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A mathematical model of potentiometric enzyme electrodes for a nonsteady condition has been developed. The model is based on
the system of two coupled nonlinear time-dependent reaction diffusion equations for Michaelis-Menten formalism that describes
the concentrations of substrate and productwithin the enzymatic layer. Analytical expressions for the concentration of substrate and
product and the corresponding flux response have been derived for all values of parameters using the new homotopy perturbation
method. Furthermore, the complex inversion formula is employed in this work to solve the boundary value problem.The analytical
solutions obtained allow a full description of the response curves for only two kinetic parameters (unsaturation/saturation
parameter and reaction/diffusion parameter). Theoretical descriptions are given for the two limiting cases (zero and first order
kinetics) and relatively simple approaches for general cases are presented. All the analytical results are compared with simulation
results using Scilab/Matlab program. The numerical results agree with the appropriate theories.

1. Introduction

Electrochemical biosensors are used as detectors in several
commercial analyzers for the accurate and rapid determina-
tion of various metabolites such as urea, glucose, lactate, and
creatinine [1–5]. These biosensors are fabricated by immo-
bilizing appropriate bioreagents (i.e., enzymes) in a layer
adjacent to the sensing surface of the basic electrochemical
transducers. The enzyme layer catalyzes the conversion of
metabolite molecules, ultimately consuming or producing
an electrochemically detectable species. Thus, the analytical
performance of these biosensor systems is largely dependent
upon the properties of the immobilized enzyme layer incor-
porated.

A biosensor is an analytical device comprising of a
biological element capable to recognize an analyte, coupled
with a transducer which generates a signal proportional to
the concentration of the analyte and it combines the selec-
tivity and specificity of an immobilized biologically active
compound with a signal transducer [6–8]. The analytical

application of biosensors has become a focus of interest and
a subject of rapid progress [9–11]. The theory of enzyme-
based potentiometric sensors is being treated in a series
of pioneering contributions. Explicit solutions were derived
by Blaedel et al. [12] for the steady state response of such
electrodes which apply either to very high or to sufficiently
low substrate concentrations. Carr followed the same results
from a Fourier analysis as limiting cases for long periods
[13, 14].

A relatively simple approach was presented by Morf and
he obtained an explicit result for the electrode response that
applies to the whole range of substrate concentration [15, 16].
The response behaviors of potentiometric enzyme electrodes
as well as the product release from enzyme reactors were
treated for the steady-state case in paper [17] and for the
nonsteady state in paper [18] by the same author. Numerical
simulations were developed for modeling the reaction and
diffusion processes that arise in the functional enzymemem-
branes of such systems. These simulations represent a kind
of virtual experiments and they allowed it to get insight into
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the concentration profiles and fluxes of substrate and product
species and to analyze the final response characteristics of
enzyme-based sensors and reactors [11, 19].

To our knowledge, no general analytical expressions of
the concentrations of the substrate, product, and current have
been reported for all values of parameters [13]. The purpose
of this communication is to derive the concentrations of
the substrate, product, and current for all values of reaction
parameters using homotopy perturbation method. The the-
oretical treatments make use of the homotopy perturbation
method and lead to relationships for all decisive quantities
as a function of time. The theoretical results agree with
simulated data and offer the basis for reliable predictions
of response time ranges for enzyme electrodes and enzyme
reactors.

