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We consider the three-dimensional Boussinesq equations and obtain some regularity criteria via the velocity gradient (or the
vorticity, or the deformation tensor) and the temperature gradient.

1. Introduction

Consider the following three-dimensional (3D) Boussinesq
equations:

u
𝑡
+ (u ⋅ ∇)u − Δu + ∇𝜋 = 𝜃e

3
,

𝜃
𝑡
+ (u ⋅ ∇) 𝜃 − Δ𝜃 = 0,

∇ ⋅ u = 0,

u (𝑥, 0) = u
0
, 𝜃 (𝑥, 0) = 𝜃

0
.

(1)

Here, u = (𝑢
1
(𝑥, 𝑡), 𝑢

2
(𝑥, 𝑡), 𝑢

3
(𝑥, 𝑡)) is the fluid velocity,

𝜋 = 𝜋(𝑥, 𝑡) is a scalar pressure, and 𝜃 = 𝜃(𝑥, 𝑡) ≥ 0 is the
temperature, whileu

0
and 𝜃
0
are the prescribed initial velocity

and temperature, respectively.
When 𝜃 = 0, (1) reduces to the incompressible Navier-

Stokes equations. The regularity of its weak solutions and
the existence of global strong solutions are challenging open
problems; see [1–3]. Initialed by [4, 5], there have been a lot of
literatures devoted to finding sufficient conditions to ensure
the smoothness of the solutions; see [6–18] and so forth. Since
the convective terms are similar in Navier-Stokes equations
and Boussinesq equations, the authors also consider the
regularity conditions for (1); see [19–23] and so forth.

Motivated by [7], we will consider the regularity criteria
for (1) and extend the result of [7] to the case of Boussinesq
equations.

Before stating the precise result, let us recall the weak
formulation of (1).

Definition 1. Let u
0
∈ 𝐿
2
(R3), 𝜃

0
∈ 𝐿
1
∩ 𝐿
∞
(R3), and 𝑇 > 0.

A measurable pair (u, 𝜃) is said to be a weak solution of (1) in
(0, 𝑇), provided that

(1) (u, 𝜃) ∈ 𝐿
∞
(0, 𝑇; 𝐿

2
(R3)) ∩ 𝐿

2
(0, 𝑇;𝐻

1
(R3)), 𝜃 ∈

𝐿
∞
(0, 𝑇; 𝐿1 ∩ 𝐿∞(R3));

(2) (1)
1,2,3

are satisfied in the sense of distributions;
(3) the energy inequality

‖(u, 𝜃)‖2
𝐿
2 + 2∫

𝑡

0

‖∇(u, 𝜃)‖2
𝐿
2d𝑠 ≤ ∫

𝑡

0

∫

R3
𝜃𝑢
3
d𝑥 d𝑠, (2)

for all 0 ≤ 𝑡 ≤ 𝑇.

Now, our main result reads the following.

Theorem 2. Let u
0
∈ 𝐿
2
(R3) with ∇ ⋅ u

0
= 0 in the sense of

distributions, 𝜃
0
∈ 𝐿
1
∩ 𝐿
∞
(R3). Suppose that (u, 𝜃) is a weak

solution of (1) in [0, 𝑇), and

(∇u, ∇𝜃) ∈ 𝐿2 (0, 𝑇; �̇�−1
∞,∞

(R
3
)) ; (3)

then the solution (u, 𝜃) ∈ 𝐶∞((0, 𝑇) ×R3).

Due to the divergence-free condition of the fluid velocity
u, we have

Δ𝑢
𝑖
=

3

∑

𝑘=1

𝜕
𝑘
(𝜕
𝑘
𝑢
𝑖
− 𝜕
𝑖
𝑢
𝑘
) , Δ𝑢

𝑖
=

3

∑

𝑘=1

𝜕
𝑘
(𝜕
𝑘
𝑢
𝑖
+ 𝜕
𝑖
𝑢
𝑘
) .

(4)
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Thus,

𝜕
𝑗
𝑢
𝑖
= −

3

∑

𝑘=1

R
𝑗
R
𝑘
(𝜕
𝑘
𝑢
𝑖
− 𝜕
𝑖
𝑢
𝑘
) ,

𝜕
𝑗
𝑢
𝑖
= −

3

∑

𝑘=1

R
𝑗
R
𝑘
(𝜕
𝑘
𝑢
𝑖
+ 𝜕
𝑖
𝑢
𝑘
) .

