𝑛
(𝑥)) + 𝛽

𝑛
𝑓
𝑠,2
(𝐿
−1

𝑛
(𝑥)) + 𝑝

𝑛
(𝐿
−1

𝑛
(𝑥)) ,

𝛾
𝑛
𝑓
𝑠,2
(𝐿
−1

𝑛
(𝑥)) + 𝑞

𝑛
(𝐿
−1

𝑛
(𝑥)))

= 𝑎𝑓
𝑡
(𝑥) + 𝑓

𝑠
(𝑥) .

(11)

Therefore, 𝑎𝑓
𝑡
+ 𝑓
𝑠
is a fixed point of Φ

𝑎𝑡+𝑠
for all 𝑎 ∈ R and

𝑡, 𝑠 ∈ 𝑇. By uniqueness of fixed point of Φ
𝑎𝑡+𝑠

, it follows that
(𝑎𝑓
𝑡
+ 𝑓
𝑠
) = 𝑓
𝑎𝑡+𝑠

.
(iii) Θ is onto: Let 𝑓 = (𝑓

1
, 𝑓
2
) ∈ A ⊂ C(𝐼,R2). Define

𝑞
𝑛
(𝑓) = 𝑓

2
∘ 𝐿
𝑛
− 𝛾
𝑛
𝑓
2
and 𝑝

𝑛
(𝑓) = 𝑓

1
∘ 𝐿
𝑛
− 𝛼
𝑛
𝑓
1
− 𝛽
𝑛
𝑓
2
for

𝑛 = 1, . . . , 𝑁. Suppose 𝑡(𝑓) = (𝑡
1
(𝑓), 𝑡
2
(𝑓), . . . , 𝑡

𝑁
(𝑓)), where

𝑡
𝑛
(𝑓) = (𝑝

𝑛
(𝑓), 𝑞
𝑛
(𝑓)). Then 𝑡(𝑓) ∈ 𝑇 whenever 𝑓 ∈ A. Also

𝑓
𝑡(𝑓)

= 𝑓.

(iv) Θ is one-one: Let 𝑓
𝑡
(𝑥) = (0, 0) for all values of

𝑥 ∈ 𝐼. Then, 𝑓
𝑡
(𝑥) = (0, 0) ⇔ Φ

𝑡
(𝑓
𝑡
)(𝑥) = (0, 0) ⇔

𝐹
𝑛
(𝐿
−1

𝑛
(𝑥), 𝑓
𝑡
(𝐿
−1

𝑛
(𝑥))) = (0, 0) ⇔ (𝑝

𝑛
, 𝑞
𝑛
) = (0, 0) for every

𝑛 ⇔ 𝑡 = (0, . . . , 0).

To introduce the space of CHFIFs, let the set S
0
consist-

ing of functions 𝑓 : 𝐼 → R2 be defined as S
0
= {𝑓 : 𝑓 =

(𝑓
1
, 𝑓
2
), 𝑓
1
is a CHFIF passing through {(𝑥

𝑖
, 𝑦
𝑖
) ∈ R2 : 𝑖 =

0, 1, . . . , 𝑁}, and 𝑓
2
is an AFIF passing through {(𝑥

𝑖
, 𝑧
𝑖
) ∈

R2 : 𝑖 = 0, 1, . . . , 𝑁}}. Then, S
0
is a vector space, with usual

pointwise addition and scalar multiplication. The desired
space of CHFIFs is now defined as follows.

Definition 5. Let S1
0
be the set of functions 𝑓

1
: 𝐼 → R

that are first components of functions 𝑓 ∈ S
0
. The space

of CHFIFs is the set S1
0
together with the maximum metric

𝑑
∗
(𝑓, 𝑔) = max

𝑥∈𝐼
|𝑓(𝑥) − 𝑔(𝑥)|.

It is easily seen that the space of CHFIFsS1
0
is also a vector

space with pointwise addition and scalar multiplication. The
following proposition gives the dimension of S1

0
.

Proposition 6. The dimension of space of CHFIFs is 2𝑁.

Proof. Consider the operator Φ
𝑡
𝑓 = (Φ

𝑡,1
𝑓
1
, Φ
𝑡,2
𝑓
2
). The

operators Φ
𝑡,𝑖
: B(𝐼,R) → B(𝐼,R), 𝑖 = 1, 2, where B(𝐼,R) is

the set of bounded functions, satisfy

Φ
𝑡,1
𝑓
1
(𝑥) = 𝛼

𝑛
𝑓
1
(𝐿
−1

𝑛
(𝑥)) + 𝛽

𝑛
𝑓
2
(𝐿
−1

𝑛
(𝑥)) + 𝑝

𝑛
(𝐿
−1

𝑛
(𝑥)) ,

(12)

Φ
𝑡,2
𝑓
2
(𝑥) = 𝛾

𝑛
𝑓
2
(𝐿
−1

𝑛
(𝑥)) + 𝑞

𝑛
(𝐿
−1

𝑛
(𝑥)) (13)

for 𝑥 ∈ [𝑥
𝑛−1

, 𝑥
𝑛
]. By Proposition 4 and (13), it follows that

𝑓
2
is completely determined by 𝑓

2
(𝑖/𝑁) for 𝑖 = 0, 1, . . . , 𝑁.