2. Mathematical Formation of the Problem

In this paper, we consider the analytical system based on
an enzyme-containing bulk membrane of thickness 𝑑 that
contains a uniform total concentration of the enzyme 𝐸

which is contacted on one side with an aqueous solution
of the substrate 𝑆. The substrate molecules diffuse into
the membrane phase where they react in accordance with
Michaelis-Menten type enzyme catalyzed reaction [20, 21] to
yield an electroactive product 𝑃. Consider
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𝑘
1
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2

𝐸𝑆
𝑘
3

→ 𝐸 + 𝜐𝑃, (1)

where

𝐾𝑀 =
𝑘2 + 𝑘 3

𝑘1

, (2)

where 𝐸𝑆 is the intermediate enzyme-substrate complex, 𝜐
is the number of product species obtained per substrate
molecule, 𝑘1, 𝑘2, and 𝑘3 are the rate constants of the respective
partial reactions, and𝐾𝑀 is theMichaelis constant defined in
(2).The influences of reaction and diffusion processes for the
species 𝑆 and𝑃 in the enzymemembrane are described by the
following nonlinear governing equations:
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(3)

where [𝑆]em and [𝑃]em are the concentrations of the species
in the enzyme membrane, 𝐷𝑠 and 𝐷𝑝 are the corresponding
diffusion coefficients, [𝐸]tot is the total concentration of free
enzymes and enzyme-substrate complexes that is assumed to
be constant within the membrane including surface zones,
𝜐 is the number of product species obtained per substrate
molecule, and 𝑘3 is the rate constant for the irreversible step of
product formation [17, 18]. Now, (3) are solved by assuming
the zero fluxes at 𝑥 = 0 and of equilibrium distribution at

𝑥 = 𝑑 [17, 18].The initial state is given by zero concentrations
of substrate and product species throughout [17]. Consider
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= 0 when 𝑥 = 0
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[𝑆]em = 0, [𝑃]em = 0 when 𝑡 = 0.

(4)

For enzyme reactors, the outward flux of the product species
at 𝑥 = 𝑑 is described by

𝐽𝑝 = −𝐷𝑝
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𝑥=𝑑
, (5)

where𝐷𝑝 is the diffusion coefficient of the product.

3. Dimensionless Form of the Problem

To compare the analytical results with the simulation results,
wemake the above nonlinear partial differential equations (3)
in dimensionless form by defining the following parameters:
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(6)

Here, we assume that𝐷𝑠 = 𝐷𝑝 = 𝐷.
Equations (3) reduce to the following dimensionless

form:
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(7)

where 𝑢 and V represents the dimensionless concentration of
substrate and product,𝛼 and𝛽 are saturation parameters, and
𝛾𝑠 is the reaction diffusion parameter (Thiele modulus). Now,
the boundary conditions may be presented as follows [17, 18]:

𝜕𝑢

𝜕𝑋
= 0,

𝜕V
𝜕𝑋

= 0 when 𝑋 = 0 (8)

𝑢 = 1, V =
𝛽

𝛼
when 𝑋 = 1 (9)

𝑢 = 0, V = 0 when 𝜏 = 0. (10)

The normalized flux becomes

𝜓 =
𝐽𝑝𝑑

𝐷𝑘𝑠[𝑆]aq
= −
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𝑋=1
. (11)
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4. Analytical Expressions for
the Concentrations and Current for
All Values of Parameters

By using Laplace transform technique and new Homotopy
perturbation method (Appendix A), we can obtain the con-
centrations of substrate and product as follows:
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The analytical expression for the dimensionless current is
given by
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where 𝑓𝑚 and 𝑎 are defined as in (14).

5. Analytical Expressions for
the Concentrations and Current for
Unsaturated (First Order) Kinetics

Now, we consider the limiting case where the substrate con-
centration is relatively low. In this case, 𝛼𝑢 ≤ 1 (i.e., [𝑆]em ≤

𝐾𝑀).Then, (7) will be reduced to the following dimensionless
form:
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The dimensionless form of concentrations obtained by Morf
et al. [17] using method of expressions in partial fractions is
as follows:
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The analytical expression for the dimensionless current is
given by
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6. Analytical Solutions for
the Concentrations and the Current for
Saturated (Zero Order) Kinetics

Next, we consider the limiting case where the substrate
concentration is relatively high. In this case,𝛼𝑢 ≥ 1 ([𝑆]em ≥

𝐾𝑀). Equations (7) will be reduced to the following form:

𝜕𝑢

𝜕𝜏
=
𝜕
2
𝑢

𝜕𝑋2
−
𝛾
2

𝑠

𝛼

𝜕V
𝜕𝜏

=
𝜕
2V

𝜕𝑋2
+
𝜐𝛾
2

𝑠

𝛼
.

