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We will investigate the superconvergence for the semidiscrete finite element approximation of distributed convex optimal control
problems governed by semilinear parabolic equations. The state and costate are approximated by the piecewise linear functions
and the control is approximated by piecewise constant functions. We present the superconvergence analysis for both the control
variable and the state variables.

1. Introduction

Finite element approximation of optimal control problems
plays a very important role in numerical methods for these
problems. There have been extensive studies on this aspect,
for example, [1–14]. A systematic introduction of finite
element method for PDEs and optimal control problems can
be found in, for example, [15–18]. The superconvergence of
nonlinear parabolic problem was studied in [19]. In [20],
superconvergence was obtained for parabolic optimal control
problems with convex control constraints, where the state
partial differential equations are linear.

Optimal control problems governed by nonlinear
parabolic state equations, a priori error estimates of finite
element approximation, were studied in, for example, [21, 22].
In this paper, we will study the superconvergence of both the
control variable and the state variables for this problem.

Themodel optimal control problem that we shall study in
detail is the following convex optimal control problem:

min
𝑢∈𝐾

{∫𝑇

0

(𝑔 (𝑦) + ℎ (𝑢)) 𝑑𝑡} ,
𝑦
𝑡
(𝑥, 𝑡) − div (𝐴 (𝑥) ∇𝑦 (𝑥, 𝑡)) + 𝜙 (𝑦 (𝑥, 𝑡))
= (𝑓 + 𝐵𝑢) (𝑥, 𝑡) , 𝑥 ∈ Ω, 𝑡 ∈ (0, 𝑇] ,

𝑦 (𝑥, 𝑡) = 0, 𝑥 ∈ 𝜕Ω, 𝑡 ∈ [0, 𝑇] ,
𝑦 (𝑥, 0) = 𝑦

0
(𝑥) , 𝑥 ∈ Ω.

(1)

Here, the bounded open set Ω ⊂ 𝑅2 is a convex polygon or
has the smooth boundary 𝜕Ω. Let 𝐵 be a linear continuous
operator from 𝐿2(0, 𝑇; 𝐿2(Ω)) to 𝐿2(0, 𝑇; 𝐿2(Ω)) and 𝑓 ∈
𝐿2(0, 𝑇; 𝐿2(Ω)). Assume that 𝑦

0
(𝑥) ∈ 𝐻2(Ω)⋂𝐻1

0
(Ω),

𝐴(𝑥) = (𝑎
𝑖𝑗
(𝑥))

2×2

with 𝑎
𝑖𝑗
(𝑥) ∈ 𝐿∞(Ω) being a symmetric

matrix and, for any vector 𝑋 ∈ 𝑅2, there is a constant 𝑐 > 0
satisfying

𝑋𝑡𝐴𝑋 ≥ 𝑐‖𝑋‖2
𝑅
2 . (2)

Here, 𝐾 denotes the admissible set of the control variable,
which is defined by

𝐾 = {�̃� (𝑥, 𝑡) ∈ 𝐿2 (0, 𝑇; 𝐿2 (Ω)) : �̃� (𝑥, 𝑡) ≥ 0,
a.e. 𝑥 ∈ Ω, 𝑡 ∈ [0, 𝑇] } .

(3)

In this paper, we adopt the standard notation𝑊𝑚,𝑝(Ω) for
Sobolev spaces onΩ with a norm ‖ ⋅ ‖

𝑚,𝑝
given by

‖V‖𝑝
𝑚,𝑝

= ∑
|𝛼|≤𝑚

𝐷𝛼V𝑝𝐿𝑝(Ω), (4)
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a semi-norm | ⋅ |
𝑚,𝑝

given by

|V|𝑝
𝑚,𝑝

= ∑
|𝛼|=𝑚

𝐷𝛼V𝑝𝐿𝑝(Ω). (5)

We set 𝑊𝑚,𝑝

0
(Ω) = {V ∈ 𝑊𝑚,𝑝(Ω) : V|

𝜕Ω
= 0}. For 𝑝 = 2, we

denote

𝐻𝑚 (Ω) = 𝑊𝑚,2 (Ω) , 𝐻𝑚

0
(Ω) = 𝑊𝑚,2

0
(Ω) ,

‖⋅‖
𝑚

= ‖⋅‖
𝑚,2

, ‖⋅‖ = ‖⋅‖
0,2

. (6)

We denote by 𝐿𝑠(𝐽;𝑊𝑚,𝑝(Ω)) the Banach space of all 𝐿𝑠
integrable functions from 𝐽 into𝑊𝑚,𝑝(Ω), with norm

𝜙𝐿𝑠(𝐽;𝑊𝑚,𝑝(Ω)) = (∫𝑇

0

𝜙𝑠𝑊𝑚,𝑝(Ω)𝑑𝑡)
1/𝑠

for 𝑠 ∈ [1,∞) ,
(7)

and the standard modification for 𝑠 = ∞, where 𝐽 = [0, 𝑇].
Similarly, one can define the spaces 𝐻1(0, 𝑇;𝑊𝑚,𝑞(Ω)) and
𝐶𝑘(0, 𝑇;𝑊𝑚,𝑞(Ω)). The details can be found in [23]. In addi-
tion, 𝑐 and 𝐶 denote general positive constants independent
of ℎ.

The plan of the paper is as follows. In Section 2, we shall
give a brief review on the finite element method and then
construct the approximation scheme for the optimal control
problem. In Section 3, we shall give some preliminaries and
some intermediate error estimates. In Section 4, superconver-
gence results for both control and state variableswere derived.
In Section 5, we give a numerical example to demonstrate our
theoretical results. In the last section we make a conclusion
and state some future works.

2. Approximation for the Optimal
Control Problem

To fix idea, we shall take the state space𝑊 = 𝐿2(0, 𝑇; 𝑉) with
𝑉 = 𝐻1

0
(Ω) and the control space 𝑋 = 𝐿2(0, 𝑇; 𝑈) with 𝑈 =

𝐿2(Ω). Then the problem (1) can be restated as

min
𝑢(𝑡)∈𝐾

{∫𝑇

0

(𝑔 (𝑦) + ℎ (𝑢) 𝑑𝑡)} , (8)

(𝑦
𝑡
, 𝑤) + 𝑎 (𝑦, 𝑤) + (𝜙 (𝑦) , 𝑤) = (𝑓 + 𝐵𝑢, 𝑤) ,

𝑡 ∈ (0, 𝑇] , ∀𝑤 ∈ 𝑉, (9)

𝑦 (𝑥, 0) = 𝑦
0
(𝑥) , (10)

where 𝑦 ∈ 𝐻1(0, 𝑇; 𝑈)⋂𝑊, 𝑢 ∈ 𝑋, and

𝑎 (𝑦, 𝑤) = ∫
Ω

((𝐴∇𝑦) ⋅ ∇𝑤) , ∀𝑦, 𝑤 ∈ 𝑉. (11)

It follows from the assumption on 𝐴 that there is a positive
constant 𝐶 > 0 such that 𝑎(V, V) ≥ 𝐶‖V‖2

1
, for all V ∈ 𝑉.

We make the following assumptions.

(1) 𝜙(⋅) ∈ 𝑊2,∞(−𝑅, 𝑅) for any 𝑅 > 0, 𝜙(𝑦) ∈ 𝐿2(Ω) for
any 𝑦 ∈ 𝐻1(Ω), and 𝜙 ≥ 0.

(2) Let ℎ(𝑢) = ∫
Ω

𝑗(𝑢), where 𝑗(⋅) is a smooth and convex
function such that 𝑗(𝑢) ∈ 𝑊1,∞(Ω) and 𝑗(⋅) ∈
𝐿∞(𝑅). The function 𝑔(⋅) has the same property as
ℎ(⋅).

It is well known (see, e.g., [24]) that the control problem
(8)–(10) has a solution (𝑦, 𝑢) and that if a pair (𝑦, 𝑢)
is the solution of (8)–(10), then there is a costate 𝑝 ∈
𝐻1(0, 𝑇; 𝑈)⋂𝑊 such that the triplet (𝑦, 𝑝, 𝑢) satisfies the
following optimality conditions for 𝑡 ∈ (0, 𝑇]:

(𝑦
𝑡
, 𝑤) + 𝑎 (𝑦, 𝑤) + (𝜙 (𝑦) , 𝑤) = (𝑓 + 𝐵𝑢, 𝑤) , ∀𝑤 ∈ 𝑉,

𝑦 (𝑥, 0) = 𝑦
0
(𝑥) , 𝑥 ∈ Ω,

(12)

− (𝑝
𝑡
, 𝑞) + 𝑎 (𝑞, 𝑝) + (𝜙 (𝑦) 𝑝, 𝑞) = (𝑔 (𝑦) , 𝑞) , ∀𝑞 ∈ 𝑉,

𝑝 (𝑥, 𝑇) = 0, 𝑥 ∈ Ω,
(13)

(𝑗 (𝑢) + 𝐵∗𝑝, V − 𝑢) ≥ 0, ∀V ∈ 𝐾, (14)

where 𝐵∗ is the adjoint operator of 𝐵.
In the following we construct the finite element approx-

imation for the optimal control problem (8)–(10). For ease
of exposition we will assume that Ω is a convex polygon. Let
𝑇
ℎ
be a quasi-uniform (in the sense of [25]) partition of Ω

into triangles. And let ℎ be the maximum diameter of 𝑇 in
𝑇
ℎ
. Moreover, we set

𝑈
ℎ
= {�̃� ∈ 𝑈 : �̃�|

𝑇
is constant on all 𝑇 ∈ 𝑇

ℎ
} ,

𝑉
ℎ
= {𝑦

ℎ
∈ 𝐶 (Ω) : 𝑦

ℎ
|
𝑇
∈ P

1
, ∀𝑇 ∈ 𝑇

ℎ
, 𝑦

ℎ
|
𝜕Ω

= 0} , (15)

where P
1
is the space of polynomial of degree less than or

equal to 1.
For simplicity, in this paper we shall assume that 𝐾

ℎ
=

𝐾⋂𝑈
ℎ
. Now, the semidiscrete finite element approximation

of the problem (8)–(10) is as follows:

min
𝑢
ℎ
(𝑡)∈𝐾

ℎ

{∫𝑇

0

(𝑔 (𝑦
ℎ
) + ℎ (𝑢

ℎ
)) 𝑑𝑡} , (16)

