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The ability to identify incipient faults at an early stage in the operation of machinery has been demonstrated to provide substantial
value to industry. These benefits for automated, in situ, and online monitoring of machinery, structures, and systems subject to
varying operating conditions are difficult to achieve at present when they are run in operationally constrained environments that
demand uninterrupted operation in this mode. This work focuses on developing a simple algorithm for this problem class; novelty
detection is deployed on feature vectors generated from the cross correlation of vibration signals from sensors mounted on disparate
locations in a power train. The behavior of these signals in a gearbox subject to varying load and speed is expected to remain in a
commensurate state until a change in some physical aspect of the mechanical components, presumed to be indicative of gearbox
failure. Cross correlation will be demonstrated to generate excellent classification results for a gearbox subject to independently
changing load and speed. It eliminates the need to analyze the highly complex dynamics of this system; it generalizes well across
untaught ranges of load and speed; it eliminates the need to identify and measure all predominant time-varying parameters; it is

simple and computationally inexpensive.

1. Introduction

The dynamics of the vibrations generated by a gearbox subject
to changing load and speed are complex and nonlinear.
Faults in bearings, gears, or other aspects of prime movers
can easily be masked by the effects of these state changes
alone when one fails to consider their effects on decision
rules. The detection of faults in this class of machineries
is a growing concern in the literature. In this work, we
adapt a technique from sensor failure analysis to reduce
this present problem’s complexity. A common approach in
detecting failure in sensors employs decision rules based
on the cross correlation of their signals; in broaching this
technique to variable-state machinery, the authors note that
vibrations at disparate locations in a power train should be
correlated to one another (e.g., the spectra of vibrations from
the output shaft of a gearbox are related to those of the
input shaft by the gear ratio of the gearbox). Signals from
disparate locations of a power train may contain similar
vibration from components along the train; for instance,

the load on the gearbox’s bearings is modulated by the
meshing of the gear’s teeth and its vibrations or acoustics will
be apparent at both the input and the output of the gearbox
(and possibly at more distant locations in the train; see [1]).
The cross correlation signal between these vibration signals
should remain commensurate until components of the train
change—a state presumed indicative of faults.

Under this hypothesis, the authors propose deploying
standard novelty detection on feature vectors generated from
the cross correlation signal generated between disparate
vibration sensors. Past efforts by the authors focused on
adapting either novelty-detection techniques or feature vec-
tors in order to address this problem. These algorithms
required the investigators to measure all predominant state
parameters and to include them in the algorithm [1, 2].
While the proposed techniques were shown to work well,
they suffered from various limitations. Some classification
schemes work only for one changing system input parameter
[1]. Others require measurement of a gearbox’s load which
can be either a costly or cumbersome requirement when



an inline load cell needs to be installed on a system not
fitted with it. Finally, the computational complexity of others
requires large processing facilities not typically available
on distributed embedded systems employed in condition
monitoring. The cross correlation technique should eliminate
or mitigate all of these drawbacks. This approach should
provide an excellent means of failure detection in systems
whose dynamics are too complex for traditional approaches
and consequently may extend well beyond the monitoring of
variable load and speed gearboxes.

To validate these conclusions, the necessary theoretical
background is first explored including a review of cross
correlation and how it is presently employed in this field
as well as an overview of other existing approaches for
solving this class of problems. The underlying methodology is
subsequently described, from a description of the employed
mechanical test bench to the details of each of the steps in the
classification problem. Finally, the results are demonstrated
to establish the flexibility of this simple approach.

2. Background

The mathematics of cross correlation is first reviewed fol-
lowed by an overview of related existing techniques.

2.1. Cross Correlation Analysis. Cross correlation analysis
provides a signal representing the measure of the similarity
between two signals as a function of time lag 7, defined as

(Feg)0=| f @at+oan 0
where ® denotes the cross correlation function and * denotes
complex conjugation; similarly, it can be expressed in discrete
form
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It is used extensively in pattern-recognition for speech,
fingerprint and face recognition, automatic target recogni-
tion, and so forth. In these applications, typically one cross
correlates a reference pattern with a test pattern when the
two patterns are expected to lack shift invariance. The cross
correlation signal between two patterns will have a peak at the
shifted value 7 if they have some similarity.

