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This paper investigates the oscillatory behavior of the solutions for a three-node neural network with discrete and distributed
delays. Two theorems are provided to determine the conditions for oscillating solutions of the model. The criteria for selecting the
parameters in this network are derived. Some simulation examples are presented to illustrate the effectiveness of the results.

1. Introduction

Neural networks are complex and large-scale dynamical
systems. Time delay is inevitably encountered in implementa-
tion of dynamical neural networks and is frequently a source
of oscillation and instability. On the one hand, information
transmission from one neuron to another neuron may make
the response of networks with discrete delays. On the other
hand, neural networks usually have spatial extent due to the
presence of a multitude of parallel pathways with a variety of
axon sizes and lengths. Thus, the distributed delays in neural
system need to be considered. In the past two decades, many
researches have studied various neural networkswith discrete
and distributed delays [1–4]. In [1], Gopalsamy and Leung
studied the following neural network model:
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(1)

By means of the Lyapunov functional, the authors
obtained some necessary and sufficient conditions for the
existence of a globally asymptotically stable equilibriumpoint
of system (1). Ruan and Filfil [2] considered a two-neuron

network model with multiple discrete and distributed delays
as follows:
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(2)

where the delayed feedback kernel satisfies ∫∞
0
𝑘
𝑖𝑖
(𝑠)𝑑𝑠 =

const. and ∫∞
0
𝑠𝑘
𝑖𝑖
(𝑠)𝑑𝑠 < ∞, 𝐹(𝑢) = (1/(1 + 𝑒

−𝑢
)) (𝑖 = 1, 2).

Local stability analyses are carried out for model (2). Com-
puter simulations are performed to illustrate the obtained
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results. Liao et al. [3] discussed a two-neuron system with
distributed delays in the frequency domain as follows:
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(3)

where 𝐹(𝑟) is a strong kernel. For simplicity, the authors set
𝑐
1
= 𝑐
2
= 0. Let
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Then system (3) is equivalent to the following model:
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By applying the frequency domain approach and analyz-
ing the characteristic equation, the Hopf bifurcation occurs
when the mean delay 𝜇 exceeds a critical value. Thus, there is
a family of periodic solutions bifurcates from the equilibrium
point. Recently, Hajihosseini et al. [4] have investigated the
following three-node network model:
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where 𝑤
1
and 𝑤

2
are parameters. The authors also make the

change of variables 𝑦
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∞

0
𝐹(𝑟)𝑥

𝑖
(𝑡 − 𝑟)𝑑𝑟 (𝑖 = 1, 2, 3)

such that system (6) changes to the following:
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Under the restrictive condition |𝑤
1
+ 𝑤
2
| < 1, the Hopf

bifurcation and stability of the bifurcating periodic solutions
have been discussed. There are many authors who have
studied the bifurcating periodic solutions for various models
[5–14]. It is well known that the basic method in studying
the bifurcating periodic solution for a time delay system is
to discuss an algebraic equation in which the bifurcating
value will be determined. Motivated by the above models
we shall concern the existence of oscillating solutions for
the following three-node network system with discrete and
distributed delays:
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where 𝐹(𝑟) = 𝜇
2
𝑟𝑒
−𝜇𝑟 (𝜇 > 0) is a strong kernel function,

the passive decay rates 𝑎
1
, 𝑎
2
, and 𝑎

3
are positive constants, 𝑏

𝑖
,

𝑐
𝑖
, and 𝑙

𝑖
(𝑖 = 1, 2, 3) are constants, and delays 𝜏

1
, 𝜏
2
, and 𝜏

3

are nonnegative constants. It was emphasized that bifurcating
approach is hard to deal with model (8), because it is very
difficult to find the bifurcating parameter when 𝜏

1
, 𝜏
2
, and

𝜏
3
are different nonnegative constants. In order to discuss

the existence of oscillating solutions for system (8) we adopt
Chafee’s criterion [15]. A time delay system will generate a
limit cycle if the system has a unique unstable equilibrium
point and bounded solutions. In other words, there exists an
oscillatory solution of the model. System (8) can accord with
the demands of Chafee’s criterion; we refer the reader to [16,
appendix].
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2. Preliminaries

First we assume that the activation functions 𝑓 and 𝑔 both
are monotone continuous bounded functions. 𝑓, 𝑔 ∈ 𝐶

4
(𝑅),

𝑓(0) = 𝑔(0) = 0, 𝑢𝑓(𝑢) > 0, and 𝑢𝑔(𝑢) > 0 for 𝑢 ̸= 0. For ex-
ample, 𝑓(𝑢) = tanh(𝑢), and 𝑔(𝑢) = arctan (𝑢) satisfy those
conditions. For the kernel function 𝐹(𝑟) = 𝜇
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Taking the derivative on both sides of system (8) we
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(𝑡 − 𝑟)] 𝑑𝑟

+ 𝑐
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− 𝜇
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𝑑𝑥
2

2
(𝑡)

𝑑𝑡2
+ 𝑏
3
𝑓
󸀠󸀠
[𝑥
3
(𝑡 − 𝜏
3
)] (

𝑑𝑥
3
(𝑡 − 𝜏
3
)

𝑑𝑡
)

2

+ 𝑏
3
𝑓
󸀠
[𝑥
3
(𝑡 − 𝜏
3
)]
𝑑𝑥
2

3
(𝑡 − 𝜏
3
)

𝑑𝑡2
− 2𝜇

𝑑𝑥
2

2
(𝑡)

𝑑𝑡2

− 2𝜇𝑎
2

𝑑𝑥
2
(𝑡)

𝑑𝑡
− 2𝜇𝑏
3
𝑓
󸀠
[𝑥
3
(𝑡 − 𝜏
3
)]
𝑑𝑥
3
(𝑡 − 𝜏
3
)