(21)

The analytical expressions for the concentrations of substrate
and product are as follows [22]:
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Figure 1: Plot of dimensionless nonsteady concentration profiles of the substrate 𝑢 versus dimensionless distance𝑋 for various values of the
parameters 𝛾

𝑠
and 𝛼, when 𝜏 = 100. Solid lines represent the numerical simulation and the dotted lines represent the analytical solution (12).
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The analytical expression for the dimensionless current is
given by
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7. Numerical Simulation

The diffusion equations (7) for the corresponding boundary
conditions (8), (9), and (10) are solved by numericalmethods.
The function pdex 4 in Matlab software, which is a function
of solving the initial boundary value problems for partial
differential equations, was used to solve these equations
numerically (Appendix A).The numerical solutions are com-
pared with our analytical results as shown in Figures 1, 2, 3,
and 5 and this comparison gives a satisfactory agreement for
some possible values of the reaction diffusion parameters.

8. Results and Discussions

Equations (12) and (13) are the new analytical expressions
of concentrations of substrate and product for all values
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Figure 2: Plot of dimensionless nonsteady concentration profiles of the product V versus dimensionless distance 𝑋 for various values of the
parameters 𝛾𝑠, 𝛼, and 𝜐, when 𝜏 = 100. Solid lines represent the numerical simulation and the dotted lines represent the analytical solution
(13).

of parameters 𝛾𝑠 and 𝛼. The previously reported analytical
results ((17) and (19)) are in terms of the parameter 𝛾𝑠 only.

Figure 1 shows the time-dependent evolution of normal-
ized concentration profiles for the substrate 𝑢 in the enzyme
membrane of a potentiometric sensor. Figures 1(a)–1(c) show
dimensionless concentration 𝑢 versus the dimensionless dis-
tance𝑋.The reaction diffusion parameter 𝛾𝑠 is an indicator of
the competition between the reaction and diffusion.When 𝛾𝑠
is small, the kinetics dominate and the uptake of the substrate
are kinetically controlled. From Figure 1(a), it is evident that
the value of the substrate concentration 𝑢 decreases when
the reaction diffusion parameter 𝛾𝑠 increases for different
values of 𝛼. Figure 1(b) illustrates that, when 𝛾𝑠 increases, the
concentration of the substrate 𝑢 decreases even though the
value of 𝛼 is increased. It is obvious from Figure 1(c) that
when 𝛼 increases the concentration 𝑢 decreases and if 𝛼 is

very small, the concentration of the substrate is uniform and
the curve becomes a straight line. Recently, Sivasankari and
Rajendran [23] discussed the same mathematical model of
potentiometric biosensors for the steady state and according
to them when the diffusion parameter 𝛾𝑠 is very small,
the diffusion of the substrate concentration will be uniform
and the curve becomes straight line. This reveals that the
parameter time 𝑡 has greater impact on diffusion.

The normalized concentration of the product V for var-
ious values of 𝛼 and 𝜐 is plotted in Figures 2(a)–2(c). From
the figures we can conclude that the normalized product V
increases with the decrease in the value of 𝜐 and increases
with the increase in the value of 𝛼. Figures 3(a) and 3(b)
show the evolution of concentration profiles of the substrate
[𝑆]em and the product [𝑃]em for the experimental values of the
diffusion coefficient𝐷, for the thickness of the membrane 𝑑,
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Figure 3: Plot of nonsteady concentration profiles of the substrate and product versus thickness of themembrane𝑑when 𝜏 = 1 and for various
values of the parameters 𝑎 and 𝐷. Solid lines represent the numerical simulation and the dotted lines represent the analytical solutions (6),
(12), and (13).
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Figure 4: (a) Plot of dimensionless concentrations 𝑢 and V versus dimensionless distance𝑋when the dimensionless parameter 𝛾
𝑠
= 5, 𝜐 = 1,

