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We will investigate the superconvergence for the semidiscrete finite element approximation of distributed convex optimal control
problems governed by semilinear parabolic equations. The state and costate are approximated by the piecewise linear functions
and the control is approximated by piecewise constant functions. We present the superconvergence analysis for both the control

variable and the state variables.

1. Introduction

Finite element approximation of optimal control problems
plays a very important role in numerical methods for these
problems. There have been extensive studies on this aspect,
for example, [1-14]. A systematic introduction of finite
element method for PDEs and optimal control problems can
be found in, for example, [15-18]. The superconvergence of
nonlinear parabolic problem was studied in [19]. In [20],
superconvergence was obtained for parabolic optimal control
problems with convex control constraints, where the state
partial differential equations are linear.

Optimal control problems governed by nonlinear
parabolic state equations, a priori error estimates of finite
element approximation, were studied in, for example, [21, 22].
In this paper, we will study the superconvergence of both the
control variable and the state variables for this problem.

The model optimal control problem that we shall study in
detail is the following convex optimal control problem:

[ a0 +nwal,

milr<1 {
ue 0
¥ (6,1) = div (A (x) Vy (x, 1) + ¢ (y (x,1))

=(f +Bu)(x,t), x€Q, te(0,T],

y(x,t)=0, x€0Q, tel0,T],

y(x,0)=y,(x), xeQ.

)

Here, the bounded open set QO ¢ R* is a convex polygon or
has the smooth boundary 0Q. Let B be a linear continuous
operator from L*(0, T; L*(Q)) to L*(0,T;L*(Q)) and f e
L*(0, T;L*(Q)). Assume that y,(x) € H*(Q)[()H,(Q),
Alx) = (cli]-(x))z)<2 with a;(x) € L*°(Q) being a symmetric
matrix and, for any vector X € R’ there is a constant ¢ > 0
satisfying

X'AX > || X3 2

Here, K denotes the admissible set of the control variable,
which is defined by

K ={ii(x,t) € I* (0, T;L* () : i1 (x, 1) 2 0,
(3)
ae. xeQ,te [O,T]}.

In this paper, we adopt the standard notation W™ (Q) for
Sobolev spaces on Q) with a norm || - IIm,P given by

M, = > 1DV (4)

|a|<m



asemi-norm | - |,, , given by
b, = 2 1DV (5)

laj=m

We set Wom’p(Q) = {v e W™P(Q) : v|yq = 0}. For p = 2, we
denote
H™(Q) =W™"(Q),  Hy'(Q) =W (Q),
Il = 1I-llo,-

We denote by L°(J; W™?(Q)) the Banach space of all L
integrable functions from J into W™?(Q), with norm

(6)

Il = 11l 25

1/s

for s € [1,00),
(7)

and the standard modification for s = co, where ] = [0, T].
Similarly, one can define the spaces H' (0, T; W™(Q))) and
C*(0, T; W™4(Q)). The details can be found in [23]. In addi-
tion, ¢ and C denote general positive constants independent
of h.

The plan of the paper is as follows. In Section 2, we shall
give a brief review on the finite element method and then
construct the approximation scheme for the optimal control
problem. In Section 3, we shall give some preliminaries and
some intermediate error estimates. In Section 4, superconver-
gence results for both control and state variables were derived.
In Section 5, we give a numerical example to demonstrate our
theoretical results. In the last section we make a conclusion
and state some future works.

T
Il = || 16lfumrcart)

2. Approximation for the Optimal
Control Problem

To fix idea, we shall take the state space W = L*(0,T; V) with
V= HS (Q) and the control space X = L2(0, T;U) with U =
L*(Q)). Then the problem (1) can be restated as

T
min {L (g9 (y) +hw) dt)}, (8)
(ypw) +a(y,w)+(¢(y),w) = (f + Bu,w), o
te(0,T], VweV,
y(x,0) =y, (x), (10)

where y € H'(0, T;U) (W, u € X, and

a(y,w)= JQ ((AVy)-Vw), Vy,weV. (11)

It follows from the assumption on A that there is a positive
constant C > 0 such that a(v,v) > C||v||%, forallv e V.
We make the following assumptions.

