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A simple Lagrangian with squared covariant divergence of a vector field as a kinetic term turned out to be an adequate tool
for macroscopic description of the dark sector. The zero-mass field acts as the dark energy. Its energy-momentum tensor is a
simple additive to the cosmological constant. Massive fields describe two different forms of dark matter. The space-like massive
vector field is attractive. It is responsible for the observed plateau in galaxy rotation curves. The time-like massive field displays
repulsive elasticity. In balance with dark energy and ordinary matter it provides a four-parametric diversity of regular solutions
of the Einstein equations describing different possible cosmological and oscillating nonsingular scenarios of evolution of the
Universe. In particular, the singular big bang turns into a regular inflation-like transition from contraction to expansion with the
accelerated expansion at late times.The fine-tuned Friedman-Robertson-Walker singular solution is a particular limiting case at the
lower boundary of existence of regular oscillating solutions in the absence of vector fields. The simplicity of the general covariant
expression for the energy-momentum tensor allows displaying the main properties of the dark sector analytically. Although the
physical nature of dark sector is still unknown, the macroscopic theory can help analyze the role of dark matter in astrophysical
phenomena without resorting to artificial model assumptions.

1. Introduction

Currently there are two most intriguing long standing prob-
lems in astrophysics pointing to the existence of so called
“hidden sector,” containing “dark energy” and “dark matter.”
So far their interactionwith the ordinarymatter (baryons and
leptons) is observed only via gravitation.

The first problem, named “galaxy rotation curves,”
appeared in 1924, after Oort discovered the galactic halo, a
group of stars orbiting the Milky Way outside the main disk
[1]. In 1933, Zwicky [2] postulated “missing mass” to account
for the orbital velocities of galaxies in clusters.

The second problem is the accelerated expansion of
the Universe discovered through observations of distant
supernovae by Riess and Perlmutter and their colleagues in
1998 [3, 4].

At first glance, these two problems have little to do
with one another. The accelerated expansion of the Universe
indicates the existence of a hidden mechanism of repulsion
[5], while the plateau of the galaxy rotation curves is the
result of additional attraction caused by the dark matter [6].
Macroscopic approach to the dark sector problems, based on

the analysis of vector fields in general relativity, provides an
appropriate universal tool for the theoretical description of
both these phenomena. The space-like massive vector field is
attractive. It is responsible for the observed plateau in galaxy
rotation curves. The time-like massive vector field displays
repulsive elasticity. In the scale of the whole Universe it is
the source of accelerated expansion. Naturally, the previous
solutions of the Einstein equations, describing the expansion
of theUniverse filledwith themutually attractingmatter only,
inevitably contained a singularity. Inclusion of the repulsive
darkmatter into consideration allows the existence of nonsin-
gular solutions describing various possible regular scenarios
of evolution of the Universe.

This paper contains the macroscopic theory of dark
sector, based on the analysis of vector fields in general
relativity.The step by step derivations are accompanied by the
references to the benchmark achievements of the predeces-
sors.Themain attention is paid to clarify the validity of basing
assumptions.

Vector fields are used to describe quantum particles of
the ordinary matter [7]. A zero-mass particle—photon—
is a quantum of electromagnetic field obeying Maxwell
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equations. Massive bosons obey Proca equations [8–11]. The
relation of spinors and vectors ([7], page 88) facilitates
establishing Dirac equations for fermions.

Field equations for quantum particles are easily estab-
lished in accordance with the properties of their free motion
in plane geometry. If necessary (for the secondary quanti-
zation, for instance), the Lagrangian of a particle is then
constructed in such a way that the field equations minimize
the functional of action. This approach is convenient for
description of already known particles. However, it does not
help to describe the unknown substance of the dark sector.