2.2. Cross Correlation of Systems Subject to Common Excita-
tion. In this work, signals from disparate aspects of machin-
ery, under common excitation, are cross correlated in order to
simplify discerning the system’s health when the excitation is
nonstationary. If two linear systems, with impulse response
functions H,(w) and H,(w), are commonly forced with
some function f(t), having equivalent frequency domain
representation of F(w,), the particular solutions for the
systems’ response will be the product of the forcing function
and the system’s impulse response for all w in F(w,); that
is, Y, = H(wy) * Flwy) and Y, = H,(w,) * F(w,).
From elementary Laplace and Fourier transform theory,
it is known that the frequency domain representation of
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the convolution of two signals is the product of their fre-
quency domain representations. Cross correlation is equiv-
alent to the convolution operation except without the folding
operation; as such the frequency domain representation o
the cross correlation of two signals is the product of the
two signal’s frequency domain representations. Since the
linear systems are forced with the same function, their
output signals’ bandwidths overlap and the frequency domain
representation of the cross correlation operation returns a
product of the two system’s impulse response functions and
the forcing function. The impulse response function for each
system is determined by the system’s parameters (e.g., for
a spring, the impulse response function is a function of
the spring’s stiffness, the damping constant, etc.). The cross
correlation of the two systems’ output therefore is a relation
given by the system’s parameters. If any parameters of a
system change, the cross correlation of the two systems’
output will change; it is on this basis that this work is
advanced.

The vibration from a gearbox is inherently nonlinear and
some of the assumptions of the foregoing therefore break
down. Complex pattern-recognition techniques like novelty
detection are engaged to handle these aspects.

Sampled systems are discrete in nature which was not
presumed in the above analysis. The discrete systems under
scrutiny herein are made discrete by sampling the continuous
phenomena. The argumentation of the above is very similar
in discrete form and a direct analogy can be made between
the transforms of discretized form and the continuous form.

2.3. Relevant Cross Correlation Techniques from the Literature.
Cross correlation is used heavily in signal processing for
denoising purposes. Several examples of denoising in the
domain of fault detection can be found in the literature; in
[3], the authors used cross correlation from two proximate
vibration sources for signal-to-noise ratio improvement while
[4] used cross and autocorrelation for denoising. The authors
in [5] exploited the auto- and cross correlation of different
variables for signal processing in developing a fault-detection
technique.

Cross correlation is used in a similar vein as the present
approach in the detection of failed sensors as was the case in
[6] whose authors used cross correlation between two flow
sensors along with neural networks to verify sensor accuracy.
The work in [7] acknowledges the dynamic nature of a motor
run by an adjustable speed drive and the resultant effects
on monitored signals are one of the common factors that
yield erroneous fault tracking and unstable fault detection;
the authors employed matched filtering (i.e., cross correlation
between expected fault signals and actual motor current
signals) the result of which is fed through a statistical
hypothesis-testing fault-detection regime. Statistical-process
monitoring with spectral clustering was used to classify sam-
ples according to differences in correlation among measured
variables in [8]. In [9] cross correlation of the fault-response
echo in electrical-power transmission systems from test-
input excitation was used to detect potentially faulted cables.
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Jiang et al. [10] used the correlation dimension (a type of
fractal dimension) in gearbox fault diagnosis.

More directly related techniques can be found in a
number of other works. For instance, Parlar employed a
similar methodology to that of this thesis in the monitoring
of vibrating screens in [11]. In [12] Napolitano et al. exploited
cross correlation of an airplane’s pitch and yaw state variables
along with neural networks for fault identification in airplane
systems. Rajamani et al. found the cross correlation between
healthy and faulted transformer winding signals that was
used to generate statistical feature vectors for classification
[13]. In [14], Wu and Sun used the cross correlation of
energy performance of a variable-air-volume (VAV) unit in
an HVAC system [15] and the outside temperature as the
criteria to evaluate the VAV health.