(1) ¢(-) € W*®(=R,R) for any R > 0, ¢'(y) € L*(Q) for
any y € H'(Q),and ¢’ > 0.
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(2) Let h(u) = IQ j(u), where j(-) is a smooth and convex
function such that j"(u) e WH®(Q) and j"'(-) €
L®(R). The function g(-) has the same property as

h(:).

It is well known (see, e.g., [24]) that the control problem
(8)-(10) has a solution (y,u) and that if a pair (y,u)
is the solution of (8)-(10), then there is a costate p €
HY(0,T;U) (1W such that the triplet (y, p,u) satisfies the
following optimality conditions for ¢ € (0, T]:

(ypw)+a(y,w)+(¢(y),w) = (f +Buw), YweV,
y(x,0)=y,(x), x€Q,

(12)
~(ppa)+al(ap)+(¢' (W) p.a)=(d (»).9), VYqeV,
p(x,T)=0, xeQ,

(13)
(j/ ) +Bp,v-u)20, Vvek, (14)

where B” is the adjoint operator of B.

In the following we construct the finite element approx-
imation for the optimal control problem (8)-(10). For ease
of exposition we will assume that () is a convex polygon. Let
T}, be a quasi-uniform (in the sense of [25]) partition of Q
into triangles. And let i be the maximum diameter of T' in
T),. Moreover, we set

U, ={z €U :iily is constant on all T € T),},
_ (15)
Vh = {yh € C(Q) : yth € PI,VT € Th’yh|aQ = 0} s

where P, is the space of polynomial of degree less than or
equal to 1.

For simplicity, in this paper we shall assume that K, =
K (U,,. Now, the semidiscrete finite element approximation
of the problem (8)-(10) is as follows:

min {[ @O n@)al. 0

uy, ()€K,

(Zmwn )+ aliown) + @ On)w) = (F + Buppwy),

t e (0, T] N th € Vh’
(17)
Y, (%,0) = yi (%), (18)

where y, € H'(0,T;V,) and yé‘ € V,, is an approximation
of y, which will be defined below. The control problem (16)-
(18) has a solution (y,, u;,), and if a pair (y,, uy,) is the solution
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of (16)-(18), then there is a costate p;, such that the triplet
(V> P> uy,) satisfies the following optimal conditions:

0
(a)’mwh) +a(ypwy) + (¢ (), wy) = (f + Buy, wy,),
th € Vh’

Yn (x,0) =yg (x), xeQ,
(19)

0
- (gph)%) +a (g )+ (8" ) P ) = (9" (1) > an)
Vay, € Vi,

pn(x,T)=0, x€Q,

(20)

(j, (uh) + B*ph’ vy — uh) >0, VVh € Kl’l' (21)

3. Some Preliminaries

First, we shall use some intermediate variables. Forany # € K,
let (y(#), p(#1)) be the solution of the following equations:

(3 (@), w) +a(y @, w)+ (¢ (y@),w) = (f + Bi,w),
Yw €V,

;V(ﬁ) (x,0) = Yo (x), x€eQ,

(22)
~(p,@),q) +a(gp@)+(¢' (y @) p@),q)

=(d' (y@).q), vqeV, (23)

p@)(x,T)=0, xeQ.

Then, for any #i € K, let (y, (%), p,(#)) be the solution of
the following equations:

0
(5 @01) + 0 0.0 + (9 0 ) )
=(f+Bi,w,), VYw,€V,,

Y (@) (x,0) = yp (x), x€Q,
o B o
- (gph () 7‘]}1) +a(qu pu @) + (¢ (7, @) py (), 95

= (9, (¥ (ﬁ))’%)> Vg, € Vi

pp (@) (x,T) =0, xeQ.

(24)
Thus, we have

(Wi 1) = (v () oy (141)) -
(25)

(rp)=(yw),pw),

We define the standard L*(2)-orthogonal projection Q, :
U — U, which satisfies, for any v € U,

(v = Quy> ) =0, Vv, €U, (26)

Next, let us recall the elliptic projection R, : V. — V,
which satisfies, for any w € V,

a(w-Rw,wy,) =0, Yuw, €V, (27)
Let
)’g = Ry (28)
We have the approximation properties:

ly - Quyl_, < Ch1+5|1,'/|1,r, s=0,1, for y e W (Q),
(29)

w - R,w| < CH|wll, for w e H* (Q) N H, (Q).
(30)

Now, we establish the following error estimates for the
intermediate variables.