(5)

Here,R
𝑗
= 𝜕
𝑗
/√−Δ is the Riesz transformation.

Using (5), we can deduce easily from Theorem 2 the
following.

Corollary 3. Let u
0
∈ 𝐿
2
(R3) with ∇ ⋅ u

0
= 0 in the sense of

distributions, 𝜃
0
∈ 𝐿
1
∩ 𝐿
∞
(R3). Suppose that (u, 𝜃) is a weak

solution of (1) in [0, 𝑇), and

(∇ × u, ∇𝜃) ∈ 𝐿2 (0, 𝑇; �̇�−1
∞,∞

(R
3
)) , (6)

or

(Def u, ∇𝜃) ∈ 𝐿2 (0, 𝑇; �̇�−1
∞,∞

(R
3
)) ; (7)

then the solution (u, 𝜃) ∈ 𝐶
∞
((0, 𝑇) × R3). Here, ∇ × u =



𝑖 𝑗 𝑘

𝜕
1
𝜕
2
𝜕
3

𝑢
1
𝑢
2
𝑢
3


is the vorticity and (Def u)

𝑖𝑗
= 𝜕
𝑖
𝑢
𝑗
+ 𝜕
𝑗
𝑢
𝑖
is the

deformation tensor (the symmetric tensor of the rate of strain).

The rest of this paper is organized as follows. In Section 2,
we recall the definition of Besov spaces and the related
interpolation inequalities. Section 3 is devoted to proving
Theorem 2.

2. Preliminaries

We first introduce the Littlewood-Paley decomposition. Let
S(R3) be the Schwartz class of rapidly decreasing functions.
For 𝑓 ∈ S(R3), its Fourier transformF𝑓 = 𝑓 is defined as

𝑓 (𝜉) = ∫

R3
𝑓 (𝑥) 𝑒

−𝑖𝑥⋅𝜉d𝑥. (8)

Let us choose a nonnegative radial function 𝜑 ∈ S(R3)
such that

0 ≤ 𝜑 (𝜉) ≤ 1, 𝜑 (𝜉) = {
1, if 𝜉

 ≤ 1,

0, if 𝜉
 ≥ 2,

(9)

and let

𝜓 (𝑥) = 𝜑 (𝑥) − 2
−3
𝜑(

𝑥

2
) ,

𝜑
𝑗
(𝑥) = 2

3𝑗
𝜑 (2
𝑗
𝑥) ,

𝜓
𝑗
(𝑥) = 2

3𝑗
𝜓 (2
𝑗
𝑥) , 𝑗 ∈ Z.

(10)

For 𝑗 ∈ Z, the Littlewood-Paley projection operators 𝑆
𝑗
and

Δ
𝑗
are, respectively, defined by

𝑆
𝑗
𝑓 = 𝜑

𝑗
∗ 𝑓, Δ

𝑗
𝑓 = 𝜓

𝑗
∗ 𝑓. (11)

Observe that Δ
𝑗
= 𝑆
𝑗
− 𝑆
𝑗−1

. Also, it is easy to check that if
𝑓 ∈ 𝐿

2
(R3), then

𝑆
𝑗
𝑓 → 0, as 𝑗 → −∞; (12)

𝑆
𝑗
𝑓 → 𝑓, as 𝑗 → ∞, (13)

in the 𝐿
2 sense. By telescoping the series, we have the

following Littlewood-Paley decomposition:

𝑓 =

∞

∑

𝑗=−∞

Δ
𝑗
𝑓, (14)

for all 𝑓 ∈ 𝐿2(R3), where the summation is in the 𝐿2 sense.
Let 𝑠 ∈ R; 𝑝, 𝑞 ∈ [1,∞]; the homogeneous Besov space

�̇�
𝑠

𝑝,𝑞
(R3) is defined by the full dyadic decomposition such as

�̇�
𝑠

𝑝,𝑞
={𝑓 ∈Z


(R
3
) ;
𝑓
�̇�𝑠
𝑝,𝑞

=


{2
𝑗𝑠
Δ
𝑗
𝑓
𝐿𝑝
}
∞

𝑗=−∞

ℓ𝑞
<∞} ,

(15)

whereZ(R3) is the dual space of

Z (R
3
) = {𝑓 ∈ S (R

3
) ; 𝐷
𝛼
𝑓 (0) = 0, ∀𝛼 ∈ N

3
} . (16)