and 𝑎 = 0.001 using (12) and (13). (b) Plot of concentrations [𝑆]em and [𝑃]em versus the thickness of the membrane 𝑑 for the experimental
values of the parameters 𝐷 = 0.045m2/s, 𝜐 = 1, and 𝑎 = 15 using (6), (12), and (13).

and for various values of 𝑎. From the figures, it is inferred
that the concentration of the substrate increases slowly when
𝑑 ≤ 20 and increases sharply when 20 ≤ 𝑑 ≤ 30.The values of
the concentrations of the substrate do not differ significantly
for all values of 𝑎 whereas the values of the concentration of
the product differ significantly for some values of 𝑎.

Figure 4(a) indicates the normalized concentration of the
substrate and product for the approximate analytical values
of the parameters which reveals that, at time 𝑡 = 0, the
membrane surface at 𝑋 = 30 is brought in contact with

a substrate sample. The substrate molecules then start to
diffuse into the enzyme layer whereas Figure 4(b) repre-
sents the concentration of the substrate and product for
the experimental values of the parameters involved in the
solutions of the nonlinear differential equations (3). The
figure infers that the catalytic reaction generates an increasing
concentration of product species towards the side of the
indicator electrode at 𝑋 = 0. Also, from the figure, it is
confirmed that 𝑢 + V = 1 or [𝑆]em + [𝑃]em = 1, for all values
of time and also for all values of the parameters involved.
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Figure 5: (a) Plot of dimensionless concentrations 𝑢 versus dimensionless distance 𝑋 for various values of 𝜏, 𝛾𝑠, and 𝛼 from bottom to top
using (12). (b) Plot of dimensionless concentrations V versus dimensionless distance 𝑋 for various values of 𝜏, 𝛾𝑠, 𝛼, and 𝜐 using (13).
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Figure 6: Plot of dimensionless current 𝜓 versus dimensionless time 𝜏 for various values of the parameters 𝛾𝑠 and 𝛼 using (15).

Figure 5(a) exhibits that the dimensionless concentra-
tion 𝑢 increases as the dimensionless time 𝜏 increases and
Figure 5(b) illustrates that the dimensionless concentration
V also increases with the increase in the dimensionless time
𝜏. Figure 6(a) characterizes the dimensionless flux versus
the dimensionless time for various values of the reaction
diffusion parameter 𝛾𝑠 and for some 𝛼 and the figure reveals
that the value of the flux increases as 𝛾𝑠 increases, whereas
Figure 6(b) exhibits that the value of flux increases as the
value of the parameter 𝛼 decreases.

Our analytical results (12) and numerical results for sub-
strate concentration are compared with previous analytical
results (17) of Morf et al. [17] in Figure 7. It exhibits that
when 𝛼 is small there is a coincidence between both the
results, whereas, when 𝛼 is 1, there is a significant difference

between both the results. The same observation for the
product concentration is exhibited in Figure 8.

9. Conclusion

The theoretical analysis of behaviour of potentiometric
biosensor was done. The coupled time-dependent nonsteady
state nonlinear diffusion equations have been solved analyti-
cally and numerically. Moreover we have obtained analytical
expressions for the substrate, product concentrations and
steady state flux. A good agreement with numerical simu-
lation data is noticed. These analytical results will be used
in determining the kinetic characteristics of the biosensor.
The theoretical model presented here can be used for the
optimization of the design of the biosensor. Furthermore,
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Figure 7: Plot of dimensionless concentration 𝑢 versus dimensionless distance 𝑋 for various values of 𝛾𝑠 and 𝛼 where “orange straight line”
represents numerical solution, “black dotted line” represents analytical solution of our work (12), and “purple dashed line” represents the
analytical solution of Worf ’s work (17).
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Figure 8: Plot of dimensionless concentration V versus dimensionless distance𝑋 for various values of 𝛾
𝑠
and 𝛼 where “orange straight line”

represents numerical solution, “black dotted line” represents analytical solution of our work (13), and “purple dashed line” represents the
analytical solution of Worf ’s work (19).