Lemma 1. Let u be the solution of (12)-(14); for h sufficiently
small, there exists a positive constant C which only depends on
A and Q, such that

1(Qut4) = y @)l o giz2y + 17 Qutt) = y @)l 2y < CH2,
(31)

I2(Qu) = P oo g1z + 12(Qu4) = P 2 gp) < CH
(32)

Proof. Let i = Quu and & = u in (22)-(23), respectively; then
we have the following error equations:

(57 /(a0 =y )., ) + a3 (@) =y . 01)

+ (¢ (r (Quu) =6 (y W), wy) = (B(Quu —u),wy),

(33)
0
(2 ((@u) - p ).y ) + o (an p(Qa0) - p @)

+(¢' (v (Quu) p(Quu) - ¢’ (y W) p (W), q,)

= (' (Qu) -9 (y@).a4),
(34)

for any wy, € Vj, and g, € V},. We shall estimate (31) and (32),
respectively.
First, let wy, = y(Q,u) — y(u) in (33); we have

0
(2 ((Qu) - »69). Q) - » )
+a(y(Qu) -y @),y (Qu)-yw) (35)

+(¢(y (Qu) - ¢ (y ), y (Quu) - y ()
= (B(Quu—u),y(Qu) -y W);



namely,
L)y @) -yl
+a(y(Qu) -y @),y (Qu)-yw) (36)
+ (¢ (v (Qu) = ¢ (y (), y (Quut) - y ()
= (B(Quu—u), y(Quu) - y ().

Now, we estimate the right side of (36). Using the continuity
of B and (29), we have

(B(Quu—u),y(Quu) -y w)
< C||B" (y (Quu) = y )| |lQuu —ul_,  (37)

< CH|ly (Quu) - y ), lull,-

Combining (36)-(37), using the e-Cauchy’s inequality and the
assumption of A(x) and ¢(-), we have

1d 2 2
23 ly (Quu) =y @ + el y(Quue) -y 8)

< Ch* + €|y (Qu) - y W)
Notice that
¥ (Quu) (x,0) = y (1) (x,0), (39)

then, integrating (38) in time and using Gronwall’s lemma, we
have

"J’ (Quu) -y (”)”LOO(};U) + ||)/ (Quu) -y (”)||L2(I;Hl) < CH’.
(40)

Then, by choosing q;, = p(Q,,u) — p(u) in (34), we have

- <% (P (Quu) = p (W), p(Quu) - p (u))

+a (p(Quu) — pw), p(Quu) — p ()
+(¢' ((Qu) p(Qu) ¢ (yw) pw), (4D
p(Quu) —p(w) )

= (9 (y(Qu) - g' (y @), p(Quu) - pW));
namely,

1d

- E(E”P (Qu) - p W)’

+a(p(Qu) - pw),p(Qu) - pw)
+(¢' (v (Quw) (p(Quu) - p (), p (Quu) - p (1))
=g y(@Qu) -4 (yw),p(Qu) - pw)

+(p @) (¢ (y W) - &' (y(Quu)))» p(Quu) — p(w)).
(42)

ISRN Applied Mathematics

Now, we estimate the right side of (42). From the assumption
of the convex function g(-), we have

(9 y(Qu)-g (y®), p(Qu) - pw))
< Clglyee 1y (Quu) = ¥ @) - [P (Quut) - p W)

< Clp (Qu) = p@)|* + Cly (Que) - y @),
(43)

and using the assumption of ¢(-) and e-Cauchy’s inequality,
we have

(P @) (¢ (y @) = ¢ (v (Quu)), p (Quu) ~ p(w))
<Clp Wy ¢ (v @) = ¢ (v (Qu))|
o (Quu) = p (W)
< Clp @, - [$llyeeo [y @) = y (Quu)
[P (Quu) - p (W),
< Clly (Quu) - y @)[* +elp (Quu) - p W)

(44)

where we used the embedding [[vll,, < C|v|l;. Combining
(42)-(44) and from the assumption of A(x) and ¢(-), we have