Further, it follows by (12) that𝑓
1
depends on𝑓

2
.Then, for𝑓 =

(𝑓
1
, 𝑓
2
) ∈ S

0
, the function 𝑓

1
is the unique CHFIF passing

through (𝑖/𝑁, 𝑦
𝑖
), while the function 𝑓

2
is the unique AFIF

passing through (𝑖/𝑁, 𝑧
𝑖
). Hence,

dimension of S
0
= 2 (𝑁 + 1) . (14)

Now, consider the projection map 𝑃 : S
0

→ S1
0
. Then,

kernel of 𝑃 ≡ {𝑓 ∈ S
0
such that𝑃(𝑓) = 0} is a proper

subset of S
0
and consists of elements of the forms (0, 0) and

(0, 𝑓
2
). For the element (0, 𝑓

2
) ∈ Ker𝑃, it is observed that

𝛽
𝑛
𝑓
2
(𝐿
−1

𝑛
(𝑥)) + 𝑝

𝑛
(𝐿
−1

𝑛
(𝑥)) = 0 for 𝑥 ∈ 𝐼

𝑛
. Hence, for all

𝑥 ∈ 𝐼, it is seen that 𝑓
2
(𝑥) = (−1/𝛽

𝑛
)𝑝
𝑛
(𝑥). With 𝑥 =

𝑥
0
, it follows that 𝑐

𝑖
= (𝛽
𝑖
/𝛽
1
)𝑐
1
and 𝑑

𝑖
= (𝛽
𝑖
/𝛽
1
)𝑑
1
, 𝑖 =

2, . . . , 𝑁. Consequently, if (0, 𝑓
2
) ∈ Ker𝑃 then 𝑓

2
is a linear

polynomial. So, dimension of Ker𝑃 = 2. Therefore, by Rank-
Nullity Theorem, dimension of S1

0
= dimension ofS

0
−

dimension of Ker𝑃 = 2(𝑁 + 1) − 2 = 2𝑁.

Remark 7. By Proposition 4 and (14), it follows that the map
𝜃 : R𝑁+1 × R𝑁+1 → S

0
defined by 𝜃(𝑦, 𝑧) = 𝑓 is

a linear isomorphism, where 𝑓 = (𝑓
1
, 𝑓
2
) ∈ S

0
, 𝑓
1
is

the unique CHFIF passing through the points (𝑥
𝑖
, 𝑦
𝑖
), and

𝑓
2
is the unique AFIF passing through the points (𝑥

𝑖
, 𝑧
𝑖
),
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𝑦 = (𝑦
0
, 𝑦
1
, . . . , 𝑦

𝑁
), and 𝑧 = (𝑧

0
, 𝑧
1
, . . . , 𝑧

𝑁
). Thus, S

0
is

linearly isomorphic to R𝑁+1 × R𝑁+1. Consider the metric
space (R𝑁+1 × R𝑁+1, 𝑑R2(𝑁+1)), where 𝑑R2(𝑁+1) is given by
𝑑R2(𝑁+1)(𝑦 × 𝑧, 𝑦 × 𝑧) = max

0≤𝑖≤𝑁
(|𝑦
𝑖
− 𝑦
𝑖
|, |𝑧
𝑖
− 𝑧
𝑖
|), 𝑦 =

(𝑦
0
, 𝑦
1
, . . . , 𝑦

𝑁
), 𝑧 = (𝑧

0
, 𝑧
1
, . . . , 𝑧

𝑁
), 𝑦 = (𝑦

0
, 𝑦
1
, . . . , 𝑦

𝑁
),

and 𝑧 = (𝑧
0
, 𝑧
1
, . . . , 𝑧

𝑁
). Then, with the restriction of metric

𝑑
∗ on the setS

0
, it is observed by (8) that the maps 𝜃 and 𝜃−1

are continuous. HenceS
0
is closed and complete subspace of

𝐿
2
(R).

Remark 8. Let {𝑓
𝑛,1
} be a sequence in S1

0
such that

lim
𝑛→∞

𝑓
𝑛,1

= 𝑓
∗

1
and {𝑓

𝑛
= (𝑓
𝑛,1
, 𝑓
𝑛,2
)} be a convergent

sequence inS
0
, where the functions 𝑓

𝑛,2
are AFIFs. SinceS

0

is closed, lim
𝑛→∞

𝑓
𝑛
= 𝑓
∗
≡ (𝑓
∗

1
, 𝑓
∗

2
) ∈ S

0
. Thus, 𝑓∗

1
∈ S1
0

and, consequently, S1
0
is closed subspace of 𝐿

2
(R).

