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We introduce generalized Lorentz difference sequence spaces 𝑑(V, Δ, 𝑝). Also we study some topologic properties of this space and
obtain some inclusion relations.

1. Introduction

Throughout this work, N,R, and C denote the set of positive
integers, real numbers, and complex numbers, respectively.

The notion of difference sequence space was introduced
by Kızmaz in [1] in 1981 as follows:

𝑋 (Δ) = {𝑥 = {𝑥𝑘} ∈ 𝑤 : (Δ𝑥𝑘) ∈ 𝑋} (1)

for𝑋 = ℓ∞, 𝑐, 𝑐0, where Δ𝑥𝑘 = 𝑥𝑘 − 𝑥𝑘+1 for all 𝑘 ∈ N. Et and
Çolak in [2] defined the sequence space

𝑋(Δ
𝑚
) = {𝑥 = {𝑥𝑘} ∈ 𝑤 : (Δ

𝑚
𝑥𝑘) ∈ 𝑋} (2)

for𝑋 = ℓ∞, 𝑐, 𝑐0, where𝑚 ∈ N, Δ
0
𝑥𝑘 = {𝑥𝑘},Δ𝑥𝑘 = 𝑥𝑘−𝑥𝑘+1,

Δ
𝑚
𝑥𝑘 = Δ

𝑚−1
𝑥𝑘 − Δ

𝑚−1
𝑥𝑘+1 = ∑

𝑚

V=1(−1)
V
(
𝑚
V ) 𝑥𝑘+V for all 𝑘 ∈

N, and showed that this space is a Banach space with norm

‖𝑥‖Δ =

𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨 +
󵄩󵄩󵄩󵄩Δ
𝑚
𝑥
󵄩󵄩󵄩󵄩∞. (3)

Subsequently difference sequence spaces has been discussed
in Ahmad and Mursaleen [3], Malkowsky and Parashar [4],
Et and Basarir [5], and others.

Let (𝐸, ‖⋅‖) be aBanach space.TheLorentz sequence space
𝑙(𝑝, 𝑞, 𝐸) (or 𝑙𝑝,𝑞(𝐸)) for 1 ≤ 𝑝, 𝑞 ≤ ∞ is the collection of all
sequences {𝑎𝑖} ∈ 𝑐0(𝐸) such that

󵄩󵄩󵄩󵄩{𝑎𝑖}
󵄩󵄩󵄩󵄩𝑝,𝑞 =

{{{{{{{{

{{{{{{{{

{

(

∞

∑

𝑖=1

𝑖
𝑞/𝑝−1󵄩󵄩󵄩󵄩󵄩

𝑎𝜙(𝑖)
󵄩󵄩󵄩󵄩󵄩

𝑞

)

1/𝑞

for 1 ≤ 𝑝 ≤ ∞, 1 ≤ 𝑞 < ∞

sup
𝑖

𝑖
1/𝑝 󵄩󵄩󵄩󵄩󵄩

𝑎𝜙(𝑖)
󵄩󵄩󵄩󵄩󵄩

for 1 ≤ 𝑝 < ∞, 𝑞 = ∞

(4)

is finite, where {‖𝑎𝜙(𝑖)‖} is nonincreasing rearrangement of
{‖𝑎𝑖‖} (we can interpret that the decreasing rearrangement
{‖𝑎𝜙(𝑖)‖} is obtained by rearranging {‖𝑎𝑖‖} in decreasing
order). This space was introduced by Miyazaki in [6] and
examined comprehensively by Kato in [7].

A weight sequence V = {V(𝑖)} is a positive decreasing
sequence such that V(1) = 1, lim𝑖→∞V(𝑖) = 0 and
lim𝑖→∞𝑉(𝑖) = ∞, where 𝑉(𝑖) = ∑𝑖

𝑛=1
V(𝑛) for every 𝑖 ∈

N. Popa [8] defined the generalized Lorentz sequence space
𝑑(V, 𝑝) for 0 < 𝑝 < ∞ as follows:

𝑑 (V, 𝑝) =
{

{

{

𝑥 = {𝑥𝑖} ∈ 𝑤 : ‖𝑥‖V,𝑝

= sup
𝜋

(

∞

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑥𝜋(𝑖)
󵄨󵄨󵄨󵄨
𝑝V (𝑖))