In general relativity, the standard approach starting from
a general form of the Lagrangian of a vector field is capable
to describe not only the already known particles. It is
reasonable to start from a general form of the Lagrangian
of a vector field in general relativity and derive the vector
field equations and the energy-momentum tensor. Excluding
the terms associated with the ordinary matter, one can
separate the Lagrangian having a chance to describe the
dark sector. The separation of the Lagrangian of the dark
sector is necessary, especially if the ordinary matter in the
Universe is considered as a continuous medium with the
macroscopic energy-momentum tensor (56). Otherwise the
ordinary matter would be taken into account twice: as a
medium with the energy-momentum tensor (56) and as
quantum particles described by the vector field.

It turns out that the most simple Lagrangian of a vector
field (58) (with the squared covariant divergence as a kinetic
term) allows to describe the main observed manifestations of
the dark sector completely within the frames of the minimal
general relativity. In this case, the massless field corresponds
to the dark energy, the massive space-like field (𝜙𝐾𝜙

𝐾
< 0)

is responsible for a plateau in the galaxy rotation curves, and
the massive time-like vector field (𝜙𝐾𝜙

𝐾
> 0) displays the

repulsive elasticity. The competition of repulsive dark matter
and attractive ordinary matter leads to a variety of possible
regular scenarios of evolution of the Universe.

According to the NASA “sliced cake” diagram [12] (see
Figure 1) today there is only 4.6% of the ordinary matter
among the stuff of theUniverse. All other 95% is the unknown
substance, referred to as the dark matter and dark energy.
For this reason it is natural to start with the analysis of the
properties of dark sector and add the ordinary matter into
consideration after the role of dark sector is clarified.

The main properties of vector fields in general relativity
are recalled in Section 2 in order to clarify the specifics
of the approach based on the principle of regularity. The
features of the Proca equations allow separating the terms in
the Lagrangian, which are not connected with the ordinary
matter. It turns out that a simple Lagrangian (with the squared
covariant divergence as a kinetic term) is a proper tool for
macroscopic description of main observed properties of the
dark sector. The necessary conditions of regularity for a
space-like and a time-like vectors are different. Nevertheless,
the field equations and the energy-momentum tensor have
the same covariant form for both kinds of vector fields. The
simplicity of equations allows getting analytical solutions
in the most interesting cases. The galaxy rotation curves,

Atoms
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Dark matter
23%

Today

Dark energy
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Figure 1: Stuff of the Universe [12].

driven by the space-like vector fields, are derived in Section 3.
Various uniform and isotropic scenarios of evolution of the
Universe under the joint influence of the zero-mass vector
field, the time-like massive vector field, and the ordinary
matter are analyzed in Section 4. The current situation with
the dark sector is summarized in Section 5. Some major
astrophysical problems are specified, where the macroscopic
theory can be applied, helping to avoid the unnecessary
model assumptions. Unraveling the still unknown physical
nature of the dark energy and dark matter remains the most
pressing issue.

2. Vector Fields in General Relativity

2.1. Lagrangian of a Vector Field. Within the frames of
minimal general relativity (field equations no higher than of
the second order), the Lagrangian of a vector field 𝜙

𝐼
is a

scalar consisting of bilinear combinations of the covariant
derivatives 𝜙

𝐼;𝐾
and a scalar potential 𝑉(𝜙𝐾𝜙

𝐾
). A bilinear

combination of the covariant derivatives is a 4-index tensor

𝑆
𝐼𝐾𝐿𝑀

= 𝜙
𝐼;𝐾
𝜙
𝐿;𝑀

. (1)

A general form of the scalar 𝑆, formed via contractions of
𝑆
𝐼𝐾𝐿𝑀

, is

𝑆 = (𝑎𝑔
𝐼𝐾
𝑔
𝐿𝑀

+ 𝑏𝑔
𝐼𝐿
𝑔
𝐾𝑀

+ 𝑐𝑔
𝐼𝑀
𝑔
𝐾𝐿
) 𝑆
𝐼𝐾𝐿𝑀

, (2)

where 𝑎, 𝑏, and 𝑐 are arbitrary constants. Therefore, a general
form of the Lagrangian 𝐿 of a vector field 𝜙