( 𝜕
𝜕𝑡𝑦ℎ, 𝑤ℎ

) + 𝑎 (𝑦
ℎ
, 𝑤

ℎ
) + (𝜙 (𝑦

ℎ
) , 𝑤

ℎ
) = (𝑓 + 𝐵𝑢

ℎ
, 𝑤

ℎ
) ,

𝑡 ∈ (0, 𝑇] , ∀𝑤
ℎ
∈ 𝑉

ℎ
,

(17)

𝑦
ℎ
(𝑥, 0) = 𝑦ℎ

0
(𝑥) , (18)

where 𝑦
ℎ

∈ 𝐻1(0, 𝑇; 𝑉
ℎ
) and 𝑦ℎ

0
∈ 𝑉

ℎ
is an approximation

of 𝑦
0
which will be defined below. The control problem (16)–

(18) has a solution (𝑦
ℎ
, 𝑢

ℎ
), and if a pair (𝑦

ℎ
, 𝑢

ℎ
) is the solution
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of (16)–(18), then there is a costate 𝑝
ℎ
such that the triplet

(𝑦
ℎ
, 𝑝

ℎ
, 𝑢

ℎ
) satisfies the following optimal conditions:

( 𝜕
𝜕𝑡𝑦ℎ, 𝑤ℎ

) + 𝑎 (𝑦
ℎ
, 𝑤

ℎ
) + (𝜙 (𝑦

ℎ
) , 𝑤

ℎ
) = (𝑓 + 𝐵𝑢

ℎ
, 𝑤

ℎ
) ,

∀𝑤
ℎ
∈ 𝑉

ℎ
,

𝑦
ℎ
(𝑥, 0) = 𝑦ℎ

0
(𝑥) , 𝑥 ∈ Ω,

(19)

−( 𝜕
𝜕𝑡𝑝ℎ, 𝑞ℎ) + 𝑎 (𝑞

ℎ
, 𝑝

ℎ
) + (𝜙 (𝑦

ℎ
) 𝑝

ℎ
, 𝑞

ℎ
)=(𝑔 (𝑦

ℎ
) , 𝑞

ℎ
) ,

∀𝑞
ℎ
∈ 𝑉

ℎ
,

𝑝
ℎ
(𝑥, 𝑇) = 0, 𝑥 ∈ Ω,

(20)

(𝑗 (𝑢
ℎ
) + 𝐵∗𝑝

ℎ
, V

ℎ
− 𝑢

ℎ
) ≥ 0, ∀V

ℎ
∈ 𝐾

ℎ
. (21)

3. Some Preliminaries

First, we shall use some intermediate variables. For any �̃� ∈ 𝐾,
let (𝑦(�̃�), 𝑝(�̃�)) be the solution of the following equations:

(𝑦
𝑡
(�̃�) , 𝑤) + 𝑎 (𝑦 (�̃�) , 𝑤) + (𝜙 (𝑦 (�̃�)) , 𝑤) = (𝑓 + 𝐵�̃�, 𝑤) ,

∀𝑤 ∈ 𝑉,
𝑦 (�̃�) (𝑥, 0) = 𝑦

0
(𝑥) , 𝑥 ∈ Ω,

(22)

− (𝑝
𝑡
(�̃�) , 𝑞) + 𝑎 (𝑞, 𝑝 (�̃�)) + (𝜙 (𝑦 (�̃�)) 𝑝 (�̃�) , 𝑞)

= (𝑔 (𝑦 (�̃�)) , 𝑞) , ∀𝑞 ∈ 𝑉,
𝑝 (�̃�) (𝑥, 𝑇) = 0, 𝑥 ∈ Ω.

(23)

Then, for any �̃� ∈ 𝐾, let (𝑦
ℎ
(�̃�), 𝑝

ℎ
(�̃�)) be the solution of

the following equations:

( 𝜕
𝜕𝑡𝑦ℎ (�̃�) , 𝑤ℎ

) + 𝑎 (𝑦
ℎ
(�̃�) , 𝑤

ℎ
) + (𝜙 (𝑦

ℎ
(�̃�)) , 𝑤

ℎ
)

= (𝑓 + 𝐵�̃�, 𝑤
ℎ
) , ∀𝑤

ℎ
∈ 𝑉

ℎ
,

𝑦
ℎ
(�̃�) (𝑥, 0) = 𝑦ℎ

0
(𝑥) , 𝑥 ∈ Ω,

− ( 𝜕
𝜕𝑡𝑝ℎ (�̃�) , 𝑞ℎ) + 𝑎 (𝑞

ℎ
, 𝑝

ℎ
(�̃�)) + (𝜙 (𝑦

ℎ
(�̃�)) 𝑝

ℎ
(�̃�) , 𝑞

ℎ
)

= (𝑔 (𝑦
ℎ
(�̃�)) , 𝑞

ℎ
) , ∀𝑞

ℎ
∈ 𝑉

ℎ
,

𝑝
ℎ
(�̃�) (𝑥, 𝑇) = 0, 𝑥 ∈ Ω.

(24)

Thus, we have

(𝑦, 𝑝) = (𝑦 (𝑢) , 𝑝 (𝑢)) , (𝑦
ℎ
, 𝑝

ℎ
) = (𝑦

ℎ
(𝑢

ℎ
) , 𝑝

ℎ
(𝑢

ℎ
)) .
(25)

We define the standard 𝐿2(Ω)-orthogonal projection𝑄
ℎ
:

𝑈 → 𝑈
ℎ
, which satisfies, for any 𝜓 ∈ 𝑈,

(𝜓 − 𝑄
ℎ
𝜓, V

ℎ
) = 0, ∀V

ℎ
∈ 𝑈

ℎ
. (26)

Next, let us recall the elliptic projection 𝑅
ℎ

: 𝑉 → 𝑉
ℎ
,

which satisfies, for any 𝑤 ∈ 𝑉,
𝑎 (𝑤 − 𝑅

ℎ
𝑤,𝑤

ℎ
) = 0, ∀𝑤

ℎ
∈ 𝑉

ℎ
. (27)

Let

𝑦ℎ
0
= 𝑅

ℎ
𝑦
0
. (28)

We have the approximation properties:
𝜓 − 𝑄

ℎ
𝜓−𝑠,𝑟 ≤ 𝐶ℎ1+𝑠𝜓1,𝑟, 𝑠 = 0, 1, for 𝜓 ∈ 𝑊1,𝑟 (Ω) ,

(29)
𝑤 − 𝑅

ℎ
𝑤 ≤ 𝐶ℎ2‖𝑤‖

2
for 𝑤 ∈ 𝐻2 (Ω) ∩ 𝐻1

0
(Ω) .

(30)

Now, we establish the following error estimates for the
intermediate variables.

Lemma 1. Let 𝑢 be the solution of (12)–(14); for ℎ sufficiently
small, there exists a positive constant 𝐶 which only depends on
𝐴 and Ω, such that

𝑦(𝑄ℎ
𝑢) − 𝑦(𝑢)𝐿∞(𝐽;𝐿2) + 𝑦(𝑄ℎ

𝑢) − 𝑦(𝑢)𝐿2(𝐽;𝐻1) ≤ 𝐶ℎ2,
(31)

𝑝(𝑄ℎ
𝑢) − 𝑝(𝑢)𝐿∞(𝐽;𝐿2) + 𝑝(𝑄ℎ

𝑢) − 𝑝(𝑢)𝐿2(𝐽;𝐻1) ≤ 𝐶ℎ2.
(32)

Proof. Let �̃� = 𝑄
ℎ
𝑢 and �̃� = 𝑢 in (22)-(23), respectively; then

we have the following error equations:

( 𝜕
𝜕𝑡 (𝑦 (𝑄

ℎ
𝑢) − 𝑦 (𝑢)) , 𝑤

ℎ
) + 𝑎 (𝑦 (𝑄

ℎ
𝑢) − 𝑦 (𝑢) , 𝑤

ℎ
)

+ (𝜙 (𝑦 (𝑄
ℎ
𝑢)) − 𝜙 (𝑦 (𝑢)) , 𝑤

ℎ
) = (𝐵 (𝑄

ℎ
𝑢 − 𝑢) , 𝑤

ℎ
) ,
(33)

− ( 𝜕
𝜕𝑡 (𝑝 (𝑄

ℎ
𝑢) − 𝑝 (𝑢)) , 𝑞

ℎ
) + 𝑎 (𝑞

ℎ
, 𝑝 (𝑄

ℎ
𝑢) − 𝑝 (𝑢))

+ (𝜙 (𝑦 (𝑄
ℎ
𝑢)) 𝑝 (𝑄

ℎ
𝑢) − 𝜙 (𝑦 (𝑢)) 𝑝 (𝑢) , 𝑞

ℎ
)

= (𝑔 (𝑦 (𝑄
ℎ
𝑢)) − 𝑔 (𝑦 (𝑢)) , 𝑞

ℎ
) ,

(34)

for any 𝑤
ℎ
∈ 𝑉

ℎ
and 𝑞

ℎ
∈ 𝑉

ℎ
. We shall estimate (31) and (32),

respectively.
First, let 𝑤

ℎ
= 𝑦(𝑄

ℎ
𝑢) − 𝑦(𝑢) in (33); we have

( 𝜕
𝜕𝑡 (𝑦 (𝑄

ℎ
𝑢) − 𝑦 (𝑢)) , 𝑦 (𝑄

ℎ
𝑢) − 𝑦 (𝑢))

+ 𝑎 (𝑦 (𝑄
ℎ
𝑢) − 𝑦 (𝑢) , 𝑦 (𝑄

ℎ
𝑢) − 𝑦 (𝑢))

+ (𝜙 (𝑦 (𝑄
ℎ
𝑢)) − 𝜙 (𝑦 (𝑢)) , 𝑦 (𝑄

ℎ
𝑢) − 𝑦 (𝑢))

= (𝐵 (𝑄
ℎ
𝑢 − 𝑢) , 𝑦 (𝑄

ℎ
𝑢) − 𝑦 (𝑢)) ;

(35)
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namely,
1
2

𝑑
𝑑𝑡

𝑦 (𝑄
ℎ
𝑢) − 𝑦 (𝑢)2

+ 𝑎 (𝑦 (𝑄
ℎ
𝑢) − 𝑦 (𝑢) , 𝑦 (𝑄

ℎ
𝑢) − 𝑦 (𝑢))

+ (𝜙 (𝑦 (𝑄
ℎ
𝑢)) − 𝜙 (𝑦 (𝑢)) , 𝑦 (𝑄

ℎ
𝑢) − 𝑦 (𝑢))

= (𝐵 (𝑄
ℎ
𝑢 − 𝑢) , 𝑦 (𝑄

ℎ
𝑢) − 𝑦 (𝑢)) .