𝑑𝑡

− 𝜇
2
(
𝑑𝑥
2
(𝑡)

𝑑𝑡
+ 𝑎
2
𝑥
2
(𝑡) − 𝑏

3
𝑓 [𝑥
3
(𝑡 − 𝜏
3
)])

+ 𝑐
1
𝜇
2
𝑔 [𝑥
1
(𝑡)] ,

𝑑𝑥
3

3
(𝑡)

𝑑𝑡3

= −𝑎
3

𝑑𝑥
2

3
(𝑡)

𝑑𝑡2
+ 𝑏
1
𝑓
󸀠󸀠
[𝑥
1
(𝑡 − 𝜏
1
)] (

𝑑𝑥
1
(𝑡 − 𝜏
1
)

𝑑𝑡
)

2

+ 𝑏
1
𝑓
󸀠
[𝑥
1
(𝑡 − 𝜏
1
)]
𝑑𝑥
2

1
(𝑡 − 𝜏
1
)

𝑑𝑡2
− 2𝜇

𝑑𝑥
2

3
(𝑡)

𝑑𝑡2

− 2𝜇𝑎
3

𝑑𝑥
3
(𝑡)

𝑑𝑡
− 2𝜇𝑏
1
𝑓
󸀠
[𝑥
1
(𝑡 − 𝜏
1
)]
𝑑𝑥
1
(𝑡 − 𝜏
1
)

𝑑𝑡

− 𝜇
2
(
𝑑𝑥
3
(𝑡)

𝑑𝑡
+ 𝑎
3
𝑥
3
(𝑡) − 𝑏

1
𝑓 [𝑥
1
(𝑡 − 𝜏
1
)])

+ 𝑐𝜇
2
𝑔 [𝑥
2
(𝑡)] .

(14)

Now by setting 𝑥
4
(𝑡) = 𝑑𝑥

1
(𝑡)/𝑑𝑡, 𝑥

5
(𝑡) = 𝑑𝑥

2
(𝑡)/𝑑𝑡,

𝑥
6
(𝑡) = 𝑑𝑥

3
(𝑡)/𝑑𝑡, 𝑥

7
(𝑡) = 𝑑𝑥

2

1
(𝑡)/𝑑𝑡

2, 𝑥
8
(𝑡) = 𝑑𝑥

2

2
(𝑡)/𝑑𝑡

2,
and 𝑥

9
(𝑡) = 𝑑𝑥

2

3
(𝑡)/𝑑𝑡

2, we get the following time delay
equivalent system of (8):

𝑑𝑥
1
(𝑡)

𝑑𝑡
= 𝑥
4
(𝑡) ,

𝑑𝑥
2
(𝑡)

𝑑𝑡
= 𝑥
5
(𝑡) ,

𝑑𝑥
3
(𝑡)

𝑑𝑡
= 𝑥
6
(𝑡) ,

𝑑𝑥
4
(𝑡)

𝑑𝑡
= 𝑥
7
(𝑡) ,

𝑑𝑥
5
(𝑡)

𝑑𝑡
= 𝑥
8
(𝑡) ,

𝑑𝑥
6
(𝑡)

𝑑𝑡
= 𝑥
9
(𝑡) ,

𝑑𝑥
7
(𝑡)

𝑑𝑡
= − 𝜇

2
𝑎
1
𝑥
1
(𝑡) − (2𝜇𝑎

1
+ 𝜇
2
) 𝑥
4
(𝑡)

− (𝑎
1
+ 2𝜇) 𝑥

7
(𝑡) + 𝑏

2
𝑓
󸀠󸀠
[𝑥
2
(𝑡 − 𝜏
2
)]

× [𝑥
5
(𝑡 − 𝜏
2
)]
2

+ 𝑏
2
𝑓
󸀠
[𝑥
2
(𝑡 − 𝜏
2
)] 𝑥
8
(𝑡 − 𝜏
2
)

− 2𝜇𝑏
2
𝑓
󸀠
[𝑥
2
(𝑡 − 𝜏
2
)] 𝑥
5
(𝑡 − 𝜏
2
)

+ 𝜇
2
𝑏
2
𝑓 [𝑥
2
(𝑡 − 𝜏
2
)] + 𝑐
3
𝜇
2
𝑔 [𝑥
3
(𝑡)] ,

𝑑𝑥
8
(𝑡)

𝑑𝑡
= − 𝜇

2
𝑎
2
𝑥
2
(𝑡) − (2𝜇𝑎

2
+ 𝜇
2
) 𝑥
5
(𝑡)

− (𝑎
2
+ 2𝜇) 𝑥

8
(𝑡) + 𝑏

3
𝑓
󸀠󸀠
[𝑥
3
(𝑡 − 𝜏
3
)]

× [𝑥
6
(𝑡 − 𝜏
3
)]
2

+ 𝑏
3
𝑓
󸀠
[𝑥
3
(𝑡 − 𝜏
3
)] 𝑥
9
(𝑡 − 𝜏
3
)

− 2𝜇𝑏
3
𝑓
󸀠
[𝑥
3
(𝑡 − 𝜏
3
)] 𝑥
6
(𝑡 − 𝜏
3
)

+ 𝜇
2
𝑏
3
𝑓 [𝑥
3
(𝑡 − 𝜏
3
)] + 𝑐
1
𝜇
2
𝑔 [𝑥
1
(𝑡)] ,

𝑑𝑥
9
(𝑡)

𝑑𝑡
= − 𝜇

2
𝑎
3
𝑥
3
(𝑡) − (2𝜇𝑎

3
+ 𝜇
2
) 𝑥
6
(𝑡)

− (𝑎
3
+ 2𝜇) 𝑥

9
(𝑡) + 𝑏

1
𝑓
󸀠󸀠
[𝑥
1
(𝑡 − 𝜏
1
)]

× [𝑥
4
(𝑡 − 𝜏
1
)]
2

+ 𝑏
1
𝑓
󸀠
[𝑥
1
(𝑡 − 𝜏
1
)] 𝑥
7
(𝑡 − 𝜏
1
)

− 2𝜇𝑏
1
𝑓
󸀠
[𝑥
1
(𝑡 − 𝜏
1
)] 𝑥
4
(𝑡 − 𝜏
1
)

+ 𝜇
2
𝑏
1
𝑓 [𝑥
1
(𝑡 − 𝜏
1
)] + 𝑐
2
𝜇
2
𝑔 [𝑥
2
(𝑡)] .