1d
-2 2P Q) - p @I + lp (Que) - p W

<C(ly(@u) -y @] +]p(Qu) - pw|) ©)
+elp(Qu) - pw-
Notice that
P(Quu) (x,T) = p () (x,T); (46)

then integrating (45) in time, using Gronwall’s lemma and
(31), we have

Ip (Quu) - p (u)”L"O(I;U) +[lp(Quu) - p (”)||L2(};Hl) < CH’,
(47)

which completes the proof of Lemma 1. O
Lemma 2. Forany i € K, if the intermediate solution satisfies

y (@), p@@) e H (J;H), (48)
then, one has

"J’h () - R,y (ﬁ)“Lm(I;LZ) + “)’h () - R,y (ﬁ)"LZ(I;Hl) < CK’,
(49)

"Ph (ﬁ) - th (ﬁ)lleU;Lz) + “Ph (ﬁ) - th (a)"LZ(];Hl) < Chz.
(50)
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Proof. From (22)-(23) and (24), we have the following error
equations:

(% (o @) —y(ﬁ)),wh) +a(y, @ -y @,w,)
+(@On@) - ¢ (y@),w,) =0,
- (% (pu @) —p@),qh) +a(qy py @ - p@) OV

+(¢" (@) pu ) - ¢' (y @) p (@), q5)

=(9' @)~ ' (y@).q1)

for any wy, € V,, and g, € V,,. Using the definition of Ry, the
above equation can be restated as

<% (y (@) = Ryy (@), wh> +a(y, @) - R,y (@) ,w,)
+ (¢ (v, (@) — ¢ (R,y (@) , wy,)
0
= <g (y @) - R,y (ﬁ)),wh>

+(p(y @) - ¢ (Ryy (@), wy),
(52)

0
- (a (p @) - R,p (@) ,qh) + a(qp py @) - Ry,p (@)
+(¢' (v @) (i (@) - Ryp (@), g1
=(d' @) -4 (y@).4q)
0
+ <a (R,p (1) - P(@)y%)
+(p@ (¢ (v @) - ¢' (3, @)) )

+(¢' (v @) (p (@) — Ryp ()41 -
(53)

Let wy, = y,(&1) — R, y(#1) in (52); we have

1d

3 2l @ - Ry @)

+a(y, @) — Ry (@), y, (1) — R,y (i1))
+ (¢ (y, @) — ¢ (R,y (@), yp, (@) — R,y (@) (54)

_ (% (y @ - R,y @), y, (@) - R,y (ﬁ)>

+ (¢ (y (@) — ¢ (Ryy (@) » yp, (@) — Ry, y (i) .

For the first term of (54), using the definition of R,, we have

(20 @-Ry@).3@-Ry@)

= ((y, @) = Ry, @), yy, (@) — R,y (@)

(55)
< C |y, @], 13 @ = Ruy @)
< CH |y, @ - Ry @)]
Similarly, from the assumption of ¢(-), we can obtain
(@ (y @) = ¢ Ry (@), yy (@) = Ryy (@)
< Clpl o Iy @ = Ry @] - [y @) - Ryy @)
(56)

< CR* @], ooy @I, | @) = Ryy @)

< CH ||y, @) - Ry @)] .

Combining (54)-(56), using e-Cauchy’s inequality, and
from the assumption of A(x) and ¢, we have

Ld

3 2 @ = Ry @I + ey, @ - Ry @

1 (57)
<Ch'+ E"yh (1) = Ry (a)llz

Notice that

v, () (x,0) — R,y (@) (x,0) = yg - Ry, =0. (58)

Then, integrating (57) in time and using Gronwall’s lemma,
we have

"yh () - Ryy (ﬁ)“Lw(];LZ) + “yh () - Ry (ﬁ)"Lz(];Hl) < CH.
(59)

Let g;, = p,(11) — R, p(ii) in (53); we have

1
=3 lpw @) - Rup @
+a(py, (@) - R,p (@), py (@) - Ry p (@)
+(¢' (o @) (P @ = Ryp @), py, (@) — R, (i)

- (g’ O @)~ g' (y @), py @ ~ Ryp (ﬁ))
i (% (Rup (@) = p (@), py (7)) = Ryp (m)

+(p @) (¢' (y @) - ¢ (3, @)), py (@) - Ryp (@)

+ (¢ (v @) (p (@) — Ryp (@), py, (i) = Ry,p (i0) ).
(60)



Now we estimate the right side of (60):