Cross correlation is used heavily in this field but the
methodology proposed herein on this particular class of
problems does not appear to exist in the literature.

2.4. Established Techniques. In the literature, there are a num-
ber of other algorithms focused on means other than correla-
tion based fault detection for this complex class of machiner-
ies. Nonlinear principal-component analysis (NLPCA) in
[16], advanced signal processing in [17, 18], adaptive filters in
[19, 20], and adaptations to pattern-recognition techniques
in [21-24] are all well established—each having differing
strengths and weaknesses.

To provide a baseline for comparison for the approach
advanced within, a comparison between a number of related
techniques developed by the present authors will be under-
taken. In [1] the authors explored expansions to the work by
Worden et al. in [25]; Worden et al. suggested that vibration
data from structures be grouped into discrete ranges of
the time-changing parameters whose statistics (mean and
covariance) are regressed or interpolated to develop a health
rule as a function of the time-varying parameters. The
work in [1] applied this approach to data from real gearbox
vibrations along with an augmentation to Worden’s approach
that focused on first whitening the statistical distribution
so that any variant of novelty detection could be employed.
Both techniques were subject to the assumption of normally
distributed data and the double curse of dimensionality, a
phenomenon occurring when there is a need not only to
gather sufficient data to describe a complex high-dimensional
problem space but also to do so for continuous changes
in that problem space (e.g., in the form of changing speed
or load). These initial investigations were conducted with
only one time-changing parameter; in this work, two time-
changing parameters are used (i.e., speed and load). While
a large amount of data has been collected (nearly 20,000
feature vectors generated with ambitious segmentation), they
are insufficient to accurately characterize the behavior of the
gearbox with these approaches due to the double curse of
dimensionality.

In an upcoming work, the present authors suggested the
almost trivial approach of adding a gearbox’s average speed
over a feature vector’s segment to that feature vector. The
results generated with the same experimental data were found

to be excellent; unfortunately, the fault-detection methodol-
ogy does not extend beyond one time-varying parameter. The
confusion eliminated in adding one time-varying parameter
to the feature vector is again reintroduced when another
time-varying parameter is added.

In a different upcoming work, the authors suggest using
the parameters of a discrete state-space model as elements of
the feature vector in the novelty-detection problem [26]. In
a simple view, this state-space model can be regarded as the
transfer function of a gearbox modeled as a torsional spring;
the state-space model’s parameters are ultimately functions
of the physical nature of the gear (i.e., stiffness, damping,
geometric configuration, etc.). These parameters ought to be
insensitive to changes in load and speed and should be highly
indicative of incipient fault states. The model is generated
by assuming that the gearbox’s input speed and load are the
inputs to a MIMO system; the vibration signal at any point
on the machine is used as the output signal and the MIMO
model formed with ARMAX techniques [27]. While the
vibration problem being modeled with this linear state-space
approach is in reality nonlinear, the use of novelty detection
to develop a boundary around a set of these linear models
is shown to provide adequate adaptation to the underlying
nonlinear problem. The approach was shown to eliminate the
double curse of dimensionality and assumption of normally
distributed data. As evidence of the model’s sound nature, the
results demonstrated excellent generalization to speeds and
loads not experienced during training. The only limitations
to the approach are the need to collect speed and load signals
(a potentially costly consideration) and the computationally
intensive nature of the algorithms for generating these mod-
els.

3. Experimental Configuration

This work focuses on the use of the parameters generated
by cross correlating signals from sensors on disparate com-
ponents of a machine. The pattern-recognition problem as
advanced by [28] focuses on first collecting and conditioning
signals (in this case, on a simulation test bench), segmenting
them, and transforming them into n-dimensional feature vec-
tors that are ultimately fed into pattern-recognition solutions.
The steps for this problem instance are described below.

3.1. Apparatus. The fault-detection algorithm proposed
herein was evaluated based on data collected from a gearbox
under realistic load and speed as shown in Figure 1. The test
bench is described in further detail in [29].