4. Multiresolution Analysis Based on CHFIF

In this section, the multiresolution analysis of 𝐿
2
(R) is

generated by using a finite set of CHFIFs. For this purpose,
the sets V

𝑘
, 𝑘 ∈ Z, consisting of a collection of CHFIFs, are

defined and it is shown that these form a nested sequence.
The multiresolution analysis of 𝐿

2
(R) is then generated by

constructing Riesz bases of vector subspaces V
𝑘
consisting of

certain orthogonal functions in 𝐿
2
(R).

To introduce certain sets of CHFIFs needed for multires-
olution of 𝐿

2
(R), let 𝐿

2
(R,R2) be a collection of functions

𝑓 : R → R2 such that 𝑓 = (𝑓
1
, 𝑓
2
) and 𝑓

1
, 𝑓
2
∈ 𝐿
2
(R) and

𝐶
0
(R,R2) be a collection of functions 𝑓 : R → R2 such that

𝑓 = (𝑓
1
, 𝑓
2
) and 𝑓

1
, 𝑓
2
∈ 𝐶
0
(R), the set of all real valued

continuous functions defined on R which vanish at infinity.
Define the set Ṽ

0
as

Ṽ
0
= 𝑆
0
⋂𝐿
2
(R,R

2
)⋂𝐶

0
(R,R

2
) , (15)

where 𝑆
0

= {𝑓 : 𝑓 = (𝑓
1
, 𝑓
2
), 𝑓
1
|
[𝑖−1,𝑖)

is a CHFIFand
𝑓
2
|
[𝑖−1,𝑖)

is an AFIF, 𝑖 ∈ Z}.
That the set Ṽ

0
is not empty is easily seen by considering

a function 𝑓 = (𝑓
1
, 𝑓
2
) ∈ S

0
, with 𝑓(𝑥

0
) = (0, 0) = 𝑓(𝑥

𝑁
)

and 𝑓(𝑥) = (0, 0) for 𝑥 ∉ 𝐼, which obviously belongs to Ṽ
0
.

Let, for 𝑘 ∈ Z,

Ṽ
𝑘
= {𝑓 : 𝑓 (𝑁

−𝑘
⋅) ∈ Ṽ

0
} . (16)

The sets Ṽ
0
and Ṽ
𝑘
are seen to be closed sets as follows. Let {𝑓

𝑛
}

be a sequence in Ṽ
0
such that lim

𝑛→∞
𝑓
𝑛
= 𝑓
∗
= (𝑓
∗

1
, 𝑓
∗

2
).

Now, lim
𝑛→∞

𝑓
𝑛
|
[𝑖−1,𝑖)

= 𝑓
∗
|
[𝑖−1,𝑖)

= (𝑓
∗

1
|
[𝑖−1,𝑖)

, 𝑓
∗

2
|
[𝑖−1,𝑖)

). By
Remarks 7 and 8, it is observed that 𝑓∗

1
|
[𝑖−1,𝑖)

is a CHFIF and
𝑓
∗

2
|
[𝑖−1,𝑖)

is an AFIF, 𝑖 ∈ Z. Thus, 𝑓∗ ∈ 𝑆
0
, which implies that

𝑆
0
is a closed set. Consequently, Ṽ

0
and Ṽ

𝑘
, 𝑘 ∈ Z are closed

sets. Now, for 𝑘 ∈ Z \ 0, define

V
0
= {𝑓
1
: 𝑓
1
is the first component of some

𝑓 = (𝑓
1
, 𝑓
2
) ∈ Ṽ
0
} ,

V
𝑘
= {𝑓
1
: 𝑓
1
(𝑁
−𝑘
⋅) ∈ V

0
} .

(17)

It follows from Proposition 4 that the sets V
𝑘
, with 𝐿

2
-norm,

are vector subspaces of 𝐿
2
(R). The following proposition

shows that these subspaces V
𝑘
form a nested sequence.

Proposition 9. The subspaces V
𝑘
, 𝑘 ∈ Z, form a nested

sequence ⋅ ⋅ ⋅ ⊇ V
−1

⊇ V
0
⊇ V
1
⊇ ⋅ ⋅ ⋅ .