(9" @) - g’ (y @), py (@) ~ Ryp @)
< Cllglyees I @ = y @) - | pi @) - Ry,p @)

c Rlghyly @l oy @ -Rep@]
< CI* || py, (@) - R,p @),
where we used the assumption of g(-):
(£ @@ - p@). 51 @~ R, @)
< ClRup: @) = p @] - |pn @)~ Rup @]

< CH||p, @), - |l p @) - Ry,p @)
< CH |p,, (@) - R,p @),

where we used the definition of Ry;:

(p@) (¢' (y @) ¢ (3, @) p (@) - Ry,p (i)
<Clp @y, ¢ (v @) - ¢ (3, @)
|l @ — Ryp @], 4
< CEp @, - |¢lwee:lly @I, - | pw @ ~ Rup @,

< CI*|py @) — Ryp @),
(63)

where we used the embedding [vl,, <
assumption of ¢(-):

Clvll; and the

(¢ G @) (p @) = Ry,p (@), py, (i) — Ry, p (@)
< Clplyies 2 @ ~ Rup @ - | P @) ~ Ryp @) 60
< CE ¢l @, - 1P @ = Rup @)
< CH* || py @) - R,p @)||»
where we used the assumption of ¢(-) and the definition of

R,.
Notice that

pn (@) (x,T) = Ryp (1) (x,T) =0, (65)

then, combining (60)-(64), using e-Cauchy’s inequality, and
the assumption of A(x) and ¢(-), we have

1d ~ = i i
-2 2o @ - Rup @I + el @ - Rp @[]
<O+ Sl @~ Rup @I + el @ - Rup @I
(66)
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Integrating (66) in time and using Gronwall lemma, we have

|24 @) = Ry, p @) oo 112y + [P @) = Rp @] 251 < CH
(67)

which implies (50). Thus, we complete the proof of Lemma 2.
O

4. Superconvergence Properties

In this section, we will discuss the superconvergence for both
the control variable and the state variables by using the results
we have got before. Let 1° be the average operator defined in
[26]. Let

Q" ={ur:tcQul, >0},

Q" ={ur:tcQul, =0}, (68)
Q"=0a\(a'ua’).

In this paper, we assume that u and T}, are regular such that
meas (Q°) < Ch.

Let y(u) and y,(u;,) be the solution of (9) and (17),
respectively. Set

1 =1{[ 6O+ nua}.

; (69)
5 ) ={ [ (90 )+ ) ]
Then the reduced problems of (8) and (16) read as
min {J ()}, (70)
12161121 Un (u)} (71)
respectively. It can be shown that
! T !
(] (u),v) = .[o (] (u) +B*p,v)dt,
! T ! *
(" () ov) = [ (7 )+ B p () v)
(72)

(7' (Qu),v) = LT (' (Quu) + B p(Quu),v) dt,

Utedon) = [ (7 )+ B o)t

where p(Qyu) is the solution of (22)-(23) with & = Qju.

In many applications, J(-) is uniform convex near the
solution u. The convexity of J(-) is closely related to the second
order sufficient conditions of the control problem, which
are assumed in many studies on numerical methods of the
problem. For instance, in some applications, u — g(y(u)) is
convex; see [27] for examples. Thus if j(-) is uniform convex
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(e.g., j(u) = IQU u?), which is frequently met, then, there is a
constant ¢ > 0, independent of 4, such that

(]' (Quu) = T' (1), Quui — uh) > c|Quu - ”h"iz(];LZ)’
(73)

where u and u, are solutions of (70) and (71), respectively,
Qy,u is the orthogonal projection of u which is defined in (26).
We shall assume the above inequality throughout this paper.

First, we are going to formulate the superconvergence
result for the control variable.

Theorem 3. Let u be the solution of (12)-(14) and let u, be the
solution of (19)-(21). One assumes that the exact control and
state solution satisfy

u,j (u)+B"p e L* (W' (Q),
(74)
y (W), p) e H (J;H).

Then, one has
"Qhu - Mh"Lz(I;Lz) < Ch3/2. (75)

Proof. Let v = uy, in (14) and v;, = Q,u in (21) and then, add
the two inequalities; we have

(j' (w,) + B p,— j' () = B" p, Quu —u,)

+(j' @ + B p.Qu—u)=0.