(15)

The linearization of system (15) around the zero point is the
following:

𝑑𝑥
1
(𝑡)

𝑑𝑡
= 𝑥
4
(𝑡) ,

𝑑𝑥
2
(𝑡)

𝑑𝑡
= 𝑥
5
(𝑡) ,

𝑑𝑥
3
(𝑡)

𝑑𝑡
= 𝑥
6
(𝑡) ,

𝑑𝑥
4
(𝑡)

𝑑𝑡
= 𝑥
7
(𝑡) ,

𝑑𝑥
5
(𝑡)

𝑑𝑡
= 𝑥
8
(𝑡) ,

𝑑𝑥
6
(𝑡)

𝑑𝑡
= 𝑥
9
(𝑡) ,

𝑑𝑥
7
(𝑡)

𝑑𝑡

= −𝜇
2
𝑎
1
𝑥
1
(𝑡) − (2𝜇𝑎

1
+ 𝜇
2
) 𝑥
4
(𝑡) − (𝑎

1
+ 2𝜇) 𝑥

7
(𝑡)



Advances in Artificial Neural Systems 5

+ 𝑏
2
𝑓
󸀠
(0) 𝑥
8
(𝑡 − 𝜏
2
) − 2𝜇𝑏

2
𝑓
󸀠
(0) 𝑥
5
(𝑡 − 𝜏
2
)

+ 𝜇
2
𝑏
2
𝑓
󸀠
(0) 𝑥
2
(𝑡 − 𝜏
2
) + 𝑐
3
𝜇
2
𝑔
󸀠
(0) 𝑥
3
(𝑡) ,

𝑑𝑥
8
(𝑡)

𝑑𝑡

= −𝜇
2
𝑎
2
𝑥
2
(𝑡) − (2𝜇𝑎

2
+ 𝜇
2
) 𝑥
5
(𝑡) − (𝑎

2
+ 2𝜇) 𝑥

8
(𝑡)

+ 𝑏
3
𝑓
󸀠
(0) 𝑥
9
(𝑡 − 𝜏
3
) − 2𝜇𝑏

3
𝑓
󸀠
(0) 𝑥
6
(𝑡 − 𝜏
3
)

+ 𝜇
2
𝑏
3
𝑓
󸀠
(0) 𝑥
3
(𝑡 − 𝜏
3
) + 𝑐
1
𝜇
2
𝑔
󸀠
(0) 𝑥
1
(𝑡) ,

𝑑𝑥
9
(𝑡)

𝑑𝑡

= −𝜇
2
𝑎
3
𝑥
3
(𝑡) − (2𝜇𝑎

3
+ 𝜇
2
) 𝑥
6
(𝑡) − (𝑎

3
+ 2𝜇) 𝑥

9
(𝑡)

+ 𝑏
1
𝑓
󸀠
(0) 𝑥
7
(𝑡 − 𝜏
1
) − 2𝜇𝑏

1
𝑓
󸀠
(0) 𝑥
4
(𝑡 − 𝜏
1
)

+ 𝜇
2
𝑏
1
𝑓
󸀠
(0) 𝑥
1
(𝑡 − 𝜏
1
) + 𝑐
2
𝜇
2
𝑔
󸀠
(0) 𝑥
2
(𝑡) .

(16)

System (16) can be written as a matrix form:

𝑑𝑋 (𝑡)

𝑑𝑡
= 𝑃𝑋 (𝑡) + 𝑄𝑋 (𝑡 − 𝜏) , (17)

where𝑋(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

9
(𝑡))
𝑇,𝑋(𝑡 − 𝜏) = (𝑥

1
(𝑡 − 𝜏
1
),

𝑥
2
(𝑡−𝜏
2
), 𝑥
3
(𝑡−𝜏
3
), 𝑥
4
(𝑡−𝜏
1
), 𝑥
5
(𝑡−𝜏
2
), 𝑥
6
(𝑡−𝜏
3
), 𝑥
7
(𝑡−𝜏
1
),

𝑥
8
(𝑡 − 𝜏
2
), and 𝑥

9
(𝑡 − 𝜏
3
))
𝑇. So,

𝑃 =

(
(
(
(
(
(

(

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

𝑝
71

0 𝑝
73

𝑝
81

𝑝
82

0

0 𝑝
92

𝑝
93

𝑝
74

0 0

0 𝑝
85

0

0 0 𝑝
96

𝑝
77

0 0

0 𝑝
88

0

0 0 𝑝
99

)
)
)
)
)
)

)

,

𝑄 =

(
(
(
(
(
(

(

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 𝑞
72

0

0 0 𝑞
83

𝑞
91

0 0

0 𝑞
75

0

0 0 𝑞
86

𝑞
94

0 0

0 𝑞
78

0

0 0 𝑞
89

𝑞
97

0 0

)
)
)
)
)
)

)