based on the outcome of this work, there is a possibility of
extending the procedure to find the approximate amounts
of substrate and product concentrations and current for the
reciprocal competitive inhibition process.

Appendices

A. Solution of (7) Using Complex
Inversion Formula

In this appendix, we indicate how (12) and (13) are derived.
Using new homotopy perturbation approach [24, 25], (7) can

be written as

𝜕𝑢

𝜕𝜏
=
𝜕
2
𝑢

𝜕𝑋2
−

𝛾
2

𝑠
𝑢

𝛼𝑢 [𝑋 = 1] + 1

𝜕V
𝜕𝜏

=
𝜕
2V

𝜕𝑋2
+

𝜐𝛾
2

𝑠
𝑢

𝛼𝑢 [𝑋 = 1] + 1
.

(A.1)

By using (9) in (A.1), we get

𝜕𝑢

𝜕𝜏
=
𝜕
2
𝑢

𝜕𝑋2
− 𝑎𝑢 (A.2)
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𝜕V
𝜕𝜏

=
𝜕
2V

𝜕𝑋2
+ 𝜐𝑎𝑢, (A.3)

where 𝑎 is defined as in (14).
Now, by applying Laplace transform to (A.2) and to the

conditions in (8), (9), and (10), we obtained the solution of
(A.2) as

𝑢 =
cosh (√𝑠 + 𝑎𝑋)
𝑠 cosh (√𝑠 + 𝑎)

. (A.4)

In this appendix, we indicate how (A.4) may be inverted
using the complex inversion formula. If 𝑦(𝑠) represents the
Laplace transform of a function 𝑦(𝜏), then, according to the
complex inversion formula, we can state that

𝑦 (𝜏) =
1

2𝜋 ∫
𝑐+𝑖∞

𝑐−𝑖∞
exp [𝑠𝜏] 𝑦 (𝑠) 𝑑𝑠

=
1

2𝜋𝑖
∮
𝑐

exp [𝑠𝜏] 𝑦 (𝑠) 𝑑𝑠,

(A.5)

where the integration in (A.5) is to be performed along a
line 𝑠 = 𝑐 in the complex plane where 𝑠 = 𝑥 + 𝑖𝑦. The real
number 𝑐 is chosen such that 𝑠 = 𝑐 lies to the right of all
the singularities but is otherwise assumed to be arbitrary. In
practice, the integral is evaluated by considering the contour
integral presented on the right-hand side of (A.5), which is
then evaluated using the so-called Bromwich contour. The
contour integral is then evaluated using the residue theorem
which states, for any analytic function 𝐹(𝑧), that

∮
𝑐

𝐹 (𝑧) 𝑑𝑧 = 2𝜋𝑖∑

𝑛

Re 𝑠[𝐹 (𝑧)]𝑧=𝑧
0

, (A.6)

where the residues are computed at the poles of the function
𝐹(𝑧). Hence, from (A.6), we note that

𝑦 (𝜏) = ∑

𝑛

Re 𝑠[exp [𝑠𝜏] 𝑦 (𝑠)]
𝑠=𝑠
0

. (A.7)

From the theory of complex variables, we can show that the
residue of a function 𝐹(𝑧) at a simple pole at 𝑧 = 𝑎 is given by

Re 𝑠[𝐹 (𝑧)]𝑧=𝑎 = lim
𝑧→𝑎

{(𝑧 − 𝑎) 𝐹 (𝑧)} . (A.8)