(76)

Hence,

(JJ (Quu) - JJ (un), Quu — ”h)
< (7' (Quu) = j (w), Quu —w,)
+ (B p, — B p, Quu —uy,) + (j' (u) + B"p,Qpu - u).
(77)

For the second term of the right hand of (77), we divide it into
four parts:

(B"pi, = B" p, Quuu — )
= (B py = B"Ryp (up,) , Quu — )
+(B"Ryp () =B p (), Quu—w,)  (78)
+(B"p (uy) = B p (Quu) , Quu — )
+(B"p (Quu) = B'p, Quu — ),

then, from (77)-(78), we have
(' (Qua) = j' (un) , Quut ~ )
= (B"p (un) = B p (Quu) , Quu — uy)
< (7 (Quut) = 1 (), Que )
+ (B"p, = B'R,p (w,) , Quu — uy,) (79)
+ (B™Ryp (uy) = B™p () , Quu — )
+ (B p (Quu) = B" p, Quu — )
+(j (W) + B p,Qu-u).

Using the definition of R;, and the assumption of B, we
have

(B*Ryp (up,) = B" p () , Quut — 1)
< C||Rup () = p (un)] - [ Qute = 1
< C|p ()|, - Qe = oy
< CH* |Quu — uy|.

From Taylor’s expansion of the function j(-), there exists
some value 0 < 0 < 1 such that

(' (Quu) = j' (), Qu =y
- (/" 6 (Qui - w)
#25" (0+ 0/(Quut — ) (Qua = ) Q=
=((j" @ -7 (j" W)) - (Quu - 1), Quu - 1)
+ (%j"' (u+ 0 (Quu - u)) (Quu — ), Quu - uh>
< ChYJ"| o I Qute = ]+ Quia =

# 20" Ol Qs =l Q- ]

< Ch2 ”Qhu - uh” N
(81)
where we used the assumption of j(-) and the approximation
property (29).
Notice that

(j' (u) + B p,Quu — u)
(82)
= Lr + Lo + J;)b (j' (u) + B* p,Qpu - u) dx.

Obviously, (Qju—u)|qe = 0. From (14), we have pointwise
a.e. (j'(u) + B*p) = 0; we choose ii|+ = 0 and Ulg\gr = U



so that (j'(u) + B* p,u)|q+ < 0. Hence, (j' (1) + B* p)|g+ = 0.
Then,

(' @) + B" p, Quut — )
=(j )+ B"p,Quu - u)Qb
<(j/@+Bp-n°(j' W)+ B p),Qu-u),

(83)
< Ch2||j' (u)+B'p

| ool 0

< CH|j' )+ B'p

b
'1)00””"1,00 meas (Q )

<Ch.

From the assumption of J(-), we have
T ,
[, (7 @)~ 1 ) Q=)
T .
- L (B*p (uy) = B p (Quu) , Quu — uy,) dt
T .1 "
= J’O (J (Qhu) +B p (Qhu) )Qhu - uh) dt (84)

T
- L (JJ (uy) + B p (uy,), Quui — ”h) dt

= (]’ (Quu) =T (wy) , Quu - ”h)

> C"Qhu - uh“iz(];Lz).

Then, integrating (79) in time and combining Lemmas 1 and
2 and (79)-(84), we have

o[ Qut = 1212y < CH + €| Quut =ty 1202y (85)

where we have used e-Cauchy’s inequality which implies (75).
Thus, we complete the proof of Theorem 3. O

In the following, we shall establish the superconvergence
results for the state variable y and costate variable p.

Theorem 4. Let u be the solution of (12)-(14) and let u,, be the
solution of (19)-(21). One assumes that the exact control and
state solution satisfy

u,j (u)+ B p e L* (W' (Q)),
(86)
y (), p) e H (J;H).
Then, one has

Iy - Rh)’“LOO(J;LZ) +yn - Rhy"Lz(I;Hl) < Ch"?, (87)

2w — th||L°°(];L2) +|pn - th“Lz(];Hl) <cr’. (88)
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Proof. First, we have the following error equation from (12)
and (19):

(£ 0= 20w1) +a 0= 7w) + SO0 -6 ()1)

= (B(uy, —u),w,)

(89)
for any wy, € V.
Using the definition of R, in (27), we have
0
3t (h = Rpy) > wy, | +a(y, — Ry, wy)
+ (¢ (7)) — ¢ (Ryy), wy)
(90)

= (8- + (31 (= Bay) )

+ (¢ () - ¢ (Ruy)>wy)

for any wy, € V.
We take wy, = y;, — R,y in (90), and using the assumption
of A(x) and ¢(-), then

Ld

T lyn - Rh)’"2 + |y, - Rhy“?