,

(18)

where 𝑝
71

= −𝜇
2
𝑎
1
, 𝑝
73

= 𝑐
3
𝜇
2
𝑔
󸀠
(0), 𝑝

74
= −(2𝜇𝑎

1
+

𝜇
2
), 𝑝
77

= −(𝑎
1
+ 2𝜇), 𝑝

81
= 𝑐
1
𝜇
2
𝑔
󸀠
(0), 𝑝

82
= −𝜇

2
𝑎
2
,

𝑝
85

= −(2𝜇𝑎
2
+ 𝜇
2
), 𝑝
88

= −(𝑎
2
+ 2𝜇), 𝑝

92
= 𝑐
2
𝜇
2
𝑔
󸀠
(0),

𝑝
93

= −𝜇
2
𝑎
3
, 𝑝
96

= −(2𝜇𝑎
3
+ 𝜇
2
), 𝑝
99

= −(𝑎
3
+ 2𝜇);

𝑞
72

= 𝜇
2
𝑏
2
𝑓
󸀠
(0), 𝑞
75

= −2𝜇𝑏
2
𝑓
󸀠
(0), 𝑞
78

= 𝑏
2
𝑓
󸀠
(0), 𝑞
83

=

𝜇
2
𝑏
3
𝑓
󸀠
(0), 𝑞
86
= −2𝜇𝑏

3
𝑓
󸀠
(0), 𝑞
89
= 𝑏
3
𝑓
󸀠
(0), 𝑞
91
= 𝜇
2
𝑏
1
𝑓
󸀠
(0),

𝑞
94
= −2𝜇𝑏

1
𝑓
󸀠
(0), and 𝑞

97
= 𝑏
1
𝑓
󸀠
(0).

Lemma 1. All solutions of system (8) are bounded.

Proof. Since we assume that 𝑓 and 𝑔 both are monotone
continuous bounded functions. So we have |𝑓(𝑢)| ≤ 𝑀 and
|𝑔(𝑢)| ≤ 𝑁 (𝑀 and 𝑁 are positive constants). From (8) we
obtain

𝑑
󵄨󵄨󵄨󵄨𝑥1 (𝑡)

󵄨󵄨󵄨󵄨

𝑑𝑡
≤ −𝑎
1

󵄨󵄨󵄨󵄨𝑥1 (𝑡)
󵄨󵄨󵄨󵄨 + 𝐴1,

𝑑
󵄨󵄨󵄨󵄨𝑥2 (𝑡)

󵄨󵄨󵄨󵄨

𝑑𝑡
≤ −𝑎
2

󵄨󵄨󵄨󵄨𝑥2 (𝑡)
󵄨󵄨󵄨󵄨 + 𝐴2,

𝑑
󵄨󵄨󵄨󵄨𝑥3 (𝑡)

󵄨󵄨󵄨󵄨

𝑑𝑡
≤ −𝑎
3

󵄨󵄨󵄨󵄨𝑥3 (𝑡)
󵄨󵄨󵄨󵄨 + 𝐴3,

(19)

where 𝐴
1
= |𝑏
2
|𝑀+ |𝑐

3
|𝑁, 𝐴

2
= |𝑏
3
|𝑀+ |𝑐

1
|𝑁, and𝐴

3
= |𝑏
1
|

𝑀 + |𝑐
2
|𝑁. Thus, |𝑥

𝑖
(𝑡)| ≤ (𝐴

𝑖
/𝑎
𝑖
) + |𝑥

𝑖
(0)| (𝑖 = 1, 2, 3).

This means that the solutions of system (8) are uniformly
bounded.

Lemma 2. Assume that the matrix

𝐵 = (

−𝑎
1

𝑏
2
𝑓
󸀠
(0) 𝑐
3
𝑔
󸀠
(0)

𝑐
1
𝑔
󸀠
(0) −𝑎

2
𝑏
3
𝑓
󸀠
(0)

𝑏
1
𝑓
󸀠
(0) 𝑐
2
𝑔
󸀠
(0) −𝑎

3

) (20)

is a nonsingular matrix. Then system (8) has a unique equilib-
rium point.

Proof. Noting that 𝑓 and 𝑔 both are monotone continuous
bounded functions satisfying 𝑓(0) = 𝑔(0) = 0. Then 𝑓(𝑥) =
𝑓
󸀠
(0)𝑥 + 𝛼, 𝑔(𝑥) = 𝑔

󸀠
(0)𝑥 +𝛽, where 𝛼 and 𝛽 both are higher

order infinitesimals when 𝑥 → 0. From (8), an equilib-
rium point 𝑥∗ = (𝑥

∗

1
, 𝑥
∗

2
, 𝑥
∗

3
)
𝑇 is a solution of the following

algebraic equation:

−𝑎
1
𝑥
∗

1
+ 𝑏
2
𝑓 (𝑥
∗

2
) + 𝑐
3
∫

∞

0

𝐹 (𝑟) 𝑔 (𝑥
∗

3
) 𝑑𝑟 = 0,

−𝑎
2
𝑥
∗

2
+ 𝑏
3
𝑓 (𝑥
∗

3
) + 𝑐
1
∫

∞

0

𝐹 (𝑟) 𝑔 (𝑥
∗

1
) 𝑑𝑟 = 0,

−𝑎
3
𝑥
∗

3
+ 𝑏
1
𝑓 (𝑥
∗

1
) + 𝑐
2
∫

∞

0

𝐹 (𝑟) 𝑔 (𝑥
∗

2
) 𝑑𝑟 = 0.