1/𝑝

< ∞
}

}

}

,

(5)
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where 𝜋 ranges over all permutations of the positive integers
and V = {V(𝑖)} is a weight sequence. It is known that 𝑑(V, 𝑝) ⊂
𝑐0 and hence for each 𝑥 ∈ 𝑑(V, 𝑝) there exists a nonincreasing
rearrangement {𝑥∗} = {𝑥∗

𝑖
} of 𝑥 and

‖𝑥‖V,𝑝 = (

∞

∑

𝑛=1

󵄨󵄨󵄨󵄨𝑥
∗

𝑖

󵄨󵄨󵄨󵄨
𝑝V (𝑖))

1/𝑝

(6)

(see [8, 9]).
Let (𝑋, ‖ ⋅ ‖) be a Banach space and let V = {V(𝑛)} be a

weight sequence.We introduce the vector-valued generalized
Lorentz difference sequence space 𝑑(V, Δ, 𝑝) for 0 < 𝑝 <
∞. The space 𝑑(V, Δ, 𝑝) is the collection of all 𝑋-valued 0-
sequences {𝑥𝑛} ({𝑥𝑛} ∈ 𝑐0{𝑋}) such that

(

∞

∑

𝑛=1

[
󵄩󵄩󵄩󵄩󵄩
Δ𝑥𝜙(𝑛)

󵄩󵄩󵄩󵄩󵄩
]
𝑝

V (𝑛))
1/𝑝

(7)

is finite, where {‖Δ𝑥𝜙(𝑛)‖} is nonincreasing rearrangement of
{‖Δ𝑥𝑛‖} and Δ𝑥𝜙(𝑛) = 𝑥𝜙(𝑘) − 𝑥𝜙(𝑘+1) for all 𝑘 ∈ N.

We will need the following lemmas.

Lemma 1 (see [10]). Let {𝑐∗
𝑖
} and {∗𝑐

𝑖
} be the nonincreasing

and nondecreasing rearrangements of a finite sequence {𝑐𝑖}1≤𝑖≤𝑛
of positive numbers, respectively. Then for two sequences
{𝑎𝑖}1≤𝑖≤𝑛 and {𝑏𝑖}1≤𝑖≤𝑛 of positive numbers we have

∑

𝑖

𝑎
∗

𝑖
⋅
∗
𝑏𝑖 ≤ ∑

𝑖

𝑎𝑖 ⋅ 𝑏𝑖 ≤ ∑

𝑖

𝑎
∗

𝑖
⋅ 𝑏
∗

𝑖
. (8)

Lemma 2 (see [7]). Let {𝑥(𝜇)
𝑖
} be an𝑋-valued double sequence

such that lim𝑖→∞𝑥
(𝜇)

𝑖
= 0 for each 𝜇 ∈ N and let {𝑥𝑖} be an

𝑋-valued sequence such that lim𝜇→∞𝑥
(𝜇)

𝑖
= 𝑥𝑖 (uniformly in

𝑖). Then lim𝑖→∞𝑥𝑖 = 0 and for each 𝑖 ∈ N

󵄩󵄩󵄩󵄩󵄩
𝑥𝜙(𝑖)

󵄩󵄩󵄩󵄩󵄩
≤ lim
𝜇→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
(𝜇)

𝜙𝜇(𝑖)

󵄩󵄩󵄩󵄩󵄩󵄩
, (9)

where {‖𝑥𝜙(𝑖)‖} and {‖𝑥
(𝜇)

𝜙𝜇(𝑖)
‖}𝑖 are the nonincreasing rearrange-

ments of {‖𝑥𝑖‖} and {‖𝑥
(𝜇)

𝑖
‖}
𝑖
, respectively.

2. Main Results

Theorem 3. The space 𝑑(V, Δ, 𝑝) for 0 < 𝑝 < ∞ is a linear
space over the field 𝐾 = R or C.