𝐼
,

𝐿(𝜙
𝐼
,
𝜕𝜙
𝐼

𝜕𝑥𝐾
, 𝑔
𝐼𝐾
,
𝜕𝑔
𝐼𝐾

𝜕𝑥𝐿
) = 𝑎(𝜙

𝑀

;𝑀
)
2

+ 𝑏𝜙
𝐿

;𝑀
𝜙
;𝑀

𝐿

+ 𝑐𝜙
𝐿

;𝑀
𝜙
𝑀

;𝐿
− 𝑉 (𝜙

𝑀
𝜙
𝑀
) ,

(3)
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contains three kinetic terms with the arbitrary coefficients
𝑎, 𝑏, and 𝑐. Applying the least action principle, in view of

𝜙
𝐾
= 𝑔
𝐼𝐾
𝜙
𝐼
, 𝜙

𝐼;𝐾
=
𝜕𝜙
𝐼

𝜕𝑥𝐾
− Γ
𝐿

𝐼𝐾
𝜙
𝐿
,

Γ
𝐿

𝐼𝐾
=
1

2
𝑔
𝐿𝑀

(
𝜕𝑔
𝑀𝐼

𝜕𝑥𝐾
+
𝜕𝑔
𝑀𝐾

𝜕𝑥𝐼
−
𝜕𝑔
𝐼𝐾

𝜕𝑥𝑀
) , . . . ,

(4)

it is convenient to consider the Lagrangian (3) as a function
of 𝜙
𝐼
, 𝜕𝜙
𝐼
/𝜕𝑥𝐾, 𝑔𝐼𝐾, and 𝜕𝑔

𝐼𝐾
/𝜕𝑥𝐿 as independent variables.

2.1.1. Bumblebee Models. Strictly speaking, (3) is not yet the
most general form of the Lagrangian of a vector field. Scalars
can be made out of 𝑆

𝐼𝐾𝐿𝑀
not only via contractions, but also

by convolutions with participation of 𝜙𝐼, like 𝑔𝐼𝐾𝜙𝐿𝜙𝑀𝑆
𝐼𝐾𝐿𝑀

,
and𝑅𝐼𝐾𝜙𝐿𝜙𝑀𝑆

𝐼𝐾𝐿𝑀
. In principle, the number of independent

constants can exceed 3.
The direction of a vector is specified, and solutions can

be less symmetric than the initial Lagrangian. In this case the
symmetry of a system is considered as spontaneously broken.
Spontaneous breaking of Loretz symmetry by a vector field
𝜙
𝐼, having a nonzero expectation value in vacuum, is a subject

of so called “bumblebee theories;” see [13–16] and references
therein. Within the frames of field equations no higher than
of the second order, the most general form of the action is

𝑆 = ∫𝑑
4
𝑥√−𝑔 [𝑅 + 𝐽

𝐼𝐾𝐿𝑀
𝑅
𝐼𝐾𝐿𝑀

+ 𝐾
𝐼𝐾𝐿𝑀

𝜙
𝐼;𝐾
𝜙
𝐿;𝑀

−𝑉 (𝑔
𝐼𝐾
𝜙
𝐼
𝜙
𝐾
)] .

(5)

Here 𝑅
𝐼𝐾𝐿𝑀

is the Riemann tensor of curvature and 𝑅 =

𝑔
𝐼𝐿
𝑔
𝐾𝑀

𝑅
𝐼𝐾𝐿𝑀

, 𝐽𝐼𝐾𝐿𝑀 and𝐾𝐼𝐾𝐿𝑀 are arbitrary tensors formed
out of the vector 𝜙

𝐼
and the metric tensor 𝑔

𝐼𝐾
. In practice

people restrict themselves by simplifiedmodels. For instance,
Seifert [17] considered recently the particular case 𝐽𝐼𝐾𝐿𝑀 = 0,
𝐾𝐼𝐾𝐿𝑀𝜙