The gearbox’s independent load and speed profiles were
affected via a 25 hp and 50 hp AC induction servomotor
ultimately controlled by two Baldor variable frequency drives
(VEDs) with appropriate capacity. This gearbox was a single-
stage reduction spur gearbox from SpectraQuest. Its shaft was
supported by Rexnord ER-10 deep-groove rolling element
ball bearings. Coupling between the motors and gearboxes
was achieved through a combination of rigid shaft couplings
and two zero-backlash alignment-enhancing R + W BK3
Bellows flexible couplings. The entire drive train from the
load to speed motors is shown in Figure 2.



FIGURE 1: Test bench (25 hp motor (left), gear box, 50 hp motor par-
tially obscured with VFDs for motors, control, and data acqusition
below VEDs).

FIGURE 2: Drive train (rigid shaft coupling (top left) turning pinion
shaft with 32 teeth driving a gear with 96 teeth, rigid shaft coupling in
line with torque meter supported by bungee cord, flexible coupling,
and drive motor (bottom right)).

Control and data acquisition were achieved primarily
with a national instruments (NI) PCle-7851-R field pro-
grammable gate array (FPGA) card with 8 channels of analog
input/output and 96 channels of digital input/output. The
control and data acquisition routines were written in Lab-
VIEW code for both the real-time Windows PC and mounted
FPGA card (capable of loop iteration in the nanosecond
range). This PC was further fitted with an NI PCI-4472 card
supporting 8 channels of IEPE acceleration data.

Four accelerometers, sampled at 10 kHz, were fitted on
diverse components of the drive train. One accelerometer was
mounted radially on the bearing of the drive motor, two were
mounted radially and orthogonally to one another on the
output side of the gearbox near the input shaft, and the final
accelerometer was mounted on the input side of the gearbox
near the output shaft. A Lorenz Messtechnik DR-2112-Rinline
torque meter was fitted on the input side of the gearbox and
data were collected from it at 1kHz with the FPGA card.
Tachometer signals from the two motors were first counted
by sampling the TTL pulses at a rate of 40 MHz on the FPGA
card; this count signal was then sampled at 10 kHz and written
to disc.

Control is achieved by using two analog output lines, one
to each of the motors VFDs. A typical speed/load profile
employed during data collection is shown in Figure 3.
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3.2. Faulted Components. The first data set consisted of spur
gears with a gear ratio of 3: 1in a reduction arrangement. Data
were collected by swapping healthy and faulted components;
bearing faults consisted of rolling elements with rough balls, a
chopped ball, and inner and outer race faults of varying sever-
ity. Faulted gear signals were generated through the use of
eccentric gears and two different gears with increasing root-
crack depth (generated by wire electric discharge machining).

An additional set of gears consisting of a ratio of 80: 48
were deployed in order to show the effect of the analyzed tech-
niques on a different set of interesting gear faults including a
gear with both a missing tooth and crack as well as a gear with
teeth with progressively less material.

3.3. Signal Segmentation. Feature vectors are generated from
continuously sampled signals split into meaningful and
coherent intervals. In selecting the size of a signal segment,
one must ensure that there is sufficient data to confirm that
all necessary mechanical behavior is captured and that sub-
sequent segments ensure a coherent comparison (i.e., each
segment should accurately represent the cycle of mechanical
behavior). When monitoring systems experience changes in
state, the problem can become slightly more complex. One
must gather sufficient data to adequately characterize the
feature in question; there might also be a need to minimize
the duration of the interval in order to eliminate large changes
in signal behavior due to changes in system states. This is
particularly true where the feature vectors are sensitive to
the changing states and other means of ensuring accurate
classification are employed (see [1]).

The constraints on segmentation in the problem at hand
are more similar to the steady-state system case. Since the
objective is to seek parameters immune to changes in system
state with cross correlation based feature vectors, the only
concern is the coherence and sufficiency of the segment.
Consequently, concerns over accelerations and higher level
rates of change in a segment from state variables, such as
speed, should provide little impact. These constraints will
be satisfied by using a variable-length period with a fixed
number of shaft rotations (i.e., 15).