Proof. Let 𝑥, 𝑦 ∈ 𝑑(V, Δ, 𝑝) and let {‖Δ𝑥𝜙(𝑛)‖}, {‖Δ𝑦𝜂(𝑛)‖} and
{‖Δ𝑥𝜓(𝑛) + Δ𝑦𝜓(𝑛)‖} be the nonincreasing rearrangements of

the sequences {‖Δ𝑥𝑛‖}, {‖Δ𝑦𝑛‖} and {‖Δ𝑥𝑛 + Δ𝑦𝑛‖}, respec-
tively. Since V is nonincreasing, by Lemma 1 we have

∞

∑

𝑛=1

󵄩󵄩󵄩󵄩󵄩
Δ𝑥𝜓(𝑛) + Δ𝑦𝜓(𝑛)

󵄩󵄩󵄩󵄩󵄩

𝑝

V (𝑛)

≤ 𝐷

∞

∑

𝑛=1

(
󵄩󵄩󵄩󵄩󵄩
Δ𝑥𝜓(𝑛)

󵄩󵄩󵄩󵄩󵄩

𝑝

V (𝑛) +
󵄩󵄩󵄩󵄩󵄩
Δ𝑦𝜓(𝑛)

󵄩󵄩󵄩󵄩󵄩

𝑝

V (𝑛))

≤ 𝐷{

∞

∑

𝑛=1

󵄩󵄩󵄩󵄩󵄩
Δ𝑥𝜙(𝑛)

󵄩󵄩󵄩󵄩󵄩

𝑝

V (𝑛) +
∞

∑

𝑛=1

󵄩󵄩󵄩󵄩󵄩
Δ𝑦𝜂(𝑛)

󵄩󵄩󵄩󵄩󵄩

𝑝

V (𝑛)}

< ∞,

(10)

where𝐷 = max{1, 2𝑝−1}. Let 𝛼 ∈ 𝐾. Hence we get

∞

∑

𝑛=1

󵄩󵄩󵄩󵄩󵄩
Δ(𝛼𝑥)𝜙(𝑛)

󵄩󵄩󵄩󵄩󵄩

𝑝

V (𝑛) =
∞

∑

𝑛=1

󵄩󵄩󵄩󵄩󵄩
𝛼Δ𝑥𝜙(𝑛)

󵄩󵄩󵄩󵄩󵄩

𝑝

V (𝑛)

= |𝛼|
𝑝

∞

∑

𝑛=1

󵄩󵄩󵄩󵄩󵄩
Δ𝑥𝜙(𝑛)

󵄩󵄩󵄩󵄩󵄩

𝑝

V (𝑛)

< ∞.

(11)

This shows that 𝑥 + 𝑦 ∈ 𝑑(V, Δ, 𝑝), 𝛼𝑥 ∈ 𝑑(V, Δ, 𝑝) and so
𝑑(V, Δ, 𝑝) is a linear space.

Theorem 4. The space 𝑑(V, Δ, 𝑝) for 1 ≤ 𝑝 < ∞ is normed
space with the norm

‖𝑥‖V,Δ,𝑝 =
󵄩󵄩󵄩󵄩󵄩
𝑥𝜙(1)

󵄩󵄩󵄩󵄩󵄩
+ (

∞

∑

𝑛=1

󵄩󵄩󵄩󵄩󵄩
Δ𝑥𝜙(𝑛)

󵄩󵄩󵄩󵄩󵄩

𝑝

V(𝑛))
1/𝑝

, (12)

where {‖Δ𝑥𝜙(𝑛)‖} denotes the nonincreasing rearrangements of
{‖Δ𝑥𝑛‖}.

Proof. It is clear that ‖0‖V,Δ,𝑝 = 0. Let ‖𝑥‖V,Δ,𝑝 = 0. Then we
have 𝑥𝜙(1) = 0 and Δ𝑥𝜙(𝑘) = 𝑥𝜙(𝑘) − 𝑥𝜙(𝑘+1) = 0 for all 𝑘 ∈ N.
Hence we get 𝑥 = 0.

Let 𝑥, 𝑦 ∈ 𝑑(V, Δ, 𝑝). Since weight sequence V is decreas-
ing, by Lemma 1 we have

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩V,Δ,𝑝

=
󵄩󵄩󵄩󵄩󵄩
𝑥𝜓(1) + 𝑦𝜓(1)

󵄩󵄩󵄩󵄩󵄩
+ (

∞

∑

𝑛=1

󵄩󵄩󵄩󵄩󵄩
Δ𝑥𝜓(𝑛) + Δ𝑦𝜓(𝑛)

󵄩󵄩󵄩󵄩󵄩

𝑝

V (𝑛))
1/𝑝

≤
󵄩󵄩󵄩󵄩󵄩
𝑥𝜓(1)

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑦𝜓(1)

󵄩󵄩󵄩󵄩󵄩
+ (

∞

∑

𝑛=1

󵄩󵄩󵄩󵄩󵄩
Δ𝑥𝜓(𝑛)