Proof. To show thatV
𝑘
⊇ V
𝑘+1

for all 𝑘 ∈ Z, it suffices to prove
the inclusion relation for 𝑘 = 0. Let 𝑓 ∈ V

1
. Then, 𝑓|

[0,𝑁)
=

𝑔
1
|
[0,𝑁)

for some 𝑔 = (𝑔
1
, 𝑔
2
) ∈ Ṽ

1
. If 𝐺 = graph(𝑔|

[0,𝑁]
)

then, 𝐺 = ⋃
𝑁

𝑖=1
𝑤
𝑖
(𝐺) implies, for 𝑗 ∈ {1, . . . , 𝑁}, 𝑤

𝑗
(𝐺) =

⋃
𝑁

𝑖=1
𝑤
𝑗
∘ 𝑤
𝑖
∘ 𝑤
−1

𝑗
(𝑤
𝑗
(𝐺)), where 𝑤

𝑖
(𝐺) = (𝐿

𝑖
(𝑥), 𝐹
𝑖
(𝑥, 𝑦, 𝑧))

for all (𝑥, 𝑦, 𝑧) ∈ 𝐺, 𝑖 = 1, . . . 𝑁. Expressing 𝑤
𝑖
and 𝑤

𝑗
∘

𝑤
𝑖
∘ 𝑤
−1

𝑗
in matrix form as 𝑤

𝑖
(𝑥, 𝑦, 𝑧) = 𝐴

𝑖
(𝑥, 𝑦, 𝑧) + 𝐵

𝑖
and

𝑤
𝑗
∘ 𝑤
𝑖
∘ 𝑤
−1

𝑗
(𝑥, 𝑦, 𝑧) = 𝐴

𝑖,𝑗
(𝑥, 𝑦, 𝑧) + 𝐵

𝑖,𝑗
, it is observed

that nonzero entries in matrices 𝐴
𝑖
and 𝐴

𝑖,𝑗
occur at the

same places. Consequently, 𝑤
𝑗
(𝐺) is graph of 𝑔|

[𝑗−1,𝑗)
, so that

𝑔 ∈ Ṽ
0
. It therefore follows that 𝑔

1
|
[𝑗−1,𝑗)

is a CHFIF on the
interval [𝑗 − 1, 𝑗). Thus, the function 𝑓|

[𝑗−1,𝑗)
= 𝑔
1
|
[𝑗−1,𝑗)

is a
CHFIF on the interval [𝑗−1, 𝑗) and consequently,𝑓 ∈ V

0
.

In order to generate a multiresolution analysis of 𝐿
2
(R)

using CHFIFs, the inner product on the vector space
V
𝑘
, 𝑘 ∈ Z, is defined by ⟨𝑓

1
, 𝑓
1
⟩ = ∫

R
𝑓
1
(𝑥)𝑓
1
(𝑥)𝑑𝑥. Using

𝑓
1
(𝐿
𝑛
(𝑥)) = 𝛼

𝑛
𝑓
1
(𝑥) + 𝛽

𝑛
𝑓
2
(𝑥) + 𝑝

𝑛
(𝑥) and 𝑓

1
(𝐿
𝑛
(𝑥)) =

𝛼̂
𝑛
𝑓
1
(𝑥) + 𝛽

𝑛
𝑓
2
(𝑥) + 𝑝

𝑛
(𝑥), it is observed that, for 𝑓

1
, 𝑓
1
∈ V
0
,

⟨𝑓
1
, 𝑓
1
⟩

= (

𝑁

∑

𝑛=1

𝑎
𝑛
(𝛼
𝑛
𝛽
𝑛
⟨𝑓
1
, 𝑓
2
⟩ + 𝛽
𝑛
𝛼̂
𝑛
⟨𝑓
2
, 𝑓
1
⟩ + 𝛽
𝑛
𝛽
𝑛
⟨𝑓
2
, 𝑓
2
⟩

+ 𝛼
𝑛
⟨𝑓
1
, 𝑝
𝑛
⟩ + 𝛼̂
𝑛
⟨𝑓
1
, 𝑝
𝑛
⟩ + 𝛽
𝑛
⟨𝑓
2
, 𝑝
𝑛
⟩

+𝛽
𝑛
⟨𝑓
2
, 𝑝
𝑛
⟩ + ⟨𝑝

𝑛
, 𝑝
𝑛
⟩))

× (1 −

𝑁

∑

𝑛=1

𝑎
𝑛
𝛼
𝑛
𝛼̂
𝑛
)

−1

,

(18)

where 𝑎
𝑛
, 𝛼
𝑛
and 𝛽

𝑛
, 𝑝
𝑛
; 𝛼̂
𝑛
and 𝛽

𝑛
, 𝑝
𝑛
, are given by (1), (2),

and (4), respectively, for the interpolation data {(𝑥
𝑖
, 𝑦
𝑖
, 𝑧
𝑖
) :

𝑖 = 0, 1, . . . , 𝑁} and {(𝑥
𝑖
, 𝑦
𝑖
, 𝑧̂
𝑖
) : 𝑖 = 0, 1, . . . , 𝑁}. Using (18),

the set of orthogonal functions that forms the Riesz basis of
set V
0
is now constructed as follows.