(36)

Now, we estimate the right side of (36). Using the continuity
of 𝐵 and (29), we have

(𝐵 (𝑄
ℎ
𝑢 − 𝑢) , 𝑦 (𝑄

ℎ
𝑢) − 𝑦 (𝑢))

≤ 𝐶𝐵∗ (𝑦 (𝑄
ℎ
𝑢) − 𝑦 (𝑢))1𝑄ℎ

𝑢 − 𝑢−1
≤ 𝐶ℎ2𝑦 (𝑄

ℎ
𝑢) − 𝑦 (𝑢)1‖𝑢‖1.

(37)

Combining (36)-(37), using the 𝜖-Cauchy’s inequality and the
assumption of 𝐴(𝑥) and 𝜙(⋅), we have

1
2

𝑑
𝑑𝑡

𝑦 (𝑄
ℎ
𝑢) − 𝑦 (𝑢)2 + 𝑐𝑦(𝑄ℎ

𝑢) − 𝑦(𝑢)21
≤ 𝐶ℎ4 + 𝜖𝑦 (𝑄

ℎ
𝑢) − 𝑦 (𝑢)21.

(38)

Notice that

𝑦 (𝑄
ℎ
𝑢) (𝑥, 0) = 𝑦 (𝑢) (𝑥, 0) , (39)

then, integrating (38) in time and usingGronwall’s lemma, we
have
𝑦 (𝑄

ℎ
𝑢) − 𝑦 (𝑢)𝐿∞(𝐽;𝐿2) + 𝑦 (𝑄

ℎ
𝑢) − 𝑦 (𝑢)𝐿2(𝐽;𝐻1) ≤ 𝐶ℎ2.

(40)

Then, by choosing 𝑞
ℎ
= 𝑝(𝑄

ℎ
𝑢) − 𝑝(𝑢) in (34), we have

−( 𝜕
𝜕𝑡 (𝑝 (𝑄

ℎ
𝑢) − 𝑝 (𝑢)) , 𝑝 (𝑄

ℎ
𝑢) − 𝑝 (𝑢))

+𝑎 (𝑝 (𝑄
ℎ
𝑢) − 𝑝 (𝑢) , 𝑝 (𝑄

ℎ
𝑢) − 𝑝 (𝑢))

+ (𝜙 (𝑦 (𝑄
ℎ
𝑢)) 𝑝 (𝑄

ℎ
𝑢) − 𝜙 (𝑦 (𝑢)) 𝑝 (𝑢) ,

𝑝 (𝑄
ℎ
𝑢) − 𝑝 (𝑢) )

= (𝑔 (𝑦 (𝑄
ℎ
𝑢)) − 𝑔 (𝑦 (𝑢)) , 𝑝 (𝑄

ℎ
𝑢) − 𝑝 (𝑢)) ;

(41)

namely,

− 1
2

𝑑
𝑑𝑡

𝑝 (𝑄
ℎ
𝑢) − 𝑝 (𝑢)2

+ 𝑎 (𝑝 (𝑄
ℎ
𝑢) − 𝑝 (𝑢) , 𝑝 (𝑄

ℎ
𝑢) − 𝑝 (𝑢))

+ (𝜙 (𝑦 (𝑄
ℎ
𝑢)) (𝑝 (𝑄

ℎ
𝑢) − 𝑝 (𝑢)) , 𝑝 (𝑄

ℎ
𝑢) − 𝑝 (𝑢))

= (𝑔 (𝑦 (𝑄
ℎ
𝑢)) − 𝑔 (𝑦 (𝑢)) , 𝑝 (𝑄

ℎ
𝑢) − 𝑝 (𝑢))

+ (𝑝 (𝑢) (𝜙 (𝑦 (𝑢)) − 𝜙 (𝑦 (𝑄
ℎ
𝑢))) , 𝑝 (𝑄

ℎ
𝑢) − 𝑝 (𝑢)) .

(42)

Now, we estimate the right side of (42). From the assumption
of the convex function 𝑔(⋅), we have

(𝑔 (𝑦 (𝑄
ℎ
𝑢)) − 𝑔 (𝑦 (𝑢)) , 𝑝 (𝑄

ℎ
𝑢) − 𝑝 (𝑢))

≤ 𝐶𝑔𝑊2,∞ 𝑦 (𝑄
ℎ
𝑢) − 𝑦 (𝑢) ⋅ 𝑝 (𝑄

ℎ
𝑢) − 𝑝 (𝑢)

≤ 𝐶𝑝 (𝑄
ℎ
𝑢) − 𝑝 (𝑢)2 + 𝐶𝑦 (𝑄

ℎ
𝑢) − 𝑦 (𝑢)2,

(43)

and using the assumption of 𝜙(⋅) and 𝜖-Cauchy’s inequality,
we have

(𝑝 (𝑢) (𝜙 (𝑦 (𝑢)) − 𝜙 (𝑦 (𝑄
ℎ
𝑢)) , 𝑝 (𝑄

ℎ
𝑢) − 𝑝 (𝑢))

≤ 𝐶𝑝 (𝑢)0,4 𝜙 (𝑦 (𝑢)) − 𝜙 (𝑦 (𝑄
ℎ
𝑢))

⋅ 𝑝 (𝑄
ℎ
𝑢) − 𝑝 (𝑢)0,4

≤ 𝐶𝑝 (𝑢)1 ⋅ 𝜙𝑊2,∞ 𝑦 (𝑢) − 𝑦 (𝑄
ℎ
𝑢)

⋅ 𝑝 (𝑄
ℎ
𝑢) − 𝑝 (𝑢)1

≤ 𝐶𝑦 (𝑄
ℎ
𝑢) − 𝑦 (𝑢)2 + 𝜖𝑝 (𝑄

ℎ
𝑢) − 𝑝 (𝑢)21) ,

(44)

where we used the embedding ‖V‖
0,4

≤ 𝐶‖V‖
1
. Combining

(42)–(44) and from the assumption of𝐴(𝑥) and 𝜙(⋅), we have

− 1
2

𝑑
𝑑𝑡

𝑝 (𝑄
ℎ
𝑢) − 𝑝 (𝑢)2 + 𝑐𝑝 (𝑄

ℎ
𝑢) − 𝑝 (𝑢)21

≤ 𝐶 (𝑦 (𝑄
ℎ
𝑢) − 𝑦 (𝑢)2 + 𝑝 (𝑄

ℎ
𝑢) − 𝑝 (𝑢)2)

+ 𝜖𝑝 (𝑄
ℎ
𝑢) − 𝑝 (𝑢)21.

(45)

Notice that

𝑝 (𝑄
ℎ
𝑢) (𝑥, 𝑇) = 𝑝 (𝑢) (𝑥, 𝑇) ; (46)

then integrating (45) in time, using Gronwall’s lemma and
(31), we have

𝑝 (𝑄
ℎ
𝑢) − 𝑝 (𝑢)𝐿∞(𝐽;𝐿2) + 𝑝 (𝑄

ℎ
𝑢) − 𝑝 (𝑢)𝐿2(𝐽;𝐻1) ≤ 𝐶ℎ2,

(47)

which completes the proof of Lemma 1.

Lemma 2. For any �̃� ∈ 𝐾, if the intermediate solution satisfies

𝑦 (�̃�) , 𝑝 (�̃�) ∈ 𝐻1 (𝐽;𝐻2) , (48)

then, one has

𝑦ℎ (�̃�) − 𝑅
ℎ
𝑦 (�̃�)𝐿∞(𝐽;𝐿2) + 𝑦ℎ (�̃�) − 𝑅

ℎ
𝑦 (�̃�)𝐿2(𝐽;𝐻1) ≤ 𝐶ℎ2,

(49)
𝑝ℎ (�̃�) − 𝑅

ℎ
𝑝 (�̃�)𝐿∞(𝐽;𝐿2) + 𝑝ℎ (�̃�) − 𝑅

ℎ
𝑝 (�̃�)𝐿2(𝐽;𝐻1) ≤ 𝐶ℎ2.