󵄩󵄩󵄩󵄩󵄩

𝑝

V (𝑛))
1/𝑝

+ (

∞

∑

𝑛=1

󵄩󵄩󵄩󵄩󵄩
Δ𝑦𝜓(𝑛)

󵄩󵄩󵄩󵄩󵄩

𝑝

V (𝑛))
1/𝑝
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≤
󵄩󵄩󵄩󵄩󵄩
𝑥𝜙(1)

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑦𝜂(1)

󵄩󵄩󵄩󵄩󵄩
+ (

∞

∑

𝑛=1

󵄩󵄩󵄩󵄩󵄩
Δ𝑥𝜙(𝑛)

󵄩󵄩󵄩󵄩󵄩

𝑝

V (𝑛))
1/𝑝

+ (

∞

∑

𝑛=1

󵄩󵄩󵄩󵄩󵄩
Δ𝑦𝜂(𝑛)

󵄩󵄩󵄩󵄩󵄩

𝑝

V (𝑛))
1/𝑝

= ‖𝑥‖V,Δ,𝑝 +
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩V,Δ,𝑝,

(13)

where {‖Δ𝑥𝜙(𝑛)‖}, {‖Δ𝑦𝜂(𝑛)‖} and {‖Δ𝑥𝜓(𝑛) + Δ𝑦𝜓(𝑛)‖} denote
the nonincreasing rearrangements of {‖Δ𝑥𝑛‖}, {‖Δ𝑦𝑛‖} and
{‖Δ𝑥𝑛 + Δ𝑦𝑛‖}, respectively.

Let 𝜆 be an element in𝐾 and let 𝑥 be a vector in 𝑑(V, Δ, 𝑝).
Hence we have

‖𝜆𝑥‖V,Δ,𝑝 =
󵄩󵄩󵄩󵄩󵄩
(𝜆𝑥)𝜙(1)

󵄩󵄩󵄩󵄩󵄩
+ (

∞

∑

𝑛=1

󵄩󵄩󵄩󵄩󵄩
Δ(𝜆𝑥)𝜙(𝑛)

󵄩󵄩󵄩󵄩󵄩

𝑝

V (𝑛))
1/𝑝

= |𝜆|
󵄩󵄩󵄩󵄩󵄩
𝑥𝜙(1)

󵄩󵄩󵄩󵄩󵄩
+ |𝜆| (

∞

∑

𝑛=1

󵄩󵄩󵄩󵄩󵄩
Δ𝑥𝜙(𝑛)

󵄩󵄩󵄩󵄩󵄩

𝑝

V (𝑛))
1/𝑝

= |𝜆| ‖𝑥‖V,Δ,𝑝.

(14)

Theorem 5. The space 𝑑(V, Δ, 𝑝) for 1 ≤ 𝑝 < ∞ is complete
with respect to its norm.

Proof. Let {𝑥(𝑠)} be an arbitrary Cauchy sequence in 𝑑(V, Δ, 𝑝)
with 𝑥(𝑠) = {𝑥(𝑠)

𝑛
}
∞

𝑛=1
for all 𝑠 ∈ N. Then we have

lim
𝑠,𝑡→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
(𝑠)
− 𝑥
(𝑡)󵄩󵄩󵄩󵄩󵄩V,Δ,𝑝

= 0. (15)

Hence we obtain lim𝑠,𝑡→∞‖Δ𝑥
(𝑠)

𝜋𝑠,𝑡(𝑛)
− Δ𝑥
(𝑡)

𝜋𝑠,𝑡(𝑛)
‖ = 0 for each

𝑛 ∈ N and so {𝑥(𝑠)
𝑛
}, for a fixed 𝑛 ∈ N, is a Cauchy sequence in

𝑋.
Then, there exists 𝑥𝑛 ∈ 𝑋 such that 𝑥(𝑠)

𝑛
→ 𝑥𝑛 as 𝑠 → ∞.