0
< <a (Ph = Ruy) sy - Rh)’) +a(y, = Ry, yn — Ryy)

+(¢ (yn) — ¢ (Ruy) > v — Ruy)
= (B(up—u), yp = Ryy) + (3 = Ry v — Ryy)

+(p(») — ¢ (Ruy), yu — Ryy)-
(91)

Now, we estimate the right hand of (91). From (29)-(30), (75),
and using e-Cauchy’s inequality, we have

(B (uy, = 1)y = Ryy)
= (B (uy = Quu) > yu — Ryy) + (B(Quu —u), y, — Ryy)
< Cllun = Quull - [y = Ruy|
+ CllQuu = ul_,[B" (3 = Ry,
< C lluy = Quull - |y = Ryy|l + CH* Il |y, = Ry

<C (””h - Qh“”2 +|yn - Rh)’||2) +Ch* + ey, - Rh)’"?’
(92)

(e = Ry yn — Ryy)
< Cly: = Ruyel - lyn - Ryl
< CH|lyill, |y — Ruy|

< Ch* +Clly, - Ry

(93)
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Then, using the assumption of ¢(-), we have

(¢ (y) = ¢ (Ruy)s yn — Ryy)
< Cléll oo 17 = Ryl - lyn = Ruy|
< CH(|¢l, o I¥1; - Iy = Ruyl

< CH* + Clly, - Rpy|”.

Therefore, inserting (92)-(94) in (91), we have

1d 2 2
Ea”)’h = Ryy|” + ¢y — Ryl (95)

< Clluy, = Quull” + Cllyn ~ Ruy| + Ch*.
Notice that
yp, (x,0) =R,y (x,0) =0, (96)

then, integrating (95) in time, using Gronwall’s lemma, and
from the result of Theorem 3, we can easily obtain that

I = Ryl peogazy + 170 = Ruyllgmy < Ch?, (97)

which implies (87).
Then, from (13) and (20), we have the following error
equation

- (a (Ph_P)’qh) +a(dy pu=p)

+(¢' ) pu-0 ) pran) = (9 ) -9 ()an)>
(98)

for any g, € Vj,. Using the definition of Ry, in (27), we have

- <% (Pn — Rup) ’Qh> +a(qu P — Rup)
+ (ﬁbl () (Pr = Rp) » Qh)
() / 9 (99)
= (9" On) -9 (0).q,) + <E (th—p),qh)

+ (¢’ () (P = Ryp) ’qh)
+(p(¢' () =¢" (n)-an)-

We take g5, = pj, — R, p, and using the assumption of ¢(-) and
A(x), then

1d
=5 g len = Rupl + clon = Ryl

0
= ‘<a (Ph_RhP)’Ph_RhP>

+a(py = Ryp> pu — Rup)
+ (¢ ) (P = Rup)» P = Rup) (100)
=(d' Ow) -9' ()P - Rup)

+ (Ry.py = Pi> P~ Rup)

+(¢' ) (P~ Rup) P~ Rup)

+ (P (‘/” (»-¢ (}’h)) s Pn — th) .

Now, we estimate the right hand of (100). From the assump-
tion of g, we have

(9" On) =9 () pu—Rup)
= (9" () -9 (Ryy), pu — Ryp)
+(9' (Ruy) =g (). pu ~ Rup)
< Cllglyeeo (134 = Ruyll - 1w = Rup
Ry =yl low = Rpl)

< Cllyw = Ruy| - |pn = Rupl + CH?| 3], - | 1 - Rip|
< Ch" +Clly, - Rh;V"2 +Cl p - RhP“Z‘

(101)
Using the definition of R;,, we have
(Pe = Rupi> pu = Ryp)
< Cllpe = Rupil - | = Rup
(102)

< CH||pi, |pn = Repl

< Ch* +C||p, - Ryp|™.

From the assumption of ¢(-) and the definition of R;,, we can
obtain

(¢ ) (P = Rup) P = Ryp)
< Clglyien |2 = Rupl - low - Rupl
< CH*||$llyae Pl - |20~ Ripl
< Ch' +C|lp, — Ryp|”.

