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We study the time evolution of quantum discord and entanglement of a two-qubit system in thermal reservoirs. We find that there
are no simple ordering relations between entanglement and quantumdiscord for the dynamical evolution behavior; that is, quantum
discord may be smaller or larger than entanglement in the evolution process. However, a strong correlation between changes of the
ordering relations and the mean photon number is found. In addition, it also shows that entanglement is not the strongest form of
nonclassicality.

Considerable efforts have been devoted to study quantum
correlations in the last two decades, mainly due to the general
belief that they are a fundamental resource for quantum infor-
mation processing tasks. Among them, entanglement is the
most famous and best studied kind of quantum correlation
and is generally regarded as a necessary resource in quantum
computation and communication [1]. The situation started
to change after a so-called DQC1 (deterministic quantum
computation with one qubit) model was presented which
may provide the speedup in the deterministic quantum
computation with one pure qubit [2]. The fact is that no
entanglement is present in this model; however, other kinds
of nonclassical correlations are responsible for the quantum
computational efficiency of DQC1. Such correlations are
characterized as quantum discord [3], which is believed
to be more general and more fundamental than entan-
glement [4–6] and which can be viewed as the amount
of entanglement consumed in the quantum-state merging
[7, 8].

Besides its application in DQC1, quantum discord has
also been used in studies of quantum phase transition [9, 10],
Maxwell’s demon [11], and relativistic effect [12, 13]. In addi-
tion, concerning biological systems, it has been suggested that
such correlations could play an important role in photosyn-
thesis [14]. In particular, quantum discord has been predicted

to show peculiar dynamics under decoherence [15]. Consid-
ering two noninteracting qubits, it was shown that, under
certain conditions, the decay rate of the correlations may
suffer a sudden change [16, 17]. Furthermore, by analyzing
various dissipative channels, some authors have shown that,
in all cases where entanglement suddenly disappears, quan-
tum discord vanishes only asymptotically [18–20]. In this
sense, quantum discord is more robust against decoherence
than entanglement so that quantum algorithms based only on
quantum discord correlationsmay bemore robust than those
based on entanglement. Despite intense research over the
last decade, the relation between entanglement and quantum
discord is not clear, and there are still a number of chal-
lenging outstanding problems that drive much effort in the
field.

In this paper, we consider a two-qubit system interacting
with two independent thermal reservoirs. We will explore
the relation between the dynamics of entanglement and that
of quantum discord of two atoms in their local reservoirs.
The common belief is that measures of quantum discord
should be more than those of entanglement. However, our
results will show that quantum discord may be smaller
or larger than entanglement in the evolution process, and
there exists an interesting variation in the ordering relations
between entanglement and quantum discord. Moreover, it is
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also shown that entanglement is not the strongest form of
nonclassicality, as pointed out in [21].

For a two-qubit quantum system, the quantum discord
is defined as the difference between the quantum mutual
information and the classical correlation,

𝐷 (𝜌
𝑎𝑏

) = 𝐼 (𝜌
𝑎𝑏

) − 𝐶


(𝜌
𝑎𝑏

) . (1)

Here, the quantum mutual information of two subsystems is
given by
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and 𝑆(𝜌
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) is the entropy of the quantum system,which is given

by the von Neumann entropy,
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where the subscript 𝑗 indicates either the subsystem 𝑎(𝑏) or
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the two subsystems [4]. As discussed in [15], the classical
correlation is given by
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Then, quantum discord is given by
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The evaluation of quantum discord is a hard task due to
the minimization over all possible measurements. Although
this cannot be done in full generality analytically even for
two qubits, the problem is tractable using analytical tools for
certain subsets of states (such as 𝑋 states) [22, 23].

The density matrix of a two-qubit 𝑋 state written in the
standard basis is given by
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The eigenvalues of the matrix 𝜌(𝑡) in (6) can be obtained as
follows:
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and the von Neumann entropies of the reduced density
matrix of the 𝜌(𝑡) can be easily obtained as
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The quantum conditional entropy in (4) is given by
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with
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nary parts of the complex number 𝑧.

The minimum value of 𝑆(𝜌
𝑎𝑏
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𝑘
}) in (4) depends on

parameters 𝑘, 𝑙, 𝑚, and 𝑛, where 𝑘 ∈ [0, 1], 𝑚 ∈ [0, 1/4],
𝑛 ∈ [−1/8, 1/8], and 𝑘 + 𝑙 = 1 [22].