(50)
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Proof. From (22)-(23) and (24), we have the following error
equations:

( 𝜕
𝜕𝑡 (𝑦

ℎ
(�̃�) − 𝑦 (�̃�)) , 𝑤

ℎ
) + 𝑎 (𝑦

ℎ
(�̃�) − 𝑦 (�̃�) , 𝑤

ℎ
)

+ (𝜙 (𝑦
ℎ
(�̃�)) − 𝜙 (𝑦 (�̃�)) , 𝑤

ℎ
) = 0,

− ( 𝜕
𝜕𝑡 (𝑝

ℎ
(�̃�) − 𝑝 (�̃�)) , 𝑞

ℎ
) + 𝑎 (𝑞

ℎ
, 𝑝

ℎ
(�̃�) − 𝑝 (�̃�))

+ (𝜙 (𝑦
ℎ
(�̃�)) 𝑝

ℎ
(�̃�) − 𝜙 (𝑦 (�̃�)) 𝑝 (�̃�) , 𝑞

ℎ
)

= (𝑔 (𝑦
ℎ
(�̃�)) − 𝑔 (𝑦 (�̃�)) , 𝑞

ℎ
)

(51)

for any 𝑤
ℎ
∈ 𝑉

ℎ
and 𝑞

ℎ
∈ 𝑉

ℎ
. Using the definition of 𝑅

ℎ
, the

above equation can be restated as

( 𝜕
𝜕𝑡 (𝑦

ℎ
(�̃�) − 𝑅

ℎ
𝑦 (�̃�)) , 𝑤

ℎ
) + 𝑎 (𝑦

ℎ
(�̃�) − 𝑅

ℎ
𝑦 (�̃�) , 𝑤

ℎ
)

+ (𝜙 (𝑦
ℎ
(�̃�)) − 𝜙 (𝑅

ℎ
𝑦 (�̃�)) , 𝑤

ℎ
)

= ( 𝜕
𝜕𝑡 (𝑦 (�̃�) − 𝑅

ℎ
𝑦 (�̃�)) , 𝑤

ℎ
)

+ (𝜙 (𝑦 (�̃�)) − 𝜙 (𝑅
ℎ
𝑦 (�̃�)) , 𝑤

ℎ
) ,

(52)

− ( 𝜕
𝜕𝑡 (𝑝

ℎ
(�̃�) − 𝑅

ℎ
𝑝 (�̃�)) , 𝑞

ℎ
) + 𝑎 (𝑞

ℎ
, 𝑝

ℎ
(�̃�) − 𝑅

ℎ
𝑝 (�̃�))

+ (𝜙 (𝑦
ℎ
(�̃�)) (𝑝

ℎ
(�̃�) − 𝑅

ℎ
𝑝 (�̃�)) , 𝑞

ℎ
)

= (𝑔 (𝑦
ℎ
(�̃�)) − 𝑔 (𝑦 (�̃�)) , 𝑞

ℎ
)

+ ( 𝜕
𝜕𝑡 (𝑅

ℎ
𝑝 (�̃�) − 𝑝 (�̃�)) , 𝑞

ℎ
)

+ (𝑝 (�̃�) (𝜙 (𝑦 (�̃�)) − 𝜙 (𝑦
ℎ
(�̃�))) , 𝑞

ℎ
)

+ (𝜙 (𝑦
ℎ
(�̃�)) (𝑝 (�̃�) − 𝑅

ℎ
𝑝 (�̃�)) , 𝑞

ℎ
) .

(53)

Let 𝑤
ℎ
= 𝑦

ℎ
(�̃�) − 𝑅

ℎ
𝑦(�̃�) in (52); we have

1
2

𝑑
𝑑𝑡

𝑦ℎ (�̃�) − 𝑅
ℎ
𝑦 (�̃�)2

+ 𝑎 (𝑦
ℎ
(�̃�) − 𝑅

ℎ
𝑦 (�̃�) , 𝑦

ℎ
(�̃�) − 𝑅

ℎ
𝑦 (�̃�))

+ (𝜙 (𝑦
ℎ
(�̃�)) − 𝜙 (𝑅

ℎ
𝑦 (�̃�)) , 𝑦

ℎ
(�̃�) − 𝑅

ℎ
𝑦 (�̃�))

= ( 𝜕
𝜕𝑡 (𝑦 (�̃�) − 𝑅

ℎ
𝑦 (�̃�)) , 𝑦

ℎ
(�̃�) − 𝑅

ℎ
𝑦 (�̃�))

+ (𝜙 (𝑦 (�̃�)) − 𝜙 (𝑅
ℎ
𝑦 (�̃�)) , 𝑦

ℎ
(�̃�) − 𝑅

ℎ
𝑦 (�̃�)) .

(54)

For the first term of (54), using the definition of 𝑅
ℎ
, we have

( 𝜕
𝜕𝑡 (𝑦 (�̃�) − 𝑅

ℎ
𝑦 (�̃�)) , 𝑦

ℎ
(�̃�) − 𝑅

ℎ
𝑦 (�̃�))

= ((𝑦
𝑡
(�̃�) − 𝑅

ℎ
𝑦
𝑡
(�̃�)) , 𝑦

ℎ
(�̃�) − 𝑅

ℎ
𝑦 (�̃�))

≤ 𝐶ℎ2𝑦𝑡 (�̃�)2 𝑦ℎ (�̃�) − 𝑅
ℎ
𝑦 (�̃�)

≤ 𝐶ℎ2 𝑦ℎ (�̃�) − 𝑅
ℎ
𝑦 (�̃�) .

(55)

Similarly, from the assumption of 𝜙(⋅), we can obtain

(𝜙 (𝑦 (�̃�)) − 𝜙 (𝑅
ℎ
𝑦 (�̃�)) , 𝑦

ℎ
(�̃�) − 𝑅

ℎ
𝑦 (�̃�))

≤ 𝐶𝜙1,∞ 𝑦 (�̃�) − 𝑅
ℎ
𝑦 (�̃�) ⋅ 𝑦ℎ (�̃�) − 𝑅

ℎ
𝑦 (�̃�)

≤ 𝐶ℎ2𝜙1,∞𝑦 (�̃�)2 𝑦ℎ (�̃�) − 𝑅
ℎ
𝑦 (�̃�)

≤ 𝐶ℎ2 𝑦ℎ (�̃�) − 𝑅
ℎ
𝑦 (�̃�) .

(56)

Combining (54)–(56), using 𝜖-Cauchy’s inequality, and
from the assumption of 𝐴(𝑥) and 𝜙, we have

1
2

𝑑
𝑑𝑡

𝑦ℎ (�̃�) − 𝑅
ℎ
𝑦 (�̃�)2 + 𝑐𝑦ℎ (�̃�) − 𝑅

ℎ
𝑦 (�̃�)21

≤ 𝐶ℎ4 + 1
2
𝑦ℎ (�̃�) − 𝑅

ℎ
𝑦 (�̃�)2.

(57)

Notice that

𝑦
ℎ
(�̃�) (𝑥, 0) − 𝑅

ℎ
𝑦 (�̃�) (𝑥, 0) = 𝑦ℎ

0
− 𝑅

ℎ
𝑦
0
= 0. (58)

Then, integrating (57) in time and using Gronwall’s lemma,
we have

𝑦ℎ (�̃�) − 𝑅
ℎ
𝑦 (�̃�)𝐿∞(𝐽;𝐿2) + 𝑦ℎ (�̃�) − 𝑅

ℎ
𝑦 (�̃�)𝐿2(𝐽;𝐻1) ≤ 𝐶ℎ2.

(59)

Let 𝑞
ℎ
= 𝑝

ℎ
(�̃�) − 𝑅

ℎ
𝑝(�̃�) in (53); we have

− 1
2
𝑝ℎ (�̃�) − 𝑅

ℎ
𝑝 (�̃�)2

+ 𝑎 (𝑝
ℎ
(�̃�) − 𝑅

ℎ
𝑝 (�̃�) , 𝑝

ℎ
(�̃�) − 𝑅

ℎ
𝑝 (�̃�))

+ (𝜙 (𝑦
ℎ
(�̃�)) (𝑝

ℎ
(�̃�) − 𝑅

ℎ
𝑝 (�̃�)) , 𝑝

ℎ
(�̃�) − 𝑅

ℎ
𝑝 (�̃�))

= (𝑔 (𝑦
ℎ
(�̃�)) − 𝑔 (𝑦 (�̃�)) , 𝑝

ℎ
(�̃�) − 𝑅

ℎ
𝑝 (�̃�))

+ ( 𝜕
𝜕𝑡 (𝑅

ℎ
𝑝 (�̃�) − 𝑝 (�̃�)) , 𝑝

ℎ
(�̃�) − 𝑅

ℎ
𝑝 (�̃�))

+ (𝑝 (�̃�) (𝜙 (𝑦 (�̃�)) − 𝜙 (𝑦
ℎ
(�̃�))) , 𝑝

ℎ
(�̃�) − 𝑅

ℎ
𝑝 (�̃�))

+ (𝜙 (𝑦
ℎ
(�̃�)) (𝑝 (�̃�) − 𝑅

ℎ
𝑝 (�̃�)) , 𝑝

ℎ
(�̃�) − 𝑅

ℎ
𝑝 (�̃�)) .

(60)
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Now we estimate the right side of (60):

(𝑔 (𝑦
ℎ
(�̃�)) − 𝑔 (𝑦 (�̃�)) , 𝑝

ℎ
(�̃�) − 𝑅

ℎ
𝑝 (�̃�))

≤ 𝐶𝑔𝑊2,∞ 𝑦ℎ (�̃�) − 𝑦 (�̃�) ⋅ 𝑝ℎ (�̃�) − 𝑅
ℎ
𝑝 (�̃�)

≤ 𝐶ℎ2𝑔𝑊2,∞𝑦(�̃�)2 𝑝ℎ (�̃�) − 𝑅
ℎ
𝑝 (�̃�)

≤ 𝐶ℎ2 𝑝ℎ (�̃�) − 𝑅
ℎ
𝑝 (�̃�) ,

(61)

where we used the assumption of 𝑔(⋅):

( 𝜕
𝜕𝑡 (𝑅

ℎ
𝑝 (�̃�) − 𝑝 (�̃�)) , 𝑝

ℎ
(�̃�) − 𝑅

ℎ
𝑝 (�̃�))

≤ 𝐶 𝑅ℎ
𝑝
𝑡
(�̃�) − 𝑝

𝑡
(�̃�) ⋅ 𝑝ℎ (�̃�) − 𝑅

ℎ
𝑝 (�̃�)

≤ 𝐶ℎ2𝑝𝑡 (�̃�)2 ⋅ 𝑝ℎ (�̃�) − 𝑅
ℎ
𝑝 (�̃�)