03)
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From the assumption of ¢(-) and e-Cauchy’s inequality, we
have

(P (f/’, (y)-¢' (,‘Vh)) P~ Ryp)
< Clplos |6 () = ¢ Gn)] - 12 = Ruplo
< Clel, - 18l 1y = 2all - |25 = Rupl,
<C(ly = Ryl + |Rwy = 3l |21 = Rupll,
< CE |yl 0pn = Rupll, + Cllyn = Ryl 1w = Rupl,

< Ch' +Cly, - Rh)’"2 + €| py - RhP“i'
(104)

Therefore, inserting (101)-(104) in (100), we have

___"Ph RhP" +c|py - th||1

2dt
< Clly, - Rh)’”2 +Clp - th"2 + €| p — th”i +Ch'.
(105)
Notice that
Pn (x5, T) = R,p(x,T) =0, (106)

then, integrating (105) in time, using Gronwall’s lemma and
(97), we have

190 = Rupllioograzy + 195 = Rupllizgamy < CH. (107)

Thus, we complete the proof of Theorem 4. O

5. Numerical Example

In this section, we carry out a numerical example to demon-
strate our theoretical results. The optimal problem was solved
numerically by a precondition projection algorithm; see, for
instance, [28], with codes developed based on AFEPack [29].
In order to validate the superconvergence results, we shall
consider the following full-discrete scheme. Let ¢; := iAt, i =
0,1,...,N, At > 0 being the time-step, and N := [T/At], the
integral part of T'/At. In the example, we choose the domain
Q=1[0,1] x[0,1]and B=1.

We now shall consider the fully discrete approximation
for semidiscrete problem (19)-(21) by using the backward

ISRN Applied Mathematics

Euler scheme in time. The scheme is as follows: find
(W Pl ) € Vi, XV, x K, such that

()’h A;Vh ,wh) +a(yL,wh) + (¢> (y}’;))wh)

= (f (xt) +Buj,w,), Yw, €V, i=12,..,N,

y2=yg(x), x € Q,

(B i)+ alanst) (6 O )

:(yh ya (%), qh) Vg, €V, i=N,N-1,...,1,

pr(x)=0, xeQ,

u;)u 20, Vv,€eK,, i=12,...,N,
(108)

i w -1
(uh+B JA

where yé' € V" is an approximation of y, defined above.

Example 5. The example is to solve the following 2D
parabolic control problem:

1
. 1
min |3 (y = yall + =)
(109)

9y

s.t. o ~Ay+y =u+f, u=0,

where
¥ (x,t) = sin (7x, ) sin (7x,) £,
uy (x,t) = 0.5 — sin (7x, ) sin (x, ) t,

o)
ya (5t = y+ v dp-37°p,

(110)
p (x,t) = sin (7x;) sin (nx,) (1 - 1),

u(x,t) p,0),

= max (u, —

f(x,t) = ——Ay+y - u.

The dual equation of the state equation is

5)
—a—f —Ap+3y°p=y -y (1)
Table1 shows the errors [lu—ull;272) and Quu -
upll 127,12y on a sequence of uniformly refined meshes, where
lee — Mh||L2([;L2) denotes

1/2

N .
T O O Y R
i=0

and similarly for [|Q,u — uy |2 (7.12)- We choose At = 0.005 in
our numerical example. The superconvergence phenomenon
of |Qyu — l/lh"LzU;Lz) can be observed clearly from Table 1.
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TaBLE 1: The error of example on sequential uniform refined meshes.

Resolution |lee = uh”Lz(I;Lz) lQ,u - ”h”LZ(]; 2
10 x 10 4.373E -2 5.369E — 3
20 x 20 2.180E -2 2.021E-3
40 x 40 1.096E -3 6.217E — 4
80 x 80 5.483E - 4 2.303E -4

6. Conclusion

In this paper, we present the superconvergence analysis for
the semidiscrete finite element approximation of optimal
control problems governed by semilinear parabolic equa-
tions. Here, the results seem to be new and detailed proof can
be used in more areas. We will study some results of supercon-
vergence for optimal control, such as superconvergence for
optimal control problems governed by semilinear parabolic
equations with mixed finite element method.
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