Let the free variables 𝛼
𝑗
, 𝛾
𝑗
and constrained variables 𝛽

𝑗
,

𝑗 = 1, . . . , 𝑁,𝑁 > 1, in the construction of CHFIF be chosen
such that 𝛼

𝑗
+ 𝛽
𝑗

̸= 𝛾
𝑗
for at least one 𝑗. Consider, the points

𝑦
𝑖
and 𝑧
𝑖
∈ 𝑅
𝑁+1, 𝑖 = 0, . . . , 𝑁, given by

𝑦
0
= (1, 𝑟

1
, . . . , 𝑟

𝑁−1
, 0) , 𝑦

𝑁
= (0, 𝑠

1
, . . . , 𝑠

𝑁−1
, 1) ,

𝑦
𝑖
= (0, . . . , 1, . . . , 0) , 𝑖 = 1, . . . , 𝑁 − 1,

𝑦
𝑁+1+𝑖

= (0, 𝑢
𝑖,1
, . . . , 𝑢

𝑖,𝑁−1
, 0) , 𝑖 = 0, . . . , 𝑁;

(19)



International Journal of Computational Mathematics 5

𝑧
𝑖
= (0, . . . , 0) , 𝑧

𝑁+1+𝑖
= (0, . . . , 1, . . . , 0) ,

𝑖 = 0, . . . , 𝑁

(20)

and a set of 2(𝑁 + 1) functions 𝑓
𝑖

= (𝑓
𝑖,1
, 𝑓
𝑖,2
) ∈ S

0
,

𝑖 = 0, . . . , 2𝑁 + 1, where the CHFIF 𝑓
𝑖,1

passes through
the points (𝑥

𝑘
, 𝑦
𝑖
𝑘

), 𝑘 = 0, . . . , 𝑁 + 1, 𝑦
𝑖
𝑘

being the 𝑘th
component of 𝑦

𝑖
and AFIF 𝑓

𝑖,2
passes through the points

(𝑥
𝑘
, 𝑧
𝑖
𝑘

), 𝑘 = 0, . . . , 𝑁 + 1, 𝑧
𝑖
𝑘

being the 𝑘th component of
𝑧
𝑖
. Let the function 𝑓

∗

𝑖
: R → R2, 𝑖 = 0, 1, . . . 2𝑁 + 1,

be the extension of the function 𝑓
𝑖
: 𝐼 → R2 such that

𝑓
∗

𝑖
(𝑥) = 𝑓

𝑖
(𝑥) for 𝑥 ∈ 𝐼 and 𝑓

∗

𝑖
(𝑥) = (0, 0) for 𝑥 ∉ 𝐼.

For ensuring the orthogonality of the functions 𝑓∗
𝑖,1

with
respect to the inner product in 𝐿

2
(R), let the values of 𝑟

𝑖
, 𝑠
𝑖

and 𝑢
𝑖,𝑗
, 𝑖, 𝑗 = 1, . . . , 𝑁 − 1, in (19) be chosen such that

⟨𝑓
𝑖,1
, 𝑓
0,1
⟩ = 0, ⟨𝑓

𝑖,1
, 𝑓
𝑁,1

⟩ = 0,

⟨𝑓
𝑁+1+𝑗,1

, 𝑓
𝑖,1
⟩ = 0.

(21)

Let, for 𝑖 = 1, 2, . . . , 𝑁 − 1,

𝜁
𝑖
= ⟨𝑓
𝑁+1+𝑖,1

, 𝑓
0,1
⟩ , 𝜂

𝑖
= ⟨𝑓
𝑁+1+𝑖,1

, 𝑓
𝑁,1

⟩ . (22)

The free variables 𝛼
𝑗
, 𝛾
𝑗
and constrained variables 𝛽

𝑗
, 𝑗 =

1, 2, . . . , 𝑁, in (2) are 3𝑁 variables and 𝜁
𝑖
= 𝜂
𝑖
= 0, 𝑖 =

1, . . . , 𝑁−1 is a systemof 2𝑁−2 equations. Suppose there exist
no 𝛼
𝑗
, 𝛾
𝑗
and 𝛽

𝑗
, 𝑗 = 1, . . . , 𝑁, in (−1, 1) such that 𝜁

𝑖
= 𝜂
𝑖
= 0,

𝑖 = 1, . . . , 𝑁 − 1; then dimension of 𝑆1
0

< 2𝑁, which is
a contradiction. Hence, there exists at least one set of 𝛼

𝑗
, 𝛾
𝑗

and 𝛽
𝑗
, 𝑗 = 1, . . . , 𝑁, in (−1, 1) such that 𝜁

𝑖
= 𝜂
𝑖
= 0,

𝑖 = 1, . . . , 𝑁 − 1. The free variables 𝛼
𝑗
, 𝛾
𝑗
and constrained

variables 𝛽
𝑗
, 𝑗 = 1, 2, . . . , 𝑁, in (2) are chosen such that, for

𝑖 = 1, 2, . . . , 𝑁 − 1, 𝜁
𝑖
= 0, and 𝜂

𝑖
= 0.