≤ 𝐶ℎ2 𝑝ℎ (�̃�) − 𝑅
ℎ
𝑝 (�̃�) ,

(62)

where we used the definition of 𝑅
ℎ
:

(𝑝 (�̃�) (𝜙 (𝑦 (�̃�)) − 𝜙 (𝑦
ℎ
(�̃�))) , 𝑝

ℎ
(�̃�) − 𝑅

ℎ
𝑝 (�̃�))

≤ 𝐶𝑝 (�̃�)0,4 𝜙 (𝑦 (�̃�)) − 𝜙 (𝑦
ℎ
(�̃�))

⋅ 𝑝ℎ (�̃�) − 𝑅
ℎ
𝑝 (�̃�)0,4

≤ 𝐶ℎ2𝑝 (�̃�)1 ⋅ 𝜙𝑊2,∞𝑦 (�̃�)2 ⋅ 𝑝ℎ (�̃�) − 𝑅
ℎ
𝑝 (�̃�)1

≤ 𝐶ℎ2𝑝ℎ (�̃�) − 𝑅
ℎ
𝑝 (�̃�)1,

(63)

where we used the embedding ‖V‖
0,4

≤ 𝐶‖V‖
1
and the

assumption of 𝜙(⋅):
(𝜙 (𝑦

ℎ
(�̃�)) (𝑝 (�̃�) − 𝑅

ℎ
𝑝 (�̃�)) , 𝑝

ℎ
(�̃�) − 𝑅

ℎ
𝑝 (�̃�))

≤ 𝐶𝜙𝑊1,∞ 𝑝 (�̃�) − 𝑅
ℎ
𝑝 (�̃�) ⋅ 𝑝ℎ (�̃�) − 𝑅

ℎ
𝑝 (�̃�)

≤ 𝐶ℎ2𝜙𝑊1,∞𝑝 (�̃�)2 ⋅ 𝑝ℎ (�̃�) − 𝑅
ℎ
𝑝 (�̃�)

≤ 𝐶ℎ2 𝑝ℎ (�̃�) − 𝑅
ℎ
𝑝 (�̃�) ,

(64)

where we used the assumption of 𝜙(⋅) and the definition of
𝑅
ℎ
.
Notice that

𝑝
ℎ
(�̃�) (𝑥, 𝑇) = 𝑅

ℎ
𝑝 (�̃�) (𝑥, 𝑇) = 0, (65)

then, combining (60)–(64), using 𝜖-Cauchy’s inequality, and
the assumption of 𝐴(𝑥) and 𝜙(⋅), we have

− 1
2

𝑑
𝑑𝑡

𝑝ℎ (�̃�) − 𝑅
ℎ
𝑝 (�̃�)2 + 𝑐𝑝ℎ (�̃�) − 𝑅

ℎ
𝑝 (�̃�)21

≤ 𝐶ℎ4 + 1
2
𝑝ℎ (�̃�) − 𝑅

ℎ
𝑝 (�̃�)2 + 𝜖𝑝ℎ (�̃�) − 𝑅

ℎ
𝑝 (�̃�)21.

(66)

Integrating (66) in time and using Gronwall lemma, we have

𝑝ℎ(�̃�) − 𝑅
ℎ
𝑝(�̃�)𝐿∞(𝐽;𝐿2) + 𝑝ℎ (�̃�) − 𝑅

ℎ
𝑝 (�̃�)𝐿2(𝐽;𝐻1) ≤ 𝐶ℎ2,

(67)

which implies (50).Thus, we complete the proof of Lemma 2.

4. Superconvergence Properties

In this section, we will discuss the superconvergence for both
the control variable and the state variables by using the results
we have got before. Let 𝜋𝑐 be the average operator defined in
[26]. Let

Ω+ = {∪𝜏 : 𝜏 ⊂ Ω, 𝑢|
𝜏
> 0} ,

Ω0 = {∪𝜏 : 𝜏 ⊂ Ω, 𝑢|
𝜏
= 0} ,

Ω𝑏 = Ω \ (Ω+ ∪ Ω0) .
(68)

In this paper, we assume that 𝑢 and 𝑇
ℎ
are regular such that

meas (Ω𝑏) ≤ 𝐶ℎ.
Let 𝑦(𝑢) and 𝑦

ℎ
(𝑢

ℎ
) be the solution of (9) and (17),

respectively. Set

𝐽 (𝑢) = {∫𝑇

0

(𝑔 (𝑦) + ℎ (𝑢)) 𝑑𝑡} ,

𝐽
ℎ
(𝑢

ℎ
) = {∫𝑇

0

(𝑔 (𝑦
ℎ
(𝑢

ℎ
)) + ℎ (𝑢

ℎ
)) 𝑑𝑡} .

(69)

Then the reduced problems of (8) and (16) read as

min
𝑢∈𝐾

{𝐽 (𝑢)} , (70)

min
𝑢
ℎ
∈𝐾
ℎ

{𝐽
ℎ
(𝑢

ℎ
)} , (71)

respectively. It can be shown that

(𝐽 (𝑢) , V) = ∫𝑇

0

(𝑗 (𝑢) + 𝐵∗𝑝, V) 𝑑𝑡,

(𝐽 (𝑢
ℎ
) , V) = ∫𝑇

0

(𝑗 (𝑢
ℎ
) + 𝐵∗𝑝 (𝑢

ℎ
) , V) 𝑑𝑡,

(𝐽 (𝑄
ℎ
𝑢) , V) = ∫𝑇

0

(𝑗 (𝑄
ℎ
𝑢) + 𝐵∗𝑝 (𝑄

ℎ
𝑢) , V) 𝑑𝑡,

(𝐽
ℎ
(𝑢

ℎ
) , V) = ∫𝑇

0

(𝑗 (𝑢
ℎ
) + 𝐵∗𝑝

ℎ
, V) 𝑑𝑡,

(72)

where 𝑝(𝑄
ℎ
𝑢) is the solution of (22)-(23) with �̃� = 𝑄

ℎ
𝑢.

In many applications, 𝐽(⋅) is uniform convex near the
solution𝑢.The convexity of 𝐽(⋅) is closely related to the second
order sufficient conditions of the control problem, which
are assumed in many studies on numerical methods of the
problem. For instance, in some applications, 𝑢 → 𝑔(𝑦(𝑢)) is
convex; see [27] for examples. Thus if 𝑗(⋅) is uniform convex
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(e.g., 𝑗(𝑢) = ∫
Ω𝑈

𝑢2), which is frequently met, then, there is a
constant 𝑐 > 0, independent of ℎ, such that

(𝐽 (𝑄
ℎ
𝑢) − 𝐽 (𝑢

ℎ
) , 𝑄

ℎ
𝑢 − 𝑢

ℎ
) ≥ 𝑐𝑄ℎ

𝑢 − 𝑢
ℎ

2𝐿2(𝐽;𝐿2),
(73)

where 𝑢 and 𝑢
ℎ
are solutions of (70) and (71), respectively,

𝑄
ℎ
𝑢 is the orthogonal projection of 𝑢which is defined in (26).

We shall assume the above inequality throughout this paper.
First, we are going to formulate the superconvergence

result for the control variable.

Theorem 3. Let 𝑢 be the solution of (12)–(14) and let 𝑢
ℎ
be the

solution of (19)–(21). One assumes that the exact control and
state solution satisfy

𝑢, 𝑗 (𝑢) + 𝐵∗𝑝 ∈ 𝐿2 (𝐽;𝑊1,∞ (Ω)) ,
𝑦 (𝑢) , 𝑝 (𝑢) ∈ 𝐻1 (𝐽;𝐻2) .

(74)

Then, one has

𝑄ℎ
𝑢 − 𝑢

ℎ

𝐿2(𝐽;𝐿2) ≤ 𝐶ℎ3/2. (75)

Proof. Let V = 𝑢
ℎ
in (14) and V

ℎ
= 𝑄

ℎ
𝑢 in (21) and then, add

the two inequalities; we have

(𝑗 (𝑢
ℎ
) + 𝐵∗𝑝

ℎ
− 𝑗 (𝑢) − 𝐵∗𝑝,𝑄

ℎ
𝑢 − 𝑢

ℎ
)

+ (𝑗 (𝑢) + 𝐵∗𝑝,𝑄
ℎ
𝑢 − 𝑢) ≥ 0.

(76)

Hence,

(𝑗 (𝑄
ℎ
𝑢) − 𝑗 (𝑢

ℎ
) , 𝑄

ℎ
𝑢 − 𝑢

ℎ
)

≤ (𝑗 (𝑄
ℎ
𝑢) − 𝑗 (𝑢) , 𝑄

ℎ
𝑢 − 𝑢

ℎ
)

+ (𝐵∗𝑝
ℎ
− 𝐵∗𝑝,𝑄

ℎ
𝑢 − 𝑢

ℎ
) + (𝑗 (𝑢) + 𝐵∗𝑝,𝑄

ℎ
𝑢 − 𝑢) .