(21)

Noting that ∫∞
0
𝐹(𝑟)𝑔(𝑥

∗

𝑖
)𝑑𝑟 = 𝑔(𝑥

∗

𝑖
) ∫
∞

0
𝐹(𝑟)𝑑𝑟 =

𝑔(𝑥
∗

𝑖
), then we have

−𝑎
1
𝑥
∗

1
+ 𝑏
2
𝑓
󸀠
(0) 𝑥
∗

2
+ 𝑏
2
𝛼 + 𝑐
3
𝑔
󸀠
(0) 𝑥
∗

3
+ 𝑐
3
𝛽 = 0,

−𝑎
2
𝑥
∗

2
+ 𝑏
3
𝑓
󸀠
(0) 𝑥
∗

3
+ 𝑏
3
𝛼 + 𝑐
1
𝑔
󸀠
(0) 𝑥
∗

1
+ 𝑐
1
𝛽 = 0,

−𝑎
3
𝑥
∗

3
+ 𝑏
1
𝑓
󸀠
(0) 𝑥
∗

1
+ 𝑏
1
𝛼 + 𝑐
2
𝑔
󸀠
(0) 𝑥
∗

2
+ 𝑐
2
𝛽 = 0.

(22)
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If 𝑦∗ = (𝑦
∗

1
, 𝑦
∗

2
, 𝑦
∗

3
)
𝑇 is another equilibrium point of

system (8), neglecting of the higher order infinitesimal, we
obtain

−𝑎
1
(𝑥
∗

1
− 𝑦
∗

1
) + 𝑏
2
𝑓
󸀠
(0) (𝑥

∗

2
− 𝑦
∗

2
) + 𝑐
3
𝑔
󸀠
(0) (𝑥

∗

3
− 𝑦
∗

3
) = 0,

−𝑎
2
(𝑥
∗

2
− 𝑦
∗

2
) + 𝑏
3
𝑓
󸀠
(0) (𝑥

∗

3
− 𝑦
∗

3
) + 𝑐
1
𝑔
󸀠
(0) (𝑥

∗

1
− 𝑦
∗

1
) = 0,

−𝑎
3
(𝑥
∗

3
− 𝑦
∗

3
) + 𝑏
1
𝑓
󸀠
(0) (𝑥

∗

1
− 𝑦
∗

1
) + 𝑐
2
𝑔
󸀠
(0) (𝑥

∗

2
− 𝑦
∗

2
) 0.

(23)

The matrix form of (23) is follows:

𝐵 (𝑥
∗
− 𝑦
∗
) = 0. (24)

Since 𝐵 is a nonsingular matrix based on the algebraic
knowledge one can have 𝑥∗ − 𝑦∗ = 0 or 𝑥∗ = 𝑦

∗. This means
that system (8) has a unique equilibriumpoint. Obviously, the
unique equilibrium point exactly is zero point since 𝑓(0) =
𝑔(0) = 0.

3. Oscillating Solutions Analysis

We adopt the following norms of vectors and matrices:
‖𝑥(𝑡)‖ = ∑

𝑛

𝑖=1
|𝑥(𝑡)|, ‖𝑃‖ = max

𝑗
∑
9

𝑖=1
|𝑝
𝑖𝑗
|, ‖𝑄‖ =

max
𝑗
∑
𝑛

𝑖=1
|𝑞
𝑖𝑗
|. The measure 𝜎(𝑃) of the matrix 𝑃 is defined

by 𝜎(𝑃) = lim
𝜃→0

+((‖𝐼 + 𝜃𝑃‖ − 1)/𝜃), which for the chosen
norms reduces to 𝜎(𝑃) = max

1≤𝑗≤9
(𝑝
𝑗𝑗
+ ∑
9

𝑖=1𝑖 ̸= 𝑗,
|𝑝
𝑖𝑗
|).

In order to discuss the instability of equilibrium point for
system (8), we consider the equivalent system (15) of (8). Note
that the linearized system of (15) is (16). Obviously, if the
trivial solution of (16) is unstable, it implies that the trivial
solution of system (15) is unstable and thus the instability of
the trivial solution of system (8). Therefore, we first have

Theorem 3. Assume that system (8) has a unique equilibrium
point and the determinant of matrix 𝑃 is not equal to zero. Let
𝜌
1
, 𝜌
2
, . . . , 𝜌

9
, 󰜚
1
, 󰜚
2
, . . . , 󰜚

9
be the eigenvalues of the matrixes

𝑃 and 𝑄, respectively. If there is at least one Re𝜌
𝑖
> 0 (Im𝜌

𝑖

may be equal to zero) or there exists one positive real eigenvalue
󰜚
𝑗

> |𝜌
𝑗
|, for some 𝑗 ∈ {1, 2, . . . , 9}, then the unique

equilibrium point, namely, the trivial solution of system (16)
is unstable, implying that the equivalent system (15) or (8)
generates oscillating solutions.

Proof. Since𝑄 is a singular matrix, set 󰜚
1
= 󰜚
2
= ⋅ ⋅ ⋅ = 󰜚

6
= 0.

For given value of 𝜇, let 𝜌
1
, 𝜌
2
, . . . , 𝜌

9
be the eigenvalues of the

matrix 𝑃. Thus, the characteristic equation of system (16) is
as follows:

det (𝜆𝐼
𝑖𝑗
− 𝑝
𝑖𝑗
− 𝑞
𝑖𝑗
𝑒
−𝜆𝜏
𝑖𝑗) = 0, (25)

where

𝐼
𝑖𝑗
= {

1 if 𝑖 = 𝑗,

0 if 𝑖 ̸= 𝑗,
𝜏
𝑖𝑗
= {

𝜏
𝑖

if 𝑖 = 𝑗,

0 if 𝑖 ̸= 𝑗.
(26)

or
9

∏

𝑖=1

[𝜆 − 𝜌
𝑖
− 󰜚
𝑖
𝑒
−𝜆𝜏
𝑖] = 0. (27)