It is easily seen that the functions 𝑓∗
𝑖
, 𝑖 = 0, . . . , 2𝑁 +

1, 𝑓∗
𝑖,1
, 𝑖 = 0, . . . , 𝑁 and the functions 𝑓

∗

𝑗,2
, 𝑗 = 𝑁 +

1, . . . , 2𝑁+1, are linearly independent. Now, by (8), 𝑓∗
𝑗,1
(𝑥) =

𝛼
𝑛
𝑓
∗

𝑗,1
(𝐿
−1

𝑛
(𝑥)) + 𝛽

𝑛
𝑓
∗

𝑗,2
(𝐿
−1

𝑛
(𝑥)) + 𝑝

𝑛,𝑗
(𝐿
−1

𝑛
(𝑥)) and 𝑓

∗

𝑗,2
(𝑥) =

𝛾
𝑛
𝑓
∗

𝑗,2
(𝐿
−1

𝑛
(𝑥)) + 𝑞

𝑛,𝑗
(𝐿
−1

𝑛
(𝑥)), 𝑗 = 0, 1, . . . , 2𝑁 + 1, where

𝑝
𝑛,𝑗

and 𝑞
𝑛,𝑗

are linear polynomials. By (20), the functions
𝑓
∗

𝑗,2
, 𝑗 = 𝑁 + 2, . . . , 2𝑁, are nonlinear polynomials. Hence,

∑
𝑁−1

𝑘=1
𝑎
𝑘
𝑓
∗

𝑁+1+𝑘,1
(𝑥) − 𝛼

𝑛
∑
𝑁−1

𝑘=1
𝑎
𝑘
𝑓
∗

𝑁+1+𝑘,1
(𝐿
−1

𝑛
(𝑥)) = 0 if and

only if 𝑎
𝑘
= 0, which implies 𝑓∗

𝑁+1+𝑘,1
, 𝑘 = 1, . . . , 𝑁 − 1,

are linearly independent. The linear independence of 𝑓∗
𝑘,1
,

𝑓
∗

𝑁+1+𝑘,1
, 𝑘 = 1, . . . , 𝑁 − 1 together with (21) now ensures the

same number of orthogonal functions by applying the Gram-
Schmidt process.

Let {𝜙
𝑖,1
}
2𝑁−1

𝑖=1
⊂ V
0
, 𝑖 ̸= 𝑁, be a sequence of orthogonal

functions obtained from the sequence {𝑓∗
𝑖,1
}
2𝑁

𝑖=1
, 𝑖 ̸= 𝑁,𝑁 + 1,

by the Gram-Schmidt process. Set

𝜙
𝑁,1

=

{{

{{

{

𝑓
∗

𝑁,1
(𝑥) 𝑥 ∈ [0, 1)

𝑓
∗

0,1
(𝑥 − 1) 𝑥 ∈ [1, 2)

0 otherwise.
(23)

It is easily seen by Proposition 6 that none of the functions
𝜙
𝑖,1
, 𝑖 = 1, 2, . . . , 2𝑁 − 1, are identically zero. Further, by (21)

and (22), it follows that {𝜙
𝑖,1

: 𝑖 = 1, 2, . . . , 2𝑁 − 1} is an
orthogonal set. This is the set that leads to the generation of
multiresolution analysis of 𝐿

2
(R) in the following theorem.

Theorem10. Let free variables𝛼
𝑗
, 𝛾
𝑗
and constrained variables

𝛽
𝑗
, 𝑗 = 1, . . . , 𝑁, 𝑁 > 1, in the construction of CHFIF be

chosen such that 𝛼
𝑗
+ 𝛽
𝑗

̸= 𝛾
𝑗
for at least one 𝑗 and let 𝜁

𝑖
, 𝜂
𝑖

given by (22) be such that 𝜁
𝑖
= 0, 𝜂

𝑖
= 0, 𝑖 = 1, . . . , 𝑁 − 1.

Then,

V
0
= clos

𝐿
2 span {𝜙

𝑖,1
(⋅ − 𝑙) : 𝑖 = 1, . . . , 2𝑁 − 1, 𝑙 ∈ Z} ,

(24)

where 𝜙
𝑖,1

∈ V
0
. Also, the set {𝜙

𝑖,1
}
2𝑁−1

𝑖=1
generates a continuous,

compactly supported multiresolution analysis of 𝐿
2
(R).