3.4. Feature Vectors. Feature parameters are formed from
processing signal segments and are combined together to
form an n-dimensional vector. The authors’ favored approach
in the form autoregressive (AR) models will be considered;
AR models provide a high-dimensional feature vector by
minimizing a signal in the least-squares sense to the n most
representative samples (the parameters of these models have
a strong tie to the frequency characteristics of the signal) (see
[30] for a better background).

3.5. Pattern-Recognition Algorithm. In developing a model
of a machine’s behavior, it is generally only a simple task
to collect data representative of the machine’s healthy state;
collection of data from faulted states is either too difficult
because of the varied number of such states or econom-
ically/operationally infeasible to do so (particularly with
machinery in use in industry). This class-imbalance problem
is typically resolved through the use of novelty detection
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where a decision boundary is fit around exemplars of n-
dimensional vectors derived from system signals that ideally
represent the healthy system state well. During regular
operation, a test pattern is declared as faulted if it falls outside
this boundary and healthy in the contrary case (see [31, 32] for
further information about novelty detection).

Due to its posttraining computational efficiency and ease
of automation through a minimal number of configuration
parameters, Tax’s support vector data descriptor (SVDD) [33]
for novelty detection is preferred by the authors. It provides
many advantages over other traditional techniques [34]. The
SVDD fits target data with a minimal-radius hypersphere in
an augmented space to generate nonconvex irregular decision
boundaries in the normal feature space. The distance from
the boundary is considered the novelty score; positive scores
indicate that tested data fall within “normal behavior” while
negative ones indicate a faulted state.

4. Classification Results

4.1. No Consideration of State. When attempting to detect
faults in a gearbox subject to varying load and speed, the
impact of failing to consider the effects of these parameters

can be severe. The results in Figure4 demonstrate the
consequences of using traditional fault-detection techniques
that do not consider the variable nature of the problem; they
are derived from a standard autoregressive model of order
20 and are fit to the vibration data that was in turn fit to an
SVDD. While the healthy state is adequately characterized,
all of the faulted states are so poorly indicated that it would
be impossible to discern the presence of any of the described
faults. The faults employed were relatively incipient in nature
and one might assume that this approach might detect their
presence later in the fault progression, possibly too close to
catastrophic failure.

4.2. Failure to Consider Load. The vibrations from a gearbox
subject to both load and speed variations must be monitored
with techniques sensitive to both parameters. Including the
average speed of a feature vector’s segment in that segment
results in improved classification error and the earlier detec-
tion of faults as compared to those achieved when no efforts
are made to adjust for time-varying parameters. Figure 5
demonstrates improved results that remain substantially
poor. Severe faults like root cracks, chipped teeth, and outer
race faults are easily detected due to the strength of their
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signals with respect to noise levels and the masking effects
from speed and load variations. Less prominent faults like
eccentric gears and more subtle bearing faults will remain
masked without full consideration of all modal parameters.

4.3. State-Space Based Feature Vectors. Taking full consider-
ation of all predominant time-varying parameters drastically
improves classification. Figure 6 demonstrates that all faults
(subtle and severe) become easily discernible when employ-
ing state-space based feature vectors. The healthy class is
somewhat difficult to classify having an error over 10%; this
error is high and can be reduced via varying the order of
the ARMAX models with a consequential tradeoff in classi-
fication error on faulted states. The analysis in the upcoming
work exposes this approach’s insensitivity to the double curse
of dimensionality and its excellent tendency to generalize
beyond untaught ranges of time-varying parameters [26]. A
more detailed discussion is limited herein but generalities are
provided to facilitate a means of comparison.

4.4. Cross Correlation Model. The cross correlation of vibra-
tion signals from disparate locations on a power train results
in a signal not a feature vector; as discussed, this signal is in
turn fit with an AR model whose parameters are used as the
classification problem’s feature vector. The vibration from the
load motor’s bearing was correlated with the vibration from

the gearbox’s input shaft bearing to generate the cross corre-
lation results discussed. Figure 7 shows the effect of changing
the model order on the classification results and the novelty
score’s distribution with respect to the decision boundary.
Classification on all classes is poor with a low model order but
as the model order increases the classification error drops in
almost all cases. As was the case with state-space based feature
vectors, a higher model order results in poorer classification
error on the healthy class and good results on the faulted
classes. This tradeoff seems present with cross correlation as
there is a gentle increase in the error of the healthy state under
these conditions. Balanced results are achieved with an order
between 30 and 50 as shown in Figure 8.