Since there is at least one Re𝜌
𝑖
> 0, without loss of

generality, set Re𝜌
1
> 0. From 󰜚

1
= 0 we have the equation

𝜆−𝜌
1
= 0.This means that 𝜆 = 𝜌

1
, and there is a Re 𝜆 > 0. So,

the unique equilibrium point of system (16) is unstable based
on the theory of differential equation. If by corresponding
some 𝜌

𝑗
we have 󰜚

𝑗
> |𝜌
𝑗
| 𝑗 ∈ {1, 2, . . . , 9}, we pointed out

that there exists positive real root for transcendental equation
𝜆 − 𝜌
𝑗
− 󰜚
𝑗
𝑒
−𝜆𝜏
𝑗 = 0. Let 𝑓(𝜆) = 𝜆 − 𝜌

𝑗
− 󰜚
𝑗
𝑒
−𝜆𝜏
𝑗 . Then 𝑓(𝜆)

is a continuous function of 𝜆. Since 𝑓(0) = −𝜌
𝑗
− 󰜚
𝑗
, from

󰜚
𝑗
> |𝜌
𝑗
|, we know that𝑓(0) < 0. Obviously, there is a suitable

large 𝜆∗ > 0 such that 𝑓(𝜆∗) = 𝜆
∗
− 𝜌
𝑗
− 󰜚
𝑗
𝑒
−𝜆
∗
𝜏
𝑗 > 0 since

𝑒
−𝜆
∗
𝜏
𝑗 can be suitably small. Thus, by the continuity of 𝑓(𝜆),

there is a point, say 𝜆 ∈ (0, 𝜆
∗
) such that 𝑓(𝜆) = 0. In

other words, there is a positive real eigenvalue. In this case
the unique equilibrium point of system (16) is also unstable.
Since all solutions of the system are bounded, on the basis
of Chafee’s criterion [15], system (15) generates a limit cycle,
implying that there exists an oscillating solution of system (15)
and therefore system (8).

Theorem 4. Assume that system (8) has a unique equilibrium
point and the following inequalities hold:

(‖𝑄‖ 𝜏𝑒) exp (− |𝜎 (𝑃)| 𝜏) > 1,

(‖𝑄‖ 𝜏
∗
𝑒) exp (−𝜏∗ |𝜎 (𝑃)| 𝜏∗) > 1,

(28)

where 𝜏 = min{𝜏
1
, 𝜏
2
, 𝜏
3
} and 𝜏∗ = max{𝜏

1
, 𝜏
2
, 𝜏
3
}. Then the

unique equilibrium point, namely, the trivial solution of system
(16) is unstable, implying that the equivalent system (15) or (8)
generates oscillating solutions.

Proof. First we consider system (16) in the case 𝜏
1
= 𝜏
2
= 𝜏
3
=

𝜏 and we easily get:

𝑑
󵄨󵄨󵄨󵄨𝑥1 (𝑡)

󵄨󵄨󵄨󵄨

𝑑𝑡
=
󵄨󵄨󵄨󵄨𝑥4 (𝑡)

󵄨󵄨󵄨󵄨 ,

𝑑
󵄨󵄨󵄨󵄨𝑥2 (𝑡)

󵄨󵄨󵄨󵄨

𝑑𝑡
=
󵄨󵄨󵄨󵄨𝑥5 (𝑡)

󵄨󵄨󵄨󵄨 ,

𝑑
󵄨󵄨󵄨󵄨𝑥3 (𝑡)

󵄨󵄨󵄨󵄨

𝑑𝑡
=
󵄨󵄨󵄨󵄨𝑥6 (𝑡)

󵄨󵄨󵄨󵄨 ,

𝑑
󵄨󵄨󵄨󵄨𝑥4 (𝑡)

󵄨󵄨󵄨󵄨

𝑑𝑡
=
󵄨󵄨󵄨󵄨𝑥7 (𝑡)

󵄨󵄨󵄨󵄨 ,

𝑑
󵄨󵄨󵄨󵄨𝑥5 (𝑡)

󵄨󵄨󵄨󵄨

𝑑𝑡
=
󵄨󵄨󵄨󵄨𝑥8 (𝑡)

󵄨󵄨󵄨󵄨 ,

𝑑
󵄨󵄨󵄨󵄨𝑥6 (𝑡)

󵄨󵄨󵄨󵄨

𝑑𝑡
=
󵄨󵄨󵄨󵄨𝑥9 (𝑡)

󵄨󵄨󵄨󵄨 ,

𝑑
󵄨󵄨󵄨󵄨𝑥7 (𝑡)

󵄨󵄨󵄨󵄨

𝑑𝑡
≤ − 𝜇

2
𝑎
1

󵄨󵄨󵄨󵄨𝑥1 (𝑡)
󵄨󵄨󵄨󵄨 − (2𝜇𝑎1 + 𝜇

2
)
󵄨󵄨󵄨󵄨𝑥4 (𝑡)

󵄨󵄨󵄨󵄨

− (𝑎
1
+ 2𝜇)

󵄨󵄨󵄨󵄨𝑥7 (𝑡)
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨󵄨
𝑏
2
𝑓
󸀠
(0)

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥8 (𝑡 − 𝜏)
󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
2𝜇𝑏
2
𝑓
󸀠
(0)

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥5 (𝑡 − 𝜏2)
󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
𝜇
2
𝑏
2
𝑓
󸀠
(0)

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥2 (𝑡 − 𝜏2)
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨󵄨
𝑐
3
𝜇
2
𝑔
󸀠
(0)

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥3 (𝑡)
󵄨󵄨󵄨󵄨 ,
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𝑑
󵄨󵄨󵄨󵄨𝑥8 (𝑡)