Proof. It is obvious that functions 𝜙
𝑖,1
, 𝑖 = 1, . . . , 2𝑁 − 1, are

compactly supported and are elements of V
0
. Now, 𝑓 ∈ V

0

implies 𝑓|
[𝑖−1,𝑖)

= 𝑔
1
|
[𝑖−1,𝑖)

is a CHFIF for some 𝑔 = (𝑔
1
, 𝑔
2
) ∈

Ṽ
0
. Since every 𝑔 = (𝑔

1
, 𝑔
2
) ∈ Ṽ

0
is determined by 𝑔

1
(𝑖/𝑁)

and 𝑔
2
(𝑖/𝑁), 𝑖 ∈ Z, the function 𝑔 has a unique expansion in

terms of the functions 𝑓∗
𝑖
= (𝑓
∗

𝑖,1
, 𝑓
∗

𝑖,2
), 𝑖 = 0, . . . 2𝑁 + 1, and

their integer translates. Hence, the function𝑓 = 𝑔
1
∈ V
0
has a

unique expansion in terms of the functions 𝑓∗
𝑖,1
, 𝑖 = 1, . . . 𝑁 −

1,𝑁 + 2, . . . , 2𝑁 − 2, 𝜙
𝑁,1

and their integer translates. Thus,
CHFIF 𝑓 has a unique expansion in terms of the functions
𝜙
𝑖,1
, 𝑖 = 1, . . . , 2𝑁 − 1, and their integer translates, that is,

𝑓 = ∑
𝑘
(∑
2𝑁−1

𝑖=1
𝐾
𝑘,𝑖
𝜙
𝑖,1
(𝑥 − 𝑘)) where 𝐾

𝑘,𝑖
= ∫

R
𝑓(𝑥)𝜙

𝑖,1
(𝑥 −

𝑘)𝑑𝑥. Since 𝑓 ∈ V
0
is arbitrary, V

0
= span{𝜙

𝑖,1
(⋅ − 𝑙), 𝑖 =

1, . . . , 2𝑁 − 1, 𝑙 ∈ Z}. Let {𝑓
𝑛,1
} be a sequence in V

0
such

that lim
𝑛→∞

𝑓
𝑛,1

= 𝑓
∗

1
and let {𝑓

𝑛
= (𝑓

𝑛,1
, 𝑓
𝑛,2
)} be a

convergent sequence in V
0
, where 𝑓

𝑛,2
are AFIFs. Since Ṽ

0
is

closed, lim
𝑛→∞

𝑓
𝑛
= 𝑓
∗
= (𝑓
∗

1
, 𝑓
∗

2
) ∈ Ṽ

0
which gives that

𝑓
∗

1
|
[𝑖−1,𝑖)

, 𝑖 ∈ Z is a CHFIF. Hence, 𝑓∗
1

∈ V
0
. It therefore

follows that V
0
is closed and V

0
= clos

𝐿
2 span{𝜙

𝑖,1
(⋅ − 𝑙), 𝑖 =

1, . . . , 2𝑁 − 1, 𝑙 ∈ Z}.
Now, the following steps show that the set {𝜙

𝑖,1
}
2𝑁−1

𝑖=1

indeed generates a continuous, compactly supported mul-
tiresolution analysis of 𝐿

2
(R).

(a) By Proposition 9, it follows that ⋅ ⋅ ⋅ ⊇ V
−1

⊇ V
0
⊇ V
1
⊇

⋅ ⋅ ⋅ .
(b) To prove that⋂

𝑘∈Z V
𝑘
= {0}, let 𝐼

𝑛
= [𝑛, 𝑛 + 1], 𝑛 ∈ Z,

and 𝑈
0
= {𝑓
𝜒
𝐼0

: 𝑓 ∈ V
0
} where 𝑓

𝜒
𝐼0

(𝑥) = 𝑓(𝑥) if 𝑥 ∈ 𝐼
0
and

𝑓
𝜒
𝐼0

(𝑥) = 0 if 𝑥 ∉ 𝐼
0
. Since the space 𝑈

0
is finite dimensional

over R, the norms ‖ ⋅ ‖
∞

and ‖ ⋅ ‖
𝐿
2 restricted to 𝑈

0
are

equivalent. Hence, there exists a positive constant 𝑐 such that
‖𝑓‖
∞

≤ 𝑐‖𝑓‖
𝐿
2 for all 𝑓 ∈ 𝑈

0
. By the property of translation

invariance, it is observed that ‖𝑓
𝜒
𝐼𝑛

‖
∞

≤ 𝑐‖𝑓
𝜒
𝐼𝑛

‖
𝐿
2 for any 𝑓 ∈

𝑈
0
. Thus, ‖𝑓‖

∞
≤ sup

𝑛
‖𝑓
𝜒
𝐼𝑛

‖
∞

≤ 𝑐∑
𝑛∈Z ‖𝑓

𝜒
𝐼𝑛

‖
𝐿
2 = 𝑐‖𝑓‖

𝐿
2

for any 𝑓 ∈ V
0
. It therefore follows by the definition of V

𝑘

that ‖𝑓‖
∞

≤ 𝑐𝑁
𝑘/2

‖𝑓‖
𝐿
2 for all 𝑓 ∈ V

𝑘
. Consequently, if

𝑓 ∈ ⋂
𝑘∈Z V
𝑘
, then ‖𝑓‖

∞
= 0 which implies 𝑓 = 0.
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(c) For showing that clos
𝐿
2