4.5. Curse of Dimensionality. The double curse of dimension-
ality arises when a large amount of data is not only required to
characterize a high-dimensional system’s behavior but when
more is required due to the system’s time-varying nature.
Figure 9 demonstrates that this cross correlation technique
enjoys a general immunity to the curse but it also demon-
strates that classification results on the healthy training set
can suffer with too little data. State-space based feature
vectors were slightly less susceptible to this phenomenon
[26].

4.6. Generalization. The analysis surrounding Figure 9 and
the double curse of dimensionality is relevant when analyzing
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these variable-state classification problems for generalization.
This figure demonstrates that, with only limited training
data from a select range of speed and load, cross correlation
can be used to represent a gearbox’s behavior in a manner
not sensitive to these time-varying parameters. To analyze
this effect further, consider classification results achieved
when training is conducted with data from profiles shown in
Figure 3 but with test data from Figure 10 (i.e., different accel-
erations on load and speed). Figures 11 and 12 demonstrate
that the approach has excellent generalization when varied
acceleration is used in speed and load; healthy and faulted
data remain easily detected.

4.7. Results from 80:48 Gearbox Arrangement. Figure 13
demonstrates that cross correlation works well with different
mechanical parameters, that is, a less drastic gear ratio of

80:48. The gear teeth faults in this data set are fairly severe
with concurring results in the form of novelty scores spaced
a far distance from the decision boundary.

4.8. Sensitivity Analysis: Segmentation Interval. Figure 14
demonstrates the effects of the length of the segmentation
interval defined by a fixed number of (input) shaft rotations.
There is a general trend of reduction in the classification error
as the segmentation interval increases, particularly for the
eccentric-gear fault; for most classes of fault, however, the
change is not as dramatic. Classification is generally poor
while the number of input shaft rotations falls below the gear
ratio but becomes desirable after the interval rises to above
3-5 times the gear ratio. This seems reasonable as the output
shaft will not have undergone a complete revolution until
the former condition is met; after the latter condition is met,
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FIGURE 15: Algorithm block diagram for practical online application.

sufficient data to characterize the system’s variations in a noisy
environment will have been captured. Part (b) of this figure
exposes a fairly consistent level novelty score distribution,
suggesting that the improvement in classification error is not
from a reduction in its variance but, instead, by a change in
the average distance from the novelty boundary.

5. Automation

The block diagram in Figure 15 revises the steps taken in
the proposed methodology as would be required in a more
practical application. The segmentation interval could first
be set to a value of 5 times the gear ratio. Vibration data
would then be collected over these segments. The appropriate
choice of the AR model order might vary from application to
application; an online means of determining the appropriate
order is therefore desirable. Since AR models are built by
a least-squares fit of a signal’s data samples, the choice of
order could be selected by iterating through possible choices
of order and using the one with the smallest R* value.
Training data could then be collected over a number of
segments fit to AR models which would in turn be stored until

a certain amount had been collected at which point the
SVDD boundary would be calculated. The completion of the
SVDD training would be followed by online monitoring of
the gearbox under scrutiny.

6. Conclusions

By cross correlating the signal from vibration sensors on
disparate locations of a power train and processing the
resultant signal into a feature vector for novelty detection, a
powerful technique for classifying time-varying classification
problems like fault detection in variable load and speed
gearboxes has been demonstrated. The technique removes
the need to analyze the complex nonlinear dynamics of the
problem. It eliminates the need for costly sensors, like inline
torque sensors, and the difficulties in deploying them in
machinery not originally fitted for their use. The approach
is computationally efficient and retains the excellent fault-
detection abilities of other techniques under review. It also
generalizes well across untrained state parameters. Through
an established technique in sensor validation, the approach
has been shown to provide a powerful means of reducing a
complex condition monitoring problem to a near-trivial one.
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