Hence, in order to invert (A.4), we need to evaluate

Re 𝑠 [
cosh (√𝑠 + 𝑎)𝑋
𝑠 cosh (√𝑠 + 𝑎)

] . (A.9)

The poles are obtained from 𝑠 cosh√𝑠 + 𝑎 = 0. Hence, there
is a simple pole at 𝑠 = 0 and there are infinitely many poles
given by the solution of the equation cosh√𝑠 + 𝑎 = 0 and so

𝑠𝑛 =
−𝜋
2
(2𝑛 + 1)

2
− 4𝑎

4
where 𝑛 = 0, 1, 2, . . . (A.10)

Hence, we note that

𝑢 (𝑋, 𝜏) = Re 𝑠⌊𝑠 cosh (√𝑠 + 𝑎)⌋
𝑠=0

+ Re 𝑠⌊𝑠 cosh (√𝑠 + 𝑎)⌋
𝑠=𝑠
𝑛

.

(A.11)

The first residue in (A.11) is given by

Re 𝑠[𝑠 cosh (√𝑠 + 𝑎)]
𝑠=0

= lim
𝑠→0

[
exp (𝑠𝜏) cosh (√𝑠 + 𝑎)𝑋

𝑠 cosh (√𝑠 + 𝑎)
]

=
cosh√𝑎𝑋
cosh√𝑎

.

(A.12)

The second residue in (A.11) is given by

Re 𝑠⌊𝑠 cosh (√𝑠 + 𝑎)⌋
𝑠=𝑠
𝑛

= lim
𝑠→ 𝑠
𝑛

[
exp (𝑠𝜏) cosh (√𝑠 + 𝑎)𝑋

𝑠 cosh (√𝑠 + 𝑎)
]

= lim
𝑠→ 𝑠
𝑛

[
exp (𝑠𝜏) cosh (√𝑠 + 𝑎)𝑋
𝑠 (𝑑/𝑑𝑠) cosh (√𝑠 + 𝑎)

]

= −

∞

∑

𝑚=0

[
(−1)
𝑚
𝜋 (2𝑚 + 1) 𝑒

−𝑓
𝑛
𝜏 cos ((2𝑚 + 1) 𝜋𝑋/2)

𝑓𝑚

] ,

(A.13)

where 𝑓𝑚 is defined as in (14). Here, we used cosh(𝑖𝜃) =

cos(𝜃) and sinh(𝑖𝜃) = 𝑖 sin(𝜃). From (A.11), (A.12), and (A.13),
we conclude that

𝑢 (𝑋, 𝜏)

=
cosh√𝑎𝑋
cosh√𝑎

−

∞

∑

𝑚=0

[
(−1)
𝑚
𝜋 (2𝑚 + 1) 𝑒

−𝑓
𝑚
𝜏 cos ((2𝑚 + 1) 𝜋𝑋/2)

𝑓𝑚

] ,

(A.14)

where𝑓𝑚 is defined as in (14). Similarly, we can solve (A.3) by
using complex inversion formula.

B. Matlab Program for the Summation of
Series in (12)

The Matlab program for finding the numerical solution for
(7) is as follows:

function pdex 4
m = 0;
x = linspace(0,1);
t = linspace(0,1);
sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t);
u1 = sol(:,:,1);
u2 = sol(:,:,2);
figure
plot(x,u1(end,:))
title(‘u1(x,t)’)
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xlabel(‘Distance x’)
ylabel(‘u1(x,2)’)
%——————————————————————
figure
plot(x,u2(end,:))
title(‘u2(x,t)’)
xlabel(‘Distance x’)
ylabel(‘u2(x,2)’)
%——————————————————————
function [c,f,s] = pdex4pde(x,t,u,DuDx)
c = [1;1];
f = [1;1].∗DuDx;
r = 10;
a = 0.001;
b = 1;
F1 = -(r∧2∗u(1))/(1+a∗u(1));
F2 = b∗(r∧2∗u(1))/(1+a∗u(1));
s = [F1;F2];
% ————————————————————–
function u0 = pdex4ic(x)
u0 = [0;0];
% ————————————————————–
function [pl,ql,pr,qr] = pdex4bc (xl,ul,xr,ur,t)
pl = [0;0];
ql = [1;1];
pr = [ur(1)-1; ur(2)];
qr = [0;0];