Let 𝑥 = {𝑥𝑛}. Since lim𝑛→∞𝑥
(𝑠)

𝑛
= 0 for each 𝑠 ∈ N, by

Lemma 2 we have lim𝑛→∞𝑥𝑛 = 0. Therefore we can choose
the nonincreasing rearrangement {‖Δ𝑥𝜋𝑡(𝑛) − Δ𝑥

(𝑡)

𝜋𝑡(𝑛)
‖}𝑛 of

{‖Δ𝑥𝑛 − Δ𝑥
(𝑡)

𝑛
‖}
𝑛
. Also, for an arbitrary 𝜀 > 0 there exists

𝑁 ∈ N such that
󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
(𝑠)

𝜋𝑠,𝑡(1)
− 𝑥
(𝑡)

𝜋𝑠,𝑡(1)

󵄩󵄩󵄩󵄩󵄩󵄩

+ (

∞

∑

𝑛=1

󵄩󵄩󵄩󵄩󵄩󵄩
Δ𝑥
(𝑠)

𝜋𝑠,𝑡(𝑛)
− Δ𝑥
(𝑡)

𝜋𝑠,𝑡(𝑛)

󵄩󵄩󵄩󵄩󵄩󵄩

𝑝

V(𝑛))
1/𝑝

< 𝜀

(16)

for 𝑠, 𝑡 > 𝑁. Hence we get

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
(𝑠)

𝜋𝑠,𝑡(1)
− 𝑥
(𝑡)

𝜋𝑠,𝑡(1)

󵄩󵄩󵄩󵄩󵄩󵄩
< 𝜀,

∞

∑

𝑛=1

󵄩󵄩󵄩󵄩󵄩󵄩
Δ𝑥
(𝑠)

𝜋𝑠,𝑡(𝑛)
− Δ𝑥
(𝑡)

𝜋𝑠,𝑡(𝑛)

󵄩󵄩󵄩󵄩󵄩󵄩

𝑝

V (𝑛) < 𝜀𝑝
(17)

for 𝑠, 𝑡 > 𝑁. Let 𝑡 be an arbitrary positive integer with 𝑡 > 𝑁
and fixed. If we put

Δ𝑦
(𝑠)

𝑛
= Δ𝑥
(𝑠)

𝑛
− Δ𝑥
(𝑡)

𝑛
, Δ𝑦𝑛 = Δ𝑥𝑛 − Δ𝑥

(𝑡)

𝑛
, (18)

then we have

lim
𝑛→∞

Δ𝑦
(𝑠)

𝑛
= 0 for each 𝑠 ∈ N,

lim
𝑠→∞

Δ𝑦
(𝑠)

𝑛
= Δ𝑦𝑛 (uniformly in 𝑛) .

(19)

Thus by Lemma 2 we get

󵄩󵄩󵄩󵄩󵄩
Δ𝑦𝜙(𝑛)

󵄩󵄩󵄩󵄩󵄩
≤ lim
𝑠→∞

󵄩󵄩󵄩󵄩󵄩
Δ𝑦
(𝑠)

𝜙𝑠(𝑛)

󵄩󵄩󵄩󵄩󵄩 (20)

for each 𝑛 ∈ N; that is,

󵄩󵄩󵄩󵄩󵄩
Δ𝑥𝜋𝑡(𝑛)

− Δ𝑥
(𝑡)

𝜋𝑡(𝑛)

󵄩󵄩󵄩󵄩󵄩
≤ lim
𝑠→∞

󵄩󵄩󵄩󵄩󵄩󵄩
Δ𝑥
(𝑠)

𝜋𝑠,𝑡(𝑛)
− Δ𝑥
(𝑡)

𝜋𝑠,𝑡(𝑛)

󵄩󵄩󵄩󵄩󵄩󵄩
(21)

for each 𝑛 ∈ N. Hence, by (17), (21) we get

󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝑥
(𝑡)󵄩󵄩󵄩󵄩󵄩V,Δ,𝑝

=
󵄩󵄩󵄩󵄩󵄩
𝑥𝜋𝑡(1)

− 𝑥
(𝑡)

𝜋𝑡(1)

󵄩󵄩󵄩󵄩󵄩

+ (

∞

∑

𝑛=1

[
󵄩󵄩󵄩󵄩󵄩
Δ𝑥𝜋𝑡(𝑛)

− Δ𝑥
(𝑡)

𝜋𝑡(𝑛)

󵄩󵄩󵄩󵄩󵄩
]
𝑝

V(𝑛))
1/𝑝

≤
󵄩󵄩󵄩󵄩󵄩
𝑥𝜋𝑡(1)

− 𝑥
(𝑡)

𝜋𝑡(1)

󵄩󵄩󵄩󵄩󵄩

+ (

∞

∑

𝑛=1

( lim
𝑠→∞

󵄩󵄩󵄩󵄩󵄩󵄩
Δ𝑥
(𝑠)