⋃
𝑚∈Z V

𝑚
= 𝐿
2
(R), let 𝑓 =

(𝑓
1
, 𝑓
2
) ∈ Ṽ

0
, where 𝑓

1
is a CHFIF passing through (𝑥

𝑘
, 1)

and 𝑓
2
is an AFIF passing through (𝑥

𝑘
, 𝑧
𝑘
). For all 𝑥 ∈ R, by

(19),

𝑓
1
= ∑

𝑘

(

𝑁−1

∑

𝑖=1

𝐶
𝑘,𝑖
𝑓
∗

𝑖,1
(𝑥 − 𝑘) + 𝜙

𝑁
(𝑥 − 𝑘)

+

𝑁−1

∑

𝑖=1

𝐷
𝑘,𝑖
𝑓
∗

𝑁+1+𝑖,1
(𝑥 − 𝑘)) ,

(25)

where

𝐶
𝑘,𝑖

= (1 − 𝑟
𝑖
− 𝑠
𝑖
−

𝑁−1

∑

𝑗=1

𝑢
𝑗,𝑖
𝑧
𝑗
) , 𝐷

𝑘,𝑖
= 𝑧
𝑖
,

𝑖 = 1, . . . , 𝑁 − 1.

(26)

Now, since 𝜙
𝑖,1

are continuous and compactly supported, by
using (b) and Proposition 3.1 of [11], it follows that⋃

𝑘∈Z V
𝑘
is

dense in 𝐿
2
(R).

(d) For proving that the functions 𝜙
𝑖,1
, 𝑖 = 1, . . . , 2𝑁 − 1,

and their integer translates form a Riesz basis for V
0
, let 𝜏 be

the smallest eigenvalue of the matrix

1

󵄩󵄩󵄩󵄩𝜙𝑁,1
󵄩󵄩󵄩󵄩

2
(

(∫
𝐼

󵄨󵄨󵄨󵄨𝑓0,1 (𝑥)
󵄨󵄨󵄨󵄨

2

𝑑𝑥)

1/2

(∫
𝐼

󵄨󵄨󵄨󵄨𝑓0,1 (𝑥)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓𝑁,1 (𝑥)
󵄨󵄨󵄨󵄨 𝑑𝑥)

1/2

(∫
𝐼

󵄨󵄨󵄨󵄨𝑓0,1 (𝑥)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓𝑁,1 (𝑥)
󵄨󵄨󵄨󵄨 𝑑𝑥)

1/2

(∫
𝐼

|𝑓
𝑁,1

(𝑥)|
2
𝑑𝑥)

1/2
). (27)

Since the functions𝑓
0,1

and𝑓
𝑁,1

are linearly independent, the
determinant of the matrix is positive which implies 𝜏 > 0.
Taking 𝐴 = √𝜏‖𝜙

𝑁,1
‖
𝐿
2

and 𝐵 = √3‖𝜙
𝑁,1

‖
𝐿
2

, it is seen that,
for every 𝑐 = {𝑐

𝑖
} ∈ 𝑙
2, 𝐴‖𝑐‖

𝑙
2 ≤ ‖∑ 𝑐

𝑖
𝜙
𝑁,1

(⋅ − 𝑖)‖
𝐿
2 ≤ 𝐵‖𝑐‖

𝑙
2 .

Further, the functions 𝜙
𝑖,1
, 𝑖 = 1, . . . , 2𝑁 − 1, 𝑖 ̸= 𝑁, and

their integer translates are mutually orthogonal. Therefore,
the functions𝜙

𝑖,1
, 𝑖 = 1, . . . , 2𝑁−1, and their integer translates

form a Riesz basis for V
0
.

Remark 11. By Theorem 10, it follows that the set {𝜙
𝑖,1

: 𝑖 =

1, 2, . . . , 2𝑁 − 1} ⊂ V
0
, where 𝜙

𝑖,1
(𝑥) = 𝜙

𝑖,1
(𝑥)/‖𝜙

𝑖,1
‖
𝐿
2 , 𝑖 =

1, 2, . . . , 2𝑁 − 1, actually generates a continuous, compactly
supported multiresolution analysis of 𝐿

2
(R) by orthonormal

functions.

5. Conclusions

In this paper, multiresolution analysis arising from Coa-
lescence Hidden-variable Fractal Interpolation Functions
is developed, since CHFIF based wavelets generally more
satisfactorily preserve the features of the functions simulating
natural objects or outcome of scientific experiments that
are partly self-affine and partly non-self-affine compared to
AFIF based wavelets. The availability of a larger set of free
variables and constrained variables with CHFIF in multires-
olution analysis based on CHFIFs provides more control
in reconstruction of functions in 𝐿

2
(R) than that provided

by multiresolution analysis based only on affine FIFs. In
our approach, the vector space of CHFIFs is introduced, its
dimension is determined, and Riesz bases of vector subspaces
V
𝑘
, 𝑘 ∈ Z, consisting of certain CHFIFs in 𝐿

2
(R)⋂𝐶

0
(R) are

constructed.
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