𝐼;𝐾
𝜙
𝐿;𝑀

= 𝛼𝑔𝐼𝐾𝑔𝐿𝑀(𝜙
𝐼;𝐿
− 𝜙
𝐿;𝐼
)(𝜙
𝐾;𝑀

− 𝜙
𝑀;𝐾

), where
𝑔𝐼𝐾 = 𝑔𝐼𝐾 + 𝛽𝜙𝐼𝜙𝐾 and 𝛼 and 𝛽 ars constants. The potential
𝑉(𝜙𝐿𝜙

𝐿
) is taken to have aminimumat somenonzero value of

its argument 𝜙𝐿𝜙
𝐿
. In thismodel, a perturbation of a Lorentz-

violating vector field can be interpreted as a photon field.
Why “bumblebee”? Perhaps, therewas something looking

as strange as the ability of the insect bumblebee to fly
successfully despite being sometimes questioned on theo-
retical grounds [18]. By the way, a possibility of existence
of macroscopic objects, moving at the speed of light and
having zero mass due to gravitational mass-defect, had been
mentioned by Andreev back in 1973 [19, 20].

While a vector 𝜙
𝐼
remains small compared to its vacuum

expectation value at a minimum of𝑉(𝜙𝐾𝜙
𝐾
), the Lagrangian

(3) is sufficient. However, in case of a small mass (108) the
longitudinal massive field 𝜙

0
∼ 𝑚−1; see (110). If in the

process of compression the field comes close to its vacuum
expectation value, then a phase transition with spontaneous
symmetry breaking occurs. The bumblebee approach looks
promising for future consideration of a symmetry breaking
phase transition in the state of maximum compression.

2.1.2. Specificity of Curved Space-Time. The third kinetic term
𝑐𝜙
𝐿

;𝑀
𝜙𝑀
;𝐿
in (3) can be transformed via differentiation by parts

to

𝜙
𝐿

;𝑀
𝜙
𝑀

;𝐿
= 𝜙
𝐿

;𝐿
𝜙
𝑀

;𝑀
+ (𝜙
𝑀

;𝐿
𝜙
𝐿
− 𝜙
𝐿

;𝐿
𝜙
𝑀
)
;𝑀

+ (𝜙
𝐿

;𝐿;𝑀
− 𝜙
𝐿

;𝑀;𝐿
) 𝜙
𝑀
.

(6)

Here (𝜙𝑀
;𝐿
𝜙𝐿 − 𝜙𝐿

;𝐿
𝜙𝑀)
;𝑀

is a total differential. It does not
change the integral of action, and one can use the equivalent
Lagrangian

𝐿 = (𝑎 + 𝑐) (𝜙
𝑀

;𝑀
)
2

+ 𝑏𝜙
𝐿

;𝑀
𝜙
;𝑀

𝐿

+ 𝑐 (𝜙
𝐿

;𝐿;𝑀
− 𝜙
𝐿

;𝑀;𝐿
) 𝜙
𝑀
− 𝑉 (𝜙

𝑀
𝜙
𝑀
) ,

(7)

instead of (3).
In general relativity the second covariant derivative of a

vector is not invariant against the replacement of the order of
differentiation:

𝜙
𝐼

;𝐿;𝑀
− 𝜙
𝐼

;𝑀;𝐿
= 𝑅
𝐼

𝐾𝑀𝐿
𝜙
𝐾
. (8)

𝑅
𝐼𝐾𝐿𝑀

is the Riemann tensor of curvature. Hence

𝜙
𝐿

;𝐿;𝑀
− 𝜙
𝐿

;𝑀;𝐿
= 𝑅
𝐿

𝐾𝑀𝐿
𝜙
𝐾
= 𝑅
𝐾𝑀

𝜙
𝐾
, (9)

where 𝑅
𝐾𝑀

is the Ricci tensor. In a curved space-time 𝑅
𝐾𝑀

̸=

0, and the term 𝑐(𝜙𝐿
;𝐿;𝑀

− 𝜙𝐿
;𝑀;𝐿

)𝜙𝑀 affects the integral of
action. From the point of view of general relativity all three
kinetic terms in (3) are equally important. If we adhere the
view that in the quantum physics each elementary particle is
a quantum of some field and vice versa each field corresponds
to its own quantum particle [21], then, in principle, any linear
combination of the three kinetic terms in the Lagrangian (3)
could be associated with some sort of matter.