𝜋𝑠,𝑡(𝑛)
− Δ𝑥
(𝑡)

𝜋𝑠,𝑡(𝑛)

󵄩󵄩󵄩󵄩󵄩󵄩
)

𝑝

V(𝑛))
1/𝑝

=
󵄩󵄩󵄩󵄩󵄩
𝑥𝜋𝑡(1)

− 𝑥
(𝑡)

𝜋𝑡(1)

󵄩󵄩󵄩󵄩󵄩

+ lim
𝑠→∞

(

∞

∑

𝑛=1

(
󵄩󵄩󵄩󵄩󵄩󵄩
Δ𝑥
(𝑠)

𝜋𝑠,𝑡(𝑛)
− Δ𝑥
(𝑡)

𝜋𝑠,𝑡(𝑛)

󵄩󵄩󵄩󵄩󵄩󵄩
)
𝑝

V(𝑛))
1/𝑝

< 2𝜀.

(22)

Also, since 𝑑(V, Δ, 𝑝) is a linear space we have {𝑥𝑛} = {𝑥𝑛 −
𝑥
(𝑁)

𝑛
} + {𝑥

(𝑁)

𝑛
} ∈ 𝑑(V, Δ, 𝑝). Hence the space 𝑑(V, Δ, 𝑝) is

complete with respect to its norm.

Theorem 6. Let 0 < 𝑝 < ∞. Then, the inclusion 𝑑(V, 𝑝) ⊂
𝑑(V, Δ, 𝑝) holds.

Proof. Let 𝑥 ∈ 𝑑(V, 𝑝). Then we have

(

∞

∑

𝑛=1

󵄩󵄩󵄩󵄩󵄩
𝑥𝜙(𝑛)

󵄩󵄩󵄩󵄩󵄩

𝑝

V(𝑛))
1/𝑝

< ∞, (23)
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where {‖𝑥𝜙(𝑛)‖} denotes the nonincreasing rearrangements of
{‖𝑥𝑛‖}. Since V(𝑛) is decreasing, by Lemma 1 we get

(

∞

∑

𝑛=1

󵄩󵄩󵄩󵄩󵄩
Δ𝑥𝜓(𝑛)

󵄩󵄩󵄩󵄩󵄩

𝑝

V (𝑛))

=

∞

∑

𝑛=1

󵄩󵄩󵄩󵄩󵄩
𝑥𝜓(𝑛) − 𝑥𝜓(𝑛+1)

󵄩󵄩󵄩󵄩󵄩

𝑝

V (𝑛)

≤ 𝐾

∞

∑

𝑛=1

(
󵄩󵄩󵄩󵄩󵄩
𝑥𝜓(𝑛)

󵄩󵄩󵄩󵄩󵄩

𝑝

+
󵄩󵄩󵄩󵄩󵄩
𝑥𝜓(𝑛+1)

󵄩󵄩󵄩󵄩󵄩

𝑝

) V (𝑛)

≤ 𝐾(

∞

∑

𝑛=1

󵄩󵄩󵄩󵄩󵄩
𝑥𝜙(𝑛)

󵄩󵄩󵄩󵄩󵄩

𝑝

V (𝑛) +
∞

∑

𝑛=1

󵄩󵄩󵄩󵄩󵄩
𝑥𝜙(𝑛+1)

󵄩󵄩󵄩󵄩󵄩

𝑝

V (𝑛))

< ∞,

(24)

where {‖Δ𝑥𝜓(𝑛)‖} denotes the nonincreasing rearrangements
of {‖Δ𝑥𝑛‖} and 𝐾 = max{1, 2𝑝−1}. This completes the proof.

Theorem 7. If 1 ≤ 𝑝 < 𝑞 < ∞, then 𝑑(V, Δ, 𝑝) ⊂ 𝑑(V, Δ, 𝑞).