The following interpolation inequality will be needed in
Section 3:

𝑓
𝐿4

≤ 𝐶
𝑓


1/2

�̇�
1

𝑓


1/2

�̇�
−1

∞,∞

, ∀𝑓 ∈ �̇�
1
(R
3
) ∩ �̇�
−1

∞,∞
(R
3
) .

(17)

See [24] for the proof.

3. Proof of Theorem 2

In this section, we will prove Theorem 2.
Multiplying (1)

1
by −Δu and (1)

2
by −Δ𝜃, integrating over

R3, and summing up, we obtain

1

2

d
d𝑡
‖∇ (u, 𝜃)‖2

𝐿
2 + ‖Δ (u, 𝜃)‖2

𝐿
2

= ∫

R3
[(u ⋅ ∇) u] ⋅ Δud𝑥 − ∫

R3
𝜃Δ𝑢
3
d𝑥

+ ∫

R3
[(u ⋅ ∇) 𝜃] ⋅ Δ𝜃d𝑥

= −

3

∑

𝑖,𝑗,𝑘=1

∫

R3
𝜕
𝑘
𝑢
𝑗
𝜕
𝑗
𝑢
𝑖
𝜕
𝑘
𝑢
𝑖
d𝑥

+ ∫

R3
∇𝜃 ⋅ ∇𝑢

3
d𝑥 −

3

∑

𝑗,𝑘=1

∫

R3
𝜕
𝑘
𝑢
𝑗
𝜕
𝑗
𝜃𝜕
𝑘
𝜃d𝑥

≡ 𝐼
1
+ 𝐼
2
+ 𝐼
3
.

(18)
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Invoking Hölder inequality, (17), and Young inequality,
we may bound 𝐼

1
as

𝐼
1
≤ ‖∇u‖2

𝐿
4‖∇u‖𝐿2

≤ 𝐶‖∇u‖
�̇�
−1

∞,∞

‖Δu‖
𝐿
2‖∇u‖

𝐿
2

≤ 𝐶‖∇u‖2
�̇�
−1

∞,∞

‖∇u‖2
𝐿
2 +

1

2
‖Δu‖2
𝐿
2 .

(19)

For 𝐼
2
, we use Hölder inequality to dominate as

𝐼
2
≤
1

2
∫

R3
(|∇𝜃|
2
+ |∇u|2) d𝑥 = 1

2
(‖∇𝜃‖

2

𝐿
2 + ‖∇u‖2

𝐿
2) .

(20)

Finally, 𝐼
3
can be estimated similarly as 𝐼

1
,

𝐼
3
≤ ‖∇𝜃‖

2

𝐿
4‖∇u‖𝐿2

≤ 𝐶‖∇𝜃‖
�̇�
−1

∞,∞

‖Δ𝜃‖
𝐿
2‖∇u‖

𝐿
2

≤ 𝐶‖∇𝜃‖
2

�̇�
−1

∞,∞

‖∇u‖2
𝐿
2 +

1

2
‖Δ𝜃‖
2

𝐿
2 .

(21)

Substituting (19), (20), and (21) into (18), we gather

d
d𝑡
‖∇(u, 𝜃)‖2

𝐿
2 + ‖Δ(u, 𝜃)‖2

𝐿
2

≤ 𝐶(‖∇(u, 𝜃)‖2
�̇�
−1

∞,∞

+ 1) ‖∇(u, 𝜃)‖2
𝐿
2 .

(22)

Gronwall inequality together with (3) then implies that

(u, 𝜃) ∈ 𝐿∞ (0, 𝑇;𝐻1 (R3)) ∩ 𝐿2 (0, 𝑇;𝐻2 (R3)) . (23)

Then, we may use standard energy method to drive high-
order derivative bounds, which would imply (u, 𝜃) ∈

𝐶
∞
((0, 𝑇) × R3) by Sobolev embedding theorems, as desired.
The proof of Theorem 2 is completed.
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