In the plane geometry 𝑅
𝐾𝑀

= 0, the term 𝑐(𝜙𝐿
;𝐿;𝑀

−

𝜙𝐿
;𝑀;𝐿

)𝜙𝑀 drops out, a covariant derivative 𝜙𝐿
;𝑀

reduces to the
ordinary one 𝜙𝐿

,𝑀
, and there are only two arbitrary constants

(𝑏, and 𝑐 = 𝑎 + 𝑐) in the Lagrangian:

𝐿plane = 𝑏𝜙
𝐿

,𝑀
𝜙
,𝑀

𝐿
+ 𝑐𝜙
𝐿

,𝑀
𝜙
𝑀

,𝐿
− 𝑉 (𝜙

𝑀
𝜙
𝑀
) ,

𝑅
𝐾𝑀

= 0.

(10)

It is convenient to classify the vector fields 𝜙
𝐼
according

to their properties of invariance and symmetry.
The sign of the scalar 𝜙

𝐾
𝜙𝐾 is invariant against the

arbitrary transformations of coordinates. Therefore, if there
is no interaction other than via gravitation, there can be three
different independent vector fields with 𝜙

𝐾
𝜙𝐾 < 0, 𝜙

𝐾
𝜙𝐾 = 0,

and 𝜙
𝐾
𝜙𝐾 > 0. If 𝜙

𝐾
𝜙𝐾 ̸= 0, then in general relativity one

can choose a reference frame where either 𝜙
0
= 0 when

𝜙
𝐾
𝜙𝐾 < 0 (space-like vector) or 𝜙

𝐼>0
= 0 if 𝜙

𝐾
𝜙𝐾 > 0 (time-

like vector). 𝜙
𝐾
𝜙𝐾 = 0 is a separate case. The field equations

for an ordinary massive particle are easily derived basing on
the statement that in the plain space-time there is a reference
frame where the particle is at rest [7]. Hence, the ordinary
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massive particles are described by the space-like fields. For
the zero-mass particles (such as photons) there is no reference
system,where they are at rest.Thephotons are associatedwith
the massless vector field 𝑉(𝜙

𝑀
𝜙𝑀) = const. The time-like

vector fields can not be associated with the ordinary massive
particles because in the case 𝜙

𝐾
𝜙𝐾 > 0 there is no frame

where 𝜙
0
= 0. Nevertheless, one can not deny the existence

of some substance corresponding to a time-like field. From
the general relativity view point all three kinetic terms in the
Lagrangian (3) are equally important, as well as any of the
three types of vector fields could describe some sort ofmatter.

The covariant derivative 𝜙
𝐼;𝐾

can be presented as a sum of
a symmetric 𝐺

𝐼𝐾
and an antisymmetric 𝐹

𝐼𝐾
parts:

𝜙
𝐼;𝐾

= 𝐺
𝐼𝐾
+ 𝐹
𝐼𝐾
,

𝐺
𝐼𝐾
=
1

2
(𝜙
𝐼;𝐾

+ 𝜙
𝐾;𝐼
) ,

𝐹
𝐼𝐾
=
1

2
(𝜙
𝐼;𝐾

− 𝜙
𝐾;𝐼
) .

(11)

In view of 𝐺𝐿
𝐾
𝐹𝐾
𝐿
= 0 the scalar (2) can be presented in the

form

𝑆 = 𝑎(𝐺
𝐾

𝐾
)
2

+ (𝑏 + 𝑐) 𝐺
𝐿

𝐾
𝐺
𝐾

𝐿
+ (𝑏 − 𝑐) 𝐹

𝐿

𝐾
𝐹
𝐾

𝐿
. (12)

The last term with antisymmetric derivatives is identical to
electromagnetism. It becomes clear in common notations
𝐴
𝐼
= 𝜙
𝐼
/2, 𝐹
𝐼𝐾