Proof. Let 𝑥 ∈ 𝑑(V, Δ, 𝑝). Since V(𝑛) is decreasing we have

(

∞

∑

𝑛=1

󵄩󵄩󵄩󵄩󵄩
Δ𝑥𝜙(𝑛)

󵄩󵄩󵄩󵄩󵄩

𝑝

V(𝑛))
1/𝑝

≥ (

𝑘

∑

𝑛=1

󵄩󵄩󵄩󵄩󵄩
Δ𝑥𝜙(𝑛)

󵄩󵄩󵄩󵄩󵄩

𝑝

V(𝑛))
1/𝑝

≥
󵄩󵄩󵄩󵄩󵄩
Δ𝑥𝜙(𝑘)

󵄩󵄩󵄩󵄩󵄩
(

𝑘

∑

𝑛=1

V(𝑛))
1/𝑝

≥
󵄩󵄩󵄩󵄩󵄩
Δ𝑥𝜙(𝑘)

󵄩󵄩󵄩󵄩󵄩
(V(𝑘))1/𝑝𝑘1/𝑝

(25)

for every 𝑘 ∈ N. Hence we get
󵄩󵄩󵄩󵄩󵄩
Δ𝑥𝜙(𝑘)

󵄩󵄩󵄩󵄩󵄩

≤ (V(𝑘))−1/𝑝𝑘−1/𝑝(
󵄩󵄩󵄩󵄩󵄩
Δ𝑥𝜙(1)

󵄩󵄩󵄩󵄩󵄩
+

∞

∑

𝑛=1

󵄩󵄩󵄩󵄩󵄩
Δ𝑥𝜙(𝑛)

󵄩󵄩󵄩󵄩󵄩

𝑝

V(𝑛))
1/𝑝

≤ (V(𝑘))−1/𝑝‖𝑥‖V,Δ,𝑝

(26)

for every 𝑘 ∈ N. Thus
∞

∑

𝑛=1

󵄩󵄩󵄩󵄩󵄩
Δ𝑥𝜙(𝑛)

󵄩󵄩󵄩󵄩󵄩

𝑞

V (𝑛)

=

∞

∑

𝑛=1

󵄩󵄩󵄩󵄩󵄩
Δ𝑥𝜙(𝑛)

󵄩󵄩󵄩󵄩󵄩

𝑞−𝑝󵄩󵄩󵄩󵄩󵄩
Δ𝑥𝜙(𝑛)

󵄩󵄩󵄩󵄩󵄩

𝑝

V (𝑛)

≤

∞

∑

𝑛=1

((V(𝑛))−1/𝑝‖𝑥‖V,Δ,𝑝)
𝑞−𝑝󵄩󵄩󵄩󵄩󵄩

Δ𝑥𝜙(𝑛)
󵄩󵄩󵄩󵄩󵄩

𝑝

V (𝑛)

≤ (‖𝑥‖V,Δ,𝑝)
𝑞−𝑝
∞

∑

𝑛=1

󵄩󵄩󵄩󵄩󵄩
Δ𝑥𝜙(𝑛)

󵄩󵄩󵄩󵄩󵄩

𝑝

V (𝑛)

< ∞.

(27)

This implies that 𝑥 ∈ 𝑑(V, Δ, 𝑞).

3. Conclusion

If we put Δ𝑚𝑥 instead of Δ𝑥, where 𝑚 ∈ N and Δ0𝑥𝑘 =
{𝑥𝑘}, Δ𝑥𝑘 = 𝑥𝑘 − 𝑥𝑘+1, Δ

𝑚
𝑥𝑘 = Δ

𝑚−1
𝑥𝑘 − Δ

𝑚−1
𝑥𝑘+1 =

∑
𝑚

V=1(−1)
V
(
𝑚
V ) 𝑥𝑘+V for all 𝑘 ∈ N in the definition of𝑑(V, Δ, 𝑝),

we obtain generalized Lorentz difference sequence space
𝑑(V, Δ𝑚, 𝑝) of order 𝑚. It can be shown that the sequence
space 𝑑(V, Δ𝑚, 𝑝) is a Banach space with norm

‖𝑥‖V,Δ𝑚 ,𝑝 =

𝑚

∑

𝑛=1

󵄩󵄩󵄩󵄩󵄩
𝑥𝜙(𝑛)

󵄩󵄩󵄩󵄩󵄩
+ (

∞

∑

𝑛=1

󵄩󵄩󵄩󵄩󵄩
Δ
𝑚
𝑥𝜙(𝑛)

󵄩󵄩󵄩󵄩󵄩

𝑝

V(𝑛))
1/𝑝

, (28)

where {‖Δ𝑚𝑥𝜙(𝑛)‖} denotes the nonincreasing rearrange-
ments of {‖Δ𝑚𝑥𝑛‖} and properties in this work.
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