󵄨󵄨󵄨󵄨

𝑑𝑡
≤ − 𝜇

2
𝑎
2

󵄨󵄨󵄨󵄨𝑥2 (𝑡)
󵄨󵄨󵄨󵄨 − (2𝜇𝑎2 + 𝜇

2
)
󵄨󵄨󵄨󵄨𝑥5 (𝑡)

󵄨󵄨󵄨󵄨

− (𝑎
2
+ 2𝜇)

󵄨󵄨󵄨󵄨𝑥8 (𝑡)
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨󵄨
𝑏
3
𝑓
󸀠
(0)

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥9 (𝑡 − 𝜏3)
󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
2𝜇𝑏
3
𝑓
󸀠
(0)

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥6 (𝑡 − 𝜏3)
󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
𝜇
2
𝑏
3
𝑓
󸀠
(0)

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥3 (𝑡 − 𝜏3)
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨󵄨
𝑐
1
𝜇
2
𝑔
󸀠
(0)

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥1 (𝑡)
󵄨󵄨󵄨󵄨 ,

𝑑
󵄨󵄨󵄨󵄨𝑥9 (𝑡)

󵄨󵄨󵄨󵄨

𝑑𝑡
≤ − 𝜇

2
𝑎
3

󵄨󵄨󵄨󵄨𝑥3 (𝑡)
󵄨󵄨󵄨󵄨 − (2𝜇𝑎3 + 𝜇

2
)
󵄨󵄨󵄨󵄨𝑥6 (𝑡)

󵄨󵄨󵄨󵄨

− (𝑎
3
+ 2𝜇)

󵄨󵄨󵄨󵄨𝑥9 (𝑡)
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨󵄨
𝑏
1
𝑓
󸀠
(0)

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥7 (𝑡 − 𝜏)
󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
2𝜇𝑏
1
𝑓
󸀠
(0)

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥4 (𝑡 − 𝜏1)
󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
𝜇
2
𝑏
1
𝑓
󸀠
(0)

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥1 (𝑡 − 𝜏1)
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨󵄨
𝑐
2
𝜇
2
𝑔
󸀠
(0)

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥2 (𝑡)
󵄨󵄨󵄨󵄨 .

(29)

Let (𝑡) = ∑
9

𝑖=1
|𝑥
𝑖
(𝑡)|; then for some 𝑡∗, 𝑦(𝑡) > 0 (𝑡 ≥ 𝑡

∗)
and we have

𝑑𝑦 (𝑡)

𝑑𝑡
≤ 𝜎 (𝑃) 𝑦 (𝑡) + ‖𝑄‖ 𝑦 (𝑡 − 𝜏) , 𝑡 ≥ 𝑡

∗
+ 𝜏. (30)

Consider the scalar equation

𝑑𝑧 (𝑡)

𝑑𝑡
= 𝜎 (𝑃) 𝑧 (𝑡) + ‖𝑄‖ 𝑧 (𝑡 − 𝜏) , 𝑡 ≥ 𝑡

∗
+ 𝜏 (31)

with𝑦(𝑠) = 𝑧(𝑠) and 𝑠 ∈ [𝑡∗, 𝑡∗+𝜏]. According to the compar-
ison theorem of differential equation, one can obtain

𝑦 (𝑡) ≤ 𝑧 (𝑡) , 𝑡 ≥ 𝑡
∗
+ 𝜏. (32)

We claim that the trivial solution of (31) is unstable.
Suppose that this is not true; then the characteristic equation
associated with (31) given by

𝜆 = 𝜎 (𝑃) + ‖𝑄‖ 𝑒
−𝜆𝜏 (33)

will have a real negative root say 𝜆∗ such that 𝜆∗ = 𝜎(𝑃) +

‖𝑄‖𝑒
−𝜆
∗
𝜏, where 𝑒−𝜆

∗
𝜏
= 𝑒
|𝜆
∗
𝜏|.

So we get

󵄨󵄨󵄨󵄨𝜆
∗󵄨󵄨󵄨󵄨 ≥ ‖𝑄‖ 𝑒

|𝜆
∗
𝜏|
− |𝜎 (𝑃)| . (34)

Thus

1 ≥
‖𝑄‖ 𝑒
|𝜆
∗
𝜏|

|𝜆∗| + |𝜎 (𝑃)|

=
‖𝑄‖ 𝜏 exp (− |𝜎 (𝑃)| 𝜏) exp (󵄨󵄨󵄨󵄨𝜆

∗󵄨󵄨󵄨󵄨 𝜏 + |𝜎 (𝑃) 𝜏|)

|𝜆∗| 𝜏 + |𝜎 (𝑃) 𝜏|
.

(35)

Based on the formula 𝑒𝑥 ≥ 𝑒𝑥 (𝑥 > 0), from (35), we have

1 ≥ (‖𝑄‖ 𝜏𝑒) exp (− |𝜎 (𝑃)| 𝜏) . (36)
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Figure 1: Oscillatory behavior of the solutions: 𝑚𝑢 = 3.5, delays:
(0.5, 0.6, and 0.7), and activation functions: 𝑓(𝑢) = 𝑔(𝑢) = tanh(𝑢).

Inequality (36) contradicts the first inequality of (28).
Therefore, our claim regarding the instability of the trivial
solution is valid. Similarly, consider system (16) in the case
𝜏
1
= 𝜏
2
= 𝜏
3
= 𝜏
∗; we know that the trivial solution is

unstable if the second inequality of (28) holds. Note that
𝜏 ≤ 𝜏

𝑖
≤ 𝜏
∗
(𝑖 = 1, 2, 3). So, the trivial solution of (16) is

unstable when condition (28) holds, implying that the trivial
solution of (15) is unstable. According to Chafee’s criterion,
system (15) generates a limit cycle, suggesting that there is an
oscillating solution of system (15) and therefore system (8).