To investigate entanglement dynamics, we use the con-
currence as the measure [24]. For a pair of qubits, the
concurrence is defined as
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of non-Hermitian matrix 𝜌𝜌 and 𝜌 is defined as
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with 𝜌
∗ being the complex conjugate of matrix 𝜌. Here, 𝜎

𝑦

stands for the off-diagonal pure imaginary Pauli matrix. The
concurrence 𝐶 = 0 corresponds to an unentangled state and
𝐶 = 1 corresponds to a maximally entangled state.
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In the case of the density matrix with the X type (6), one
easily finds [25] that the concurrence is given by
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Next, we investigate the dynamics of quantum discord

and entanglement of the two atoms which are each trapped
separately in one of the two spatially separated thermal reser-
voirs. According to the general quantum reservoir theory
[26], we can derive the following equation of motion for the
reduced density matrix of the atoms interacting with their
local thermal reservoirs of mean thermal photon numbers 𝑚

and 𝑛:
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where 𝛾
𝑖
is the spontaneous emission rate of atom 𝑖 and 𝜎

+

𝑖
, 𝜎
𝑖

are the usual Pauli raising and lowering operators of atom 𝑖.
Here, we assume that the correlation time between the atoms
and the reservoirs ismuch shorter than the characteristic time
of the dynamic evolution of the atoms so that the Markov
approximation is valid.

In what follows, we will focus on the initial Bell states
since such states provide important test ground for the
understanding of nonclassicality beyond entanglement and
its interplay with entanglement itself.

Now, we would like to consider Bell state |Φ
+
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assume 𝑚 = 𝑛 and 𝛾
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Using (17), we can give the eigenvalues of the matrix dis-
cussed:
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Based on the discussion of the above, we can now
calculate the classical correlation and quantum discord. The
quantum discord is given by
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Using (15) and (19), the expressions of the entanglement

and quantum discord can be numerically calculated. In
Figure 1, the dynamics of entanglement and quantum discord
are plotted as a function of the scaled time 𝛾𝑡 and mean
photon number 𝑛. Firstly, we note that quantum discord only
disappears in the asymptotic limit, while the entanglement
suffers a sudden death at a certain parameterized time 𝑡

𝑑

in a thermal reservoir of nonzero mean photon number.
Considering the fact that the entanglement sudden death
(ESD) was firstly reported in [27], thereafter, many works
have been devoted to the related topics [28–31]. We also see
that both time of ESD and vanishing of quantum discord
decrease as the mean thermal photon number becomes large,
as expected.

In order to explore the relation between entanglement
and quantum discord, we plot the evolution of both correla-
tions for different values of the mean photon numbers 𝑛 = 1,
0.1, 0.01, 0 in Figure 2.The abscissa of the vertical dotted line
corresponds to the scaled time 𝛾𝑡

 of the intersection point
of the two evolution curves. From Figures 2(a)–2(c), one
can see a similar phenomenon that the two correlations have
a different order as functions of time 𝛾𝑡, with concurrence
being initially larger than quantum discord for 0 ≤ 𝛾𝑡 ≤

𝛾𝑡
, but, for 𝛾𝑡 ≥ 𝛾𝑡

, quantum discord becomes larger
than concurrence. It means that entanglement is not the
strongest form of nonclassicality. Although there are no
simple ordering relations between the two correlations, it
is instructive to note that the position of the scaled time
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Figure 1: Dynamics of the quantum discord (a) and entanglement (b) as a function of the scaled time 𝛾𝑡 and mean photon number 𝑛.
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Figure 2: Time dependence of quantum discord (dot-dashed line) and concurrence (solid line) for mean photon number: (a) 𝑛 = 1, (b)
𝑛 = 0.1, (c) 𝑛 = 0.01, and (d) 𝑛 = 0 (color online).The abscissa of the vertical dotted line corresponds to the scaled time 𝛾𝑡

 of the intersection
point of the two evolution curves.
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𝛾𝑡
 of the intersection point of the two evolution curves

moves to the right along the 𝛾𝑡-axis with the decreases of
the mean photon number 𝑛. Moreover, one can observe from
Figure 2(d) that, for 𝑛 = 0, 𝛾𝑡



→ ∞. It can also be
found that the dynamical behavior of the entanglement tends
to agree with that of the quantum discord in time in the
vacuum reservoirs. Meanwhile, it also implies that the ESD
vanishes as the mean thermal photon number is zero. These
results show that further and deeper study of the dynamical
behaviors of quantum discord and entanglement in thermal
environments might help to better understand the nature of
quantum correlations.

In summary, we have investigated the dynamics of
the entanglement and the quantum discord for two atoms
coupled to independent thermal reservoirs. We found that
there are no simple ordering relations between entanglement
and quantum discord for the dynamical evolution behavior;
however, the position of the intersection point of the two
correlation curves moves to the right along the 𝛾𝑡-axis as
the mean photon number becomes small. We also observed
that, in thermal environments where entanglement suddenly
disappears, quantum discord vanishes only in the asymptotic
limit and the dynamical behavior of quantum discord tends
to agree with that of entanglement in time in the vacuum
reservoir. Our results also show that entanglement is not the
strongest form of nonclassicality. It suggests that quantum
algorithms based on quantum discord, different from those
based on entanglement, are more resistant to external pertur-
bations and, therefore, introduce new hope of implementing
an efficient quantum algorithm and quantum information
processing.
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