(77)

For the second term of the right hand of (77), we divide it into
four parts:

(𝐵∗𝑝
ℎ
− 𝐵∗𝑝,𝑄

ℎ
𝑢 − 𝑢

ℎ
)

= (𝐵∗𝑝
ℎ
− 𝐵∗𝑅

ℎ
𝑝 (𝑢

ℎ
) , 𝑄

ℎ
𝑢 − 𝑢

ℎ
)

+ (𝐵∗𝑅
ℎ
𝑝 (𝑢

ℎ
) − 𝐵∗𝑝 (𝑢

ℎ
) , 𝑄

ℎ
𝑢 − 𝑢

ℎ
)

+ (𝐵∗𝑝 (𝑢
ℎ
) − 𝐵∗𝑝 (𝑄

ℎ
𝑢) , 𝑄

ℎ
𝑢 − 𝑢

ℎ
)

+ (𝐵∗𝑝 (𝑄
ℎ
𝑢) − 𝐵∗𝑝,𝑄

ℎ
𝑢 − 𝑢

ℎ
) ,

(78)

then, from (77)-(78), we have

(𝑗 (𝑄
ℎ
𝑢) − 𝑗 (𝑢

ℎ
) , 𝑄

ℎ
𝑢 − 𝑢

ℎ
)

− (𝐵∗𝑝 (𝑢
ℎ
) − 𝐵∗𝑝 (𝑄

ℎ
𝑢) , 𝑄

ℎ
𝑢 − 𝑢

ℎ
)

≤ (𝑗 (𝑄
ℎ
𝑢) − 𝑗 (𝑢) , 𝑄

ℎ
𝑢 − 𝑢

ℎ
)

+ (𝐵∗𝑝
ℎ
− 𝐵∗𝑅

ℎ
𝑝 (𝑢

ℎ
) , 𝑄

ℎ
𝑢 − 𝑢

ℎ
)

+ (𝐵∗𝑅
ℎ
𝑝 (𝑢

ℎ
) − 𝐵∗𝑝 (𝑢

ℎ
) , 𝑄

ℎ
𝑢 − 𝑢

ℎ
)

+ (𝐵∗𝑝 (𝑄
ℎ
𝑢) − 𝐵∗𝑝,𝑄

ℎ
𝑢 − 𝑢

ℎ
)

+ (𝑗 (𝑢) + 𝐵∗𝑝,𝑄
ℎ
𝑢 − 𝑢) .

(79)

Using the definition of 𝑅
ℎ
and the assumption of 𝐵, we

have

(𝐵∗𝑅
ℎ
𝑝 (𝑢

ℎ
) − 𝐵∗𝑝 (𝑢

ℎ
) , 𝑄

ℎ
𝑢 − 𝑢

ℎ
)

≤ 𝐶 𝑅ℎ
𝑝 (𝑢

ℎ
) − 𝑝 (𝑢

ℎ
) ⋅ 𝑄ℎ

𝑢 − 𝑢
ℎ


≤ 𝐶ℎ2𝑝 (𝑢

ℎ
)2 ⋅ 𝑄ℎ

𝑢 − 𝑢
ℎ


≤ 𝐶ℎ2 𝑄ℎ

𝑢 − 𝑢
ℎ

 .

(80)

From Taylor’s expansion of the function 𝑗(⋅), there exists
some value 0 ≤ 𝜃 ≤ 1 such that

(𝑗 (𝑄
ℎ
𝑢) − 𝑗 (𝑢) , 𝑄

ℎ
𝑢 − 𝑢

ℎ
)

= (𝑗 (𝑢) (𝑄
ℎ
𝑢 − 𝑢)

+1
2𝑗

 (𝑢 + 𝜃 (𝑄
ℎ
𝑢 − 𝑢)) (𝑄

ℎ
𝑢 − 𝑢)2, 𝑄

ℎ
𝑢 − 𝑢

ℎ
)

= ((𝑗 (𝑢) − 𝜋𝑐 (𝑗 (𝑢))) ⋅ (𝑄
ℎ
𝑢 − 𝑢) , 𝑄

ℎ
𝑢 − 𝑢

ℎ
)

+ (1
2𝑗

 (𝑢 + 𝜃 (𝑄
ℎ
𝑢 − 𝑢)) (𝑄

ℎ
𝑢 − 𝑢)2, 𝑄

ℎ
𝑢 − 𝑢

ℎ
)

≤ 𝐶ℎ𝑗1,∞ 𝑄ℎ
𝑢 − 𝑢 ⋅ 𝑄ℎ

𝑢 − 𝑢
ℎ


+ 1

2𝐶
𝑗 (⋅)0,∞𝑄ℎ

𝑢 − 𝑢20,4 ⋅ 𝑄ℎ
𝑢 − 𝑢

ℎ


≤ 𝐶ℎ2 𝑄ℎ

𝑢 − 𝑢
ℎ

 ,
(81)

where we used the assumption of 𝑗(⋅) and the approximation
property (29).

Notice that

(𝑗 (𝑢) + 𝐵∗𝑝,𝑄
ℎ
𝑢 − 𝑢)

= ∫
Ω
+

+∫
Ω
0

+∫
Ω
𝑏

(𝑗 (𝑢) + 𝐵∗𝑝,𝑄
ℎ
𝑢 − 𝑢) 𝑑𝑥.

(82)

Obviously, (𝑄
ℎ
𝑢−𝑢)|

Ω
0 = 0. From (14), we have pointwise

a.e. (𝑗(𝑢) + 𝐵∗𝑝) ≥ 0; we choose �̃�|
Ω
+ = 0 and �̃�|

Ω\Ω
+ = 𝑢,
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so that (𝑗(𝑢) + 𝐵∗𝑝, 𝑢)|
Ω
+ ≤ 0. Hence, (𝑗(𝑢) + 𝐵∗𝑝)|

Ω
+ = 0.

Then,

(𝑗 (𝑢) + 𝐵∗𝑝,𝑄
ℎ
𝑢 − 𝑢)

= (𝑗 (𝑢) + 𝐵∗𝑝,𝑄
ℎ
𝑢 − 𝑢)

Ω
𝑏

≤ (𝑗 (𝑢) + 𝐵∗𝑝 − 𝜋𝑐 (𝑗 (𝑢) + 𝐵∗𝑝) , 𝑄
ℎ
𝑢 − 𝑢)

Ω
𝑏

≤ 𝐶ℎ2𝑗 (𝑢) + 𝐵∗𝑝1,Ω𝑏‖𝑢‖1,Ω𝑏
≤ 𝐶ℎ2𝑗 (𝑢) + 𝐵∗𝑝1,∞‖𝑢‖

1,∞
meas (Ω𝑏)

≤ 𝐶ℎ3.

(83)

From the assumption of 𝐽(⋅), we have

∫𝑇

0

(𝑗 (𝑄
ℎ
𝑢) − 𝑗 (𝑢

ℎ
) , 𝑄

ℎ
𝑢 − 𝑢

ℎ
) 𝑑𝑡

− ∫𝑇

0

(𝐵∗𝑝 (𝑢
ℎ
) − 𝐵∗𝑝 (𝑄

ℎ
𝑢) , 𝑄

ℎ
𝑢 − 𝑢

ℎ
) 𝑑𝑡

= ∫𝑇

0

(𝑗 (𝑄
ℎ
𝑢) + 𝐵∗𝑝 (𝑄

ℎ
𝑢) , 𝑄

ℎ
𝑢 − 𝑢

ℎ
) 𝑑𝑡

− ∫𝑇

0

(𝑗 (𝑢
ℎ
) + 𝐵∗𝑝 (𝑢

ℎ
) , 𝑄

ℎ
𝑢 − 𝑢

ℎ
) 𝑑𝑡

= (𝐽 (𝑄
ℎ
𝑢) − 𝐽 (𝑢

ℎ
) , 𝑄

ℎ
𝑢 − 𝑢

ℎ
)

≥ 𝑐𝑄ℎ
𝑢 − 𝑢

ℎ

2𝐿2(𝐽;𝐿2).

(84)

Then, integrating (79) in time and combining Lemmas 1 and
2 and (79)–(84), we have

𝑐𝑄ℎ
𝑢 − 𝑢

ℎ

2𝐿2(𝐽;𝐿2) ≤ 𝐶ℎ3 + 𝜖𝑄ℎ
𝑢 − 𝑢

ℎ

2𝐿2(𝐽;𝐿2), (85)

where we have used 𝜖-Cauchy’s inequality which implies (75).
Thus, we complete the proof of Theorem 3.

In the following, we shall establish the superconvergence
results for the state variable 𝑦 and costate variable 𝑝.
Theorem 4. Let 𝑢 be the solution of (12)–(14) and let 𝑢

ℎ
be the

solution of (19)–(21). One assumes that the exact control and
state solution satisfy

𝑢, 𝑗 (𝑢) + 𝐵∗𝑝 ∈ 𝐿2 (𝐽;𝑊1,∞ (Ω)) ,
𝑦 (𝑢) , 𝑝 (𝑢) ∈ 𝐻1 (𝐽;𝐻2) .

(86)

Then, one has

𝑦ℎ − 𝑅
ℎ
𝑦𝐿∞(𝐽;𝐿2) + 𝑦ℎ − 𝑅

ℎ
𝑦𝐿2(𝐽;𝐻1) ≤ 𝐶ℎ3/2, (87)

𝑝ℎ − 𝑅
ℎ
𝑝𝐿∞(𝐽;𝐿2) + 𝑝ℎ − 𝑅

ℎ
𝑝𝐿2(𝐽;𝐻1) ≤ 𝐶ℎ3/2. (88)

Proof. First, we have the following error equation from (12)
and (19):

( 𝜕
𝜕𝑡 (𝑦

ℎ
− 𝑦) , 𝑤

ℎ
) + 𝑎 (𝑦

ℎ
− 𝑦,𝑤

ℎ
) + (𝜙 (𝑦

ℎ
) − 𝜙 (𝑦) , 𝑤

ℎ
)

= (𝐵 (𝑢
ℎ
− 𝑢) , 𝑤

ℎ
)

(89)

for any 𝑤
ℎ
∈ 𝑉

ℎ
.

Using the definition of 𝑅
ℎ
in (27), we have

( 𝜕
𝜕𝑡 (𝑦

ℎ
− 𝑅

ℎ
𝑦) , 𝑤

ℎ
) + 𝑎 (𝑦

ℎ
− 𝑅

ℎ
𝑦,𝑤

ℎ
)

+ (𝜙 (𝑦
ℎ
) − 𝜙 (𝑅

ℎ
𝑦) , 𝑤

ℎ
)

= (𝐵 (𝑢
ℎ
− 𝑢) , 𝑤

ℎ
) + ( 𝜕

𝜕𝑡 (𝑦 − 𝑅
ℎ
𝑦) , 𝑤

ℎ
)

+ (𝜙 (𝑦) − 𝜙 (𝑅
ℎ
𝑦) , 𝑤

ℎ
)

(90)

for any 𝑤
ℎ
∈ 𝑉

ℎ
.