C. Matlab Program for the Numerical
Solution in (7)

Matlab program for finding the summation of the series in
(12) is as follows:

r = 10;
a = 0.001;
x = linspace(0,1);
t = 100;
b = 1;
s0 = 0;
N = 100;
for n = 0 : 1:N+1;
s = s0+((4∗(-1)∧n∗cos(((2∗n+1)/2)∗pi∗x)∗
exp((((pi∧2∗(2∗n+1)∧2)/4))∗t))/(pi∗(2∗n+1)));
end
for n = 0:1:N+1;

g0 = 0;

g = g0+((-1)∧ (n)∗(2∗n+1)∗pi∗(cos(((2∗n+1)∗pi∗x)

/2))∗(exp(((-r∧2/(1+a))-((2∗n+1)∧2∗pi∧2)/4)∗t))

/(((2∗n+1)∧2∗pi∧2+4∗(r∧2/(1+a)))/4));

end

u = (cosh(sqrt(r∧2/(1+a))∗x)/cosh(sqrt(r∧2/(1+a))));

v = b∗(1-s-u-g);

plot(x,v);

Nomenclature and Units

[𝑆]em: Substrate concentration in
the enzyme membrane
(mole/cm3)

[𝑃]em: Product concentration in
the enzyme membrane
(mole/cm3)

[𝑆]aq: Substrate concentration in
the sample (mole/cm3)

[𝑃]aq: Product concentration in
the sample (mole/cm3)

𝐷𝑠: Diffusion coefficient of the
substrate (mole/cm3)

𝐷𝑝: Diffusion coefficient of the
product (mole/cm3)

𝑘3: Rate constant for
irreversible step (sec−1)

𝐾𝑀: Michaelis constant
(mole/cm3)

[𝐸]tot: Total concentration of free
enzymes (mole/cm3)

𝜐: Number of product species
(none)

𝑘𝑠 and 𝑘𝑝: Distribution coefficient of
the species between
aqueous phase and enzyme
membrane (none)

𝑘 = 𝑘3[𝐸]tot/𝐾𝑀: Rate constant (sec
−1)

𝑋 = 𝑥/𝑑: Dimensionless distance
(none)

𝑥: Distance (cm)
𝑑: Thickness of the enzyme

membrane (cm)
𝑢: Dimensionless

concentration of substrate
(none)

V: Dimensionless
concentration of product
(none)

𝛼 = 𝑘𝑠[𝑆]aq/𝐾𝑀: Parameter quantifying the
degree of
unsaturation/saturation of
the catalytic kinetics (none)
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𝛽 = 𝑘𝑝[𝑃]aq/𝐾𝑀: Parameter quantifying the
degree of
unsaturation/saturation of
the catalytic kinetics (none)

𝛾𝑠 = √𝑘𝑑
2/𝐷𝑠: Diffusion rate constant of

substrate through the
polymer matrix reaction
diffusion parameter (none)

𝜏 = 𝐷𝑡/𝑑
2: Dimensionless time (none)

𝑡: Time (sec)
𝑎 = 𝛾
2

𝑠
/(1 + 𝛼): Dimensionless parameter

(none)
𝑓𝑚 = (𝜋

2
(2𝑚 + 1)

2
+ 4𝑎)/4: Dimensionless parameter

(none)
𝑓𝑛 = ((2𝑛 + 1)

2
𝜋
2
/4) + 𝛾𝑠: Dimensionless parameter

(none).
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