4. Computer Simulations

We use the equivalent system (15) of (8) for computer
simulation. In Figure 1 both activation functions 𝑓(𝑢) and
𝑔(𝑢) are taken tanh(𝑢).Thus,𝑓󸀠(𝑢) = 𝑔

󸀠
(𝑢) = 4/(𝑒

𝑢
+ 𝑒
−𝑢
)
2

=

1− (tanh(𝑢))2,𝑓󸀠󸀠(𝑢) = 𝑔
󸀠󸀠
(𝑢) = 2(tanh(𝑢))3−2 tanh(𝑢), and

𝑓
󸀠
(0) = 𝑔

󸀠
(0) = 1. We select 𝜇 = 5.5, 𝑎

1
= 0.48, 𝑎

2
= 0.65,

𝑎
3
= 0.78, 𝑏

1
= 0.6, 𝑏

2
= 0.8, 𝑏

3
= 0.9, 𝑐

1
= −0.8,

and 𝑐
2

= −1.8, 𝑐
3

= 0.4. Then the eigenvalues of ma-
trix 𝑃 are −5.8250 ± 1.8620𝑖, −1.7568 ± 2.5151𝑖, −0.0000,
−0.4840, −5.3568, −5.6392, and −8.2087 and the eigenvalues
of matrix 𝑄 are −0.3780 ± 0.6547𝑖, 0.7560, and 0, 0, 0, 0, 0, 0.
Note that the eigenvalue 0.7560 of matrix 𝑄 is larger than
|− 0.4840| = 0.4840. Based onTheorem 3, the trivial solution
of system (15) is unstable.The system generates an oscillating
solution. In order to compare the effect of the time delays,
we change the delays from (0.2, 0.3, and 0.4) to (1, 1.5,
and 2), while keeping the other parameters as shown in
Figure 1. We see that the oscillatory amplitude and frequency
both are changed (see Figure 2). In Figure 3, we keep the
parameter values the same as Figure 2, the activation function
𝑔(𝑢) = tanh(𝑢), and change the activation function 𝑓(𝑢) =
arctan(𝑢). Then 𝑓

󸀠
(𝑢) = 1/(1 + 𝑢

2
) and 𝑓󸀠󸀠(𝑢) = −2𝑢/(1 +
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0 10 20 30 40 50 60 70 80 90 100

0

2

−2
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Figure 2: Oscillatory behavior of the solutions:𝑚𝑢 = 5.5, delays: (1,
1.5, and 2), and activation functions: 𝑓(𝑢) = 𝑔(𝑢) = tanh(𝑢).
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Figure 3: Oscillatory behavior of the solutions: 𝑚𝑢 = 5.5, delays:
(1, 1.5, and 2), and activation functions: 𝑓(𝑢) = arctan(𝑢), 𝑔(𝑢) =
tanh(𝑢).

𝑢
2
)
2. We see that the graph is changed slightly in comparison

with Figure 2. In Figure 4, we set the activation function
𝑓(𝑢) = 1/(1 + 𝑒

−2𝑢
) and 𝑔(𝑢) = (𝑒

−2𝑢
− 1)/(1 + 𝑒

−2𝑢
).

Then 𝑓󸀠(𝑢) = 2𝑒
−2𝑢

/(1 + 𝑒
−2𝑢

)
2, 𝑔󸀠(𝑢) = −4𝑒

−2𝑢
/(1 + 𝑒

−2𝑢
)
2,

𝑓
󸀠󸀠
(𝑢) = 4𝑒

−2𝑢
(2𝑒
−2𝑢

− 1)/(1 + 𝑒
−2𝑢

)
3, and 𝑔󸀠󸀠(𝑢) = 8𝑒

−2𝑢
(1 −

𝑒
−2𝑢

)/(1 + 𝑒
−2𝑢

)
3. Thus 𝑓󸀠(0) = 1/2 and 𝑔

󸀠
(0) = −1. Note

that 𝑓(0) = 1/2 ̸= 0 and 𝑔(0) = −1/2 ̸= 0. When we select
the parameters as follows: 𝜇 = 3.5, 𝑎

1
= 0.18, 𝑎

2
= 0.15,

𝑎
3
= 0.19, 𝑏
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1
= −0.6,

0 10 20 30 40 50 60 70 80 90 100

0

2

−2

(a) solid line: 𝑥1(𝑡), dashed line: 𝑥2(𝑡), and dotted line: 𝑥3(𝑡)

0 10 20 30 40 50 60 70 80 90 100

0

2

−2

(b) solid line: 𝑥4(𝑡), dashed line: 𝑥5(𝑡), and dotted line: 𝑥6(𝑡)

0 10 20 30 40 50 60 70 80 90 100

0

2

−2
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Figure 4: Oscillatory behavior of the solutions: 𝑚𝑢 = 3.5, delays:
(0.5, 0.6, and 0.7), and activation functions:𝑓(𝑢) = 1/(1+exp(−2𝑢)),
𝑔(𝑢) = (exp(−2𝑢) − 1)/(1 + exp(−2𝑢)).

and 𝑐
2
= 0.8, 𝑐

3
= 0.5, time delays are (0.5, 0.6, and 0.7).

The oscillatory solutions also appeared. This means that the
restrictive condition𝑓(0) = 𝑔(0) = 0, 𝑢𝑓(𝑢) > 0, and 𝑢𝑔(𝑢) >
0 for 𝑢 ̸= 0 is only for convenience of the proof.

5. Conclusion

This paper discusses the oscillatory behavior of the solutions
for a three-node networkmodel with discrete and distributed
delays. Two theorems are provided to ensure the existence
of oscillating solutions for the model. Computer simulations
suggested that our theorems are only sufficient conditions.
How to find a necessary condition is still an open problem.
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