We take𝑤
ℎ
= 𝑦

ℎ
−𝑅

ℎ
𝑦 in (90), and using the assumption

of 𝐴(𝑥) and 𝜙(⋅), then
1
2

𝑑
𝑑𝑡

𝑦ℎ − 𝑅
ℎ
𝑦2 + 𝑐𝑦ℎ − 𝑅

ℎ
𝑦21

≤ ( 𝜕
𝜕𝑡 (𝑦

ℎ
− 𝑅

ℎ
𝑦) , 𝑦

ℎ
− 𝑅

ℎ
𝑦) + 𝑎 (𝑦

ℎ
− 𝑅

ℎ
𝑦, 𝑦

ℎ
− 𝑅

ℎ
𝑦)

+ (𝜙 (𝑦
ℎ
) − 𝜙 (𝑅

ℎ
𝑦) , 𝑦

ℎ
− 𝑅

ℎ
𝑦)

= (𝐵 (𝑢
ℎ
− 𝑢) , 𝑦

ℎ
− 𝑅

ℎ
𝑦) + (𝑦

𝑡
− 𝑅

ℎ
𝑦
𝑡
, 𝑦

ℎ
− 𝑅

ℎ
𝑦)

+ (𝜙 (𝑦) − 𝜙 (𝑅
ℎ
𝑦) , 𝑦

ℎ
− 𝑅

ℎ
𝑦) .

(91)

Now, we estimate the right hand of (91). From (29)-(30), (75),
and using 𝜖-Cauchy’s inequality, we have
(𝐵 (𝑢

ℎ
− 𝑢) , 𝑦

ℎ
− 𝑅

ℎ
𝑦)

= (𝐵 (𝑢
ℎ
− 𝑄

ℎ
𝑢) , 𝑦

ℎ
− 𝑅

ℎ
𝑦) + (𝐵 (𝑄

ℎ
𝑢 − 𝑢) , 𝑦

ℎ
− 𝑅

ℎ
𝑦)

≤ 𝐶 𝑢ℎ − 𝑄
ℎ
𝑢 ⋅ 𝑦ℎ − 𝑅

ℎ
𝑦

+ 𝐶𝑄ℎ
𝑢 − 𝑢−1𝐵∗ (𝑦

ℎ
− 𝑅

ℎ
𝑦)1

≤ 𝐶 𝑢ℎ − 𝑄
ℎ
𝑢 ⋅ 𝑦ℎ − 𝑅

ℎ
𝑦 + 𝐶ℎ2‖𝑢‖

1

𝑦ℎ − 𝑅
ℎ
𝑦1

≤ 𝐶 (𝑢ℎ − 𝑄
ℎ
𝑢2 + 𝑦ℎ − 𝑅

ℎ
𝑦2) + 𝐶ℎ4 + 𝜖𝑦ℎ − 𝑅

ℎ
𝑦21,
(92)

(𝑦
𝑡
− 𝑅

ℎ
𝑦
𝑡
, 𝑦

ℎ
− 𝑅

ℎ
𝑦)

≤ 𝐶 𝑦𝑡 − 𝑅
ℎ
𝑦
𝑡

 ⋅ 𝑦ℎ − 𝑅
ℎ
𝑦

≤ 𝐶ℎ2𝑦𝑡2 𝑦ℎ − 𝑅
ℎ
𝑦

≤ 𝐶ℎ4 + 𝐶𝑦ℎ − 𝑅
ℎ
𝑦2.

(93)
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Then, using the assumption of 𝜙(⋅), we have

(𝜙 (𝑦) − 𝜙 (𝑅
ℎ
𝑦) , 𝑦

ℎ
− 𝑅

ℎ
𝑦)

≤ 𝐶𝜙1,∞ 𝑦 − 𝑅
ℎ
𝑦 ⋅ 𝑦ℎ − 𝑅

ℎ
𝑦

≤ 𝐶ℎ2𝜙1,∞𝑦2 ⋅ 𝑦ℎ − 𝑅
ℎ
𝑦

≤ 𝐶ℎ4 + 𝐶𝑦ℎ − 𝑅
ℎ
𝑦2.

(94)

Therefore, inserting (92)–(94) in (91), we have

1
2

𝑑
𝑑𝑡

𝑦ℎ − 𝑅
ℎ
𝑦2 + 𝑐𝑦ℎ − 𝑅

ℎ
𝑦21

≤ 𝐶𝑢ℎ − 𝑄
ℎ
𝑢2 + 𝐶𝑦ℎ − 𝑅

ℎ
𝑦2 + 𝐶ℎ4.

(95)

Notice that

𝑦
ℎ
(𝑥, 0) − 𝑅

ℎ
𝑦 (𝑥, 0) = 0, (96)

then, integrating (95) in time, using Gronwall’s lemma, and
from the result of Theorem 3, we can easily obtain that

𝑦ℎ − 𝑅
ℎ
𝑦𝐿∞(𝐽;𝐿2) + 𝑦ℎ − 𝑅

ℎ
𝑦𝐿2(𝐽;𝐻1) ≤ 𝐶ℎ3/2, (97)

which implies (87).
Then, from (13) and (20), we have the following error

equation

− ( 𝜕
𝜕𝑡 (𝑝

ℎ
− 𝑝) , 𝑞

ℎ
) + 𝑎 (𝑞

ℎ
, 𝑝

ℎ
− 𝑝)

+ (𝜙 (𝑦
ℎ
) 𝑝

ℎ
− 𝜙 (𝑦) 𝑝, 𝑞

ℎ
) = (𝑔 (𝑦

ℎ
) − 𝑔 (𝑦) , 𝑞

ℎ
) ,
(98)

for any 𝑞
ℎ
∈ 𝑉

ℎ
. Using the definition of 𝑅

ℎ
in (27), we have

− ( 𝜕
𝜕𝑡 (𝑝

ℎ
− 𝑅

ℎ
𝑝) , 𝑞

ℎ
) + 𝑎 (𝑞

ℎ
, 𝑝

ℎ
− 𝑅

ℎ
𝑝)

+ (𝜙 (𝑦
ℎ
) (𝑝

ℎ
− 𝑅

ℎ
𝑝) , 𝑞

ℎ
)

= (𝑔 (𝑦
ℎ
) − 𝑔 (𝑦) , 𝑞

ℎ
) + ( 𝜕

𝜕𝑡 (𝑅
ℎ
𝑝 − 𝑝) , 𝑞

ℎ
)

+ (𝜙 (𝑦
ℎ
) (𝑝 − 𝑅

ℎ
𝑝) , 𝑞

ℎ
)

+ (𝑝 (𝜙 (𝑦) − 𝜙 (𝑦
ℎ
)) , 𝑞

ℎ
) .

(99)

We take 𝑞
ℎ
= 𝑝

ℎ
− 𝑅

ℎ
𝑝, and using the assumption of 𝜙(⋅) and

𝐴(𝑥), then

− 1
2

𝑑
𝑑𝑡

𝑝ℎ − 𝑅
ℎ
𝑝2 + 𝑐𝑝ℎ − 𝑅

ℎ
𝑝21

≤ −( 𝜕
𝜕𝑡 (𝑝

ℎ
− 𝑅

ℎ
𝑝) , 𝑝

ℎ
− 𝑅

ℎ
𝑝)

+ 𝑎 (𝑝
ℎ
− 𝑅

ℎ
𝑝, 𝑝

ℎ
− 𝑅

ℎ
𝑝)

+ (𝜙 (𝑦
ℎ
) (𝑝

ℎ
− 𝑅

ℎ
𝑝) , 𝑝

ℎ
− 𝑅

ℎ
𝑝)

= (𝑔 (𝑦
ℎ
) − 𝑔 (𝑦) , 𝑝

ℎ
− 𝑅

ℎ
𝑝)

+ (𝑅
ℎ
𝑝
𝑡
− 𝑝

𝑡
, 𝑝

ℎ
− 𝑅

ℎ
𝑝)

+ (𝜙 (𝑦
ℎ
) (𝑝 − 𝑅

ℎ
𝑝) , 𝑝

ℎ
− 𝑅

ℎ
𝑝)

+ (𝑝 (𝜙 (𝑦) − 𝜙 (𝑦
ℎ
)) , 𝑝

ℎ
− 𝑅

ℎ
𝑝) .

(100)

Now, we estimate the right hand of (100). From the assump-
tion of 𝑔, we have

(𝑔 (𝑦
ℎ
) − 𝑔 (𝑦) , 𝑝

ℎ
− 𝑅

ℎ
𝑝)

= (𝑔 (𝑦
ℎ
) − 𝑔 (𝑅

ℎ
𝑦) , 𝑝

ℎ
− 𝑅

ℎ
𝑝)

+ (𝑔 (𝑅
ℎ
𝑦) − 𝑔 (𝑦) , 𝑝

ℎ
− 𝑅

ℎ
𝑝)

≤ 𝐶𝑔𝑊2,∞ (𝑦ℎ − 𝑅
ℎ
𝑦 ⋅ 𝑝ℎ − 𝑅

ℎ
𝑝

+ 𝑅ℎ
𝑦 − 𝑦 ⋅ 𝑝ℎ − 𝑅

ℎ
𝑝)

≤ 𝐶 𝑦ℎ − 𝑅
ℎ
𝑦 ⋅ 𝑝ℎ − 𝑅

ℎ
𝑝 + 𝐶ℎ2𝑦2 ⋅ 𝑝ℎ − 𝑅

ℎ
𝑝

≤ 𝐶ℎ4 + 𝐶𝑦ℎ − 𝑅
ℎ
𝑦2 + 𝐶𝑝ℎ − 𝑅

ℎ
𝑝2.

(101)

Using the definition of 𝑅
ℎ
, we have

(𝑝
𝑡
− 𝑅

ℎ
𝑝
𝑡
, 𝑝

ℎ
− 𝑅

ℎ
𝑝)

≤ 𝐶 𝑝𝑡 − 𝑅
ℎ
𝑝
𝑡

 ⋅ 𝑝ℎ − 𝑅
ℎ
𝑝

≤ 𝐶ℎ2𝑝𝑡2 𝑝ℎ − 𝑅
ℎ
𝑝

≤ 𝐶ℎ4 + 𝐶𝑝ℎ − 𝑅
ℎ
𝑝2.

(102)

From the assumption of 𝜙(⋅) and the definition of 𝑅
ℎ
, we can

obtain

(𝜙 (𝑦
ℎ
) (𝑝 − 𝑅

ℎ
𝑝) , 𝑝

ℎ
− 𝑅

ℎ
𝑝)

≤ 𝐶𝜙𝑊1,∞ 𝑝 − 𝑅
ℎ
𝑝 ⋅ 𝑝ℎ − 𝑅

ℎ
𝑝

≤ 𝐶ℎ2𝜙𝑊1,∞𝑝2 ⋅ 𝑝ℎ − 𝑅
ℎ
𝑝

≤ 𝐶ℎ4 + 𝐶𝑝ℎ − 𝑅
ℎ
𝑝2.

(103)
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From the assumption of 𝜙(⋅) and 𝜖-Cauchy’s inequality, we
have

(𝑝 (𝜙 (𝑦) − 𝜙 (𝑦
ℎ
)) , 𝑝

ℎ
− 𝑅

ℎ
𝑝)

≤ 𝐶𝑝0,4 𝜙 (𝑦) − 𝜙 (𝑦
ℎ
) ⋅ 𝑝ℎ − 𝑅

ℎ
𝑝0,4

≤ 𝐶𝑝1 ⋅ 𝜙𝑊2,∞ 𝑦 − 𝑦
ℎ

 ⋅ 𝑝ℎ − 𝑅
ℎ
𝑝1

≤ 𝐶 (𝑦 − 𝑅
ℎ
𝑦 + 𝑅ℎ

𝑦 − 𝑦
ℎ

) 𝑝ℎ − 𝑅
ℎ
𝑝1

≤ 𝐶ℎ2𝑦2𝑝ℎ − 𝑅
ℎ
𝑝1 + 𝐶 𝑦ℎ − 𝑅

ℎ
𝑦 𝑝ℎ − 𝑅

ℎ
𝑝1

≤ 𝐶ℎ4 + 𝐶𝑦ℎ − 𝑅
ℎ
𝑦2 + 𝜖𝑝ℎ − 𝑅

ℎ
𝑝21.

(104)

Therefore, inserting (101)–(104) in (100), we have

− 1
2

𝑑
𝑑𝑡

𝑝ℎ − 𝑅
ℎ
𝑝2 + 𝑐𝑝ℎ − 𝑅

ℎ
𝑝21

≤ 𝐶𝑦ℎ − 𝑅
ℎ
𝑦2 + 𝐶𝑝ℎ − 𝑅

ℎ
𝑝2 + 𝜖𝑝ℎ − 𝑅

ℎ
𝑝21 + 𝐶ℎ4.

(105)

Notice that

𝑝
ℎ
(𝑥, 𝑇) − 𝑅

ℎ
𝑝 (𝑥, 𝑇) = 0, (106)

then, integrating (105) in time, using Gronwall’s lemma and
(97), we have

𝑝ℎ − 𝑅
ℎ
𝑝𝐿∞(𝐽;𝐿2) + 𝑝ℎ − 𝑅

ℎ
𝑝𝐿2(𝐽;𝐻1) ≤ 𝐶ℎ3/2. (107)

Thus, we complete the proof of Theorem 4.

5. Numerical Example

In this section, we carry out a numerical example to demon-
strate our theoretical results.The optimal problemwas solved
numerically by a precondition projection algorithm; see, for
instance, [28], with codes developed based on AFEPack [29].
In order to validate the superconvergence results, we shall
consider the following full-discrete scheme. Let 𝑡

𝑖
:= 𝑖Δ𝑡, 𝑖 =

0, 1, . . . , 𝑁, Δ𝑡 > 0 being the time-step, and 𝑁 := [𝑇/Δ𝑡], the
integral part of 𝑇/Δ𝑡. In the example, we choose the domain
Ω = [0, 1] × [0, 1] and 𝐵 = 𝐼.

We now shall consider the fully discrete approximation
for semidiscrete problem (19)–(21) by using the backward

Euler scheme in time. The scheme is as follows: find
(𝑦𝑖

ℎ
, 𝑝𝑖

ℎ
, 𝑢𝑖

ℎ
) ∈ 𝑉

ℎ
× 𝑉

ℎ
× 𝐾

ℎ
such that

(𝑦𝑖
ℎ
− 𝑦𝑖−1

ℎ

Δ𝑡 , 𝑤
ℎ
) + 𝑎 (𝑦𝑖

ℎ
, 𝑤

ℎ
) + (𝜙 (𝑦𝑖

ℎ
) , 𝑤

ℎ
)

= (𝑓 (𝑥, 𝑡
𝑖
) + 𝐵𝑢𝑖

ℎ
, 𝑤

ℎ
) , ∀𝑤

ℎ
∈ 𝑉

ℎ
, 𝑖 = 1, 2, . . . , 𝑁,

𝑦0
ℎ
= 𝑦ℎ

0
(𝑥) , 𝑥 ∈ Ω,

(𝑝𝑖−1
ℎ

− 𝑝𝑖
ℎ

Δ𝑡 , 𝑞
ℎ
) + 𝑎 (𝑞

ℎ
, 𝑝𝑖−1

ℎ
) + (𝜙 (𝑦𝑖

ℎ
) 𝑝𝑖−1

ℎ
, 𝑞

ℎ
)

= (𝑦𝑖
ℎ
− 𝑦

𝑑
(𝑥, 𝑡

𝑖
) , 𝑞

ℎ
) , ∀𝑞

ℎ
∈ 𝑉

ℎ
, 𝑖 = 𝑁,𝑁 − 1, . . . , 1,

𝑝𝑁
ℎ

(𝑥) = 0, 𝑥 ∈ Ω,
(𝑢𝑖

ℎ
+ 𝐵∗𝑝𝑖−1

ℎ
, V

ℎ
− 𝑢𝑖

ℎ
)
𝑈

≥ 0, ∀V
ℎ
∈ 𝐾

ℎ
, 𝑖 = 1, 2, . . . , 𝑁,

(108)

where 𝑦ℎ
0
∈ 𝑉ℎ is an approximation of 𝑦

0
defined above.

Example 5. The example is to solve the following 2D
parabolic control problem:

min ∫1

0

1
2 (𝑦 − 𝑦

𝑑

2 + 𝑢 − 𝑢
0

2) 𝑑𝑡,

s.t. 𝜕𝑦
𝜕𝑡 − Δ𝑦 + 𝑦3 = 𝑢 + 𝑓, 𝑢 ≥ 0,

(109)

where

𝑦 (𝑥, 𝑡) = sin (𝜋𝑥
1
) sin (𝜋𝑥

2
) 𝑡,

𝑢
0
(𝑥, 𝑡) = 0.5 − sin (𝜋𝑥

1
) sin (𝜋𝑥

2
) 𝑡,

𝑦
𝑑
(𝑥, 𝑡) = 𝑦 + 𝜕𝑝

𝜕𝑡 + Δ𝑝 − 3𝑦2𝑝,
𝑝 (𝑥, 𝑡) = sin (𝜋𝑥

1
) sin (𝜋𝑥

2
) (1 − 𝑡) ,

𝑢 (𝑥, 𝑡) = max (𝑢
0
− 𝑝, 0) ,

𝑓 (𝑥, 𝑡) = 𝜕𝑦
𝜕𝑡 − Δ𝑦 + 𝑦3 − 𝑢.

(110)

The dual equation of the state equation is

−𝜕𝑝
𝜕𝑡 − Δ𝑝 + 3𝑦2𝑝 = 𝑦 − 𝑦

𝑑
. (111)

Table 1 shows the errors ‖𝑢 − 𝑢
ℎ
‖
𝐿
2
(𝐽;𝐿
2
)
and ‖𝑄

ℎ
𝑢 −

𝑢
ℎ
‖
𝐿
2
(𝐽;𝐿
2
)
on a sequence of uniformly refined meshes, where

‖𝑢 − 𝑢
ℎ
‖
𝐿
2
(𝐽;𝐿
2
)
denotes

𝑢 − 𝑢
ℎ

𝐿2(𝐽;𝐿2) = (
𝑁

∑
𝑖=0

𝑢 (𝑡
𝑖
) − 𝑢𝑖

ℎ


2

0

Δ𝑡)
1/2

(112)

and similarly for ‖𝑄
ℎ
𝑢 − 𝑢

ℎ
‖
𝐿
2
(𝐽;𝐿
2
)
. We choose Δ𝑡 = 0.005 in

our numerical example. The superconvergence phenomenon
of ‖𝑄

ℎ
𝑢 − 𝑢

ℎ
‖
𝐿
2
(𝐽;𝐿
2
)
can be observed clearly from Table 1.
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Table 1:The error of example on sequential uniform refinedmeshes.

Resolution ‖𝑢 − 𝑢
ℎ
‖
𝐿
2
(𝐽; 𝐿
2
)

‖𝑄
ℎ
𝑢 − 𝑢

ℎ
‖
𝐿
2
(𝐽; 𝐿
2
)

10 × 10 4.373𝐸 − 2 5.369𝐸 − 3
20 × 20 2.180𝐸 − 2 2.021𝐸 − 3
40 × 40 1.096𝐸 − 3 6.217𝐸 − 4
80 × 80 5.483𝐸 − 4 2.303𝐸 − 4

6. Conclusion

In this paper, we present the superconvergence analysis for
the semidiscrete finite element approximation of optimal
control problems governed by semilinear parabolic equa-
tions. Here, the results seem to be new and detailed proof can
be used inmore areas.Wewill study some results of supercon-
vergence for optimal control, such as superconvergence for
optimal control problems governed by semilinear parabolic
equations with mixed finite element method.
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