= 𝐴
𝐼;𝐾

− 𝐴
𝐾;𝐼

. The bilinear combination
of the antisymmetric derivatives 𝐹

𝐼𝐾
𝐹𝐼𝐾 is the same as in

electrodynamics. In view of the symmetry of Christoffel
symbols Γ𝐿

𝐼𝐾
= Γ𝐿
𝐾𝐼
,

𝐴
𝐼;𝐾

− 𝐴
𝐾;𝐼

=
𝜕𝐴
𝐼

𝜕𝑥𝐾
−
𝜕𝐴
𝐾

𝜕𝑥𝐼
, (13)

and the scalar 𝐹
𝐼𝐾
𝐹𝐼𝐾 does not depend on the derivatives

of the metric tensor. On the contrary, the two first terms
in (12) with symmetric covariant derivatives contain not
only the components of the metric tensor 𝑔𝐼𝐾, but also the
derivatives 𝜕𝑔

𝐼𝐾
/𝜕𝑥𝐿. The difference between the two terms

with symmetric tensors is caused by the curvature of space-
time.

2.2. Regularity in General Relativity. In the notations

𝑎 = 𝐴, 𝑏 + 𝑐 = 𝐵, 𝑏 − 𝑐 = 𝐶, (14)

the Lagrangian is

𝐿 = 𝐴(𝐺
𝑀

𝑀
)
2

+ 𝐵𝐺
𝑀𝑁

𝐺
𝑀𝑁

+ 𝐶𝐹
𝑀𝑁

𝐹
𝑀𝑁

− 𝑉 (𝜙
𝑀
𝜙
𝑀
) .

(15)

In plane space-time it is necessary to require 𝐶 < 0.
Otherwise for a space-like vector (𝜙

0
= 0, 𝐹

𝑀𝑁
𝐹𝑀𝑁 =

(1/2)[(rot ⃗𝜙)
2

− (1/𝑐2)(𝜕 ⃗𝜙/𝜕𝑡)
2

]) the action could not have
a minimum as required by the least action principle. If
−𝐶(𝜕 ⃗𝜙/𝜕𝑡)

2

is negative, then it is possible to make the action

negative with an arbitrarily large absolute value via fairly
rapid change of ⃗𝜙 with time (within the considered time
interval); see [22], page 98.

In the regular solutions of the Einstein equations all
invariants of the Riemann curvature tensor are finite. Hence,
the invariants of the Ricci tensor 𝑅

𝐼𝐾
are finite too. By virtue

of Einstein equations the requirement of regularity automat-
ically excludes a possibility to achieve an infinite value for
all the invariants of the energy-momentum tensor 𝑇

𝐼𝐾
. In

general relativity the distribution/motion of matter and the
curvature of space-time are mutually balanced. Practically,
there is no need to require 𝐶 < 0 in advance. Necessary
restrictions, if any, on the signs of the constants 𝑎, 𝑏, and 𝑐
arise as a consequence of the condition of regularity.

The requirement that all the invariants of the Riemann
curvature tensor are finite is a necessary condition of regular-
ity in general relativity.

2.3. Vector Field Equations. The vector field 𝜙
𝐼
obeys the

Eiler-Lagrange equations

1

√−𝑔

𝜕

𝜕𝑥𝐿
(√−𝑔

𝜕𝐿

𝜕 (𝜕𝜙
𝐼
/𝜕𝑥𝐿)

) =
𝜕𝐿

𝜕𝜙
𝐼

. (16)

In terms of 𝑎, 𝑏, and 𝑐 the variational derivative 𝜕𝐿/𝜕(𝜕𝜙
𝐼
/

𝜕𝑥𝐿) is

𝜕𝐿

𝜕 (𝜕𝜙
𝐼
/𝜕𝑥𝐿)

= 2 (𝑎𝑔
𝐼𝐿
𝜙
𝐾

;𝐾
+ 𝑏𝜙
𝐼;𝐿
+ 𝑐𝜙
𝐿;𝐼
) . (17)

For 𝜕𝐿/𝜕𝜙
𝐼
we have

𝜕𝐿

𝜕𝜙
𝐼

= (𝑎𝑔
𝑁𝐾
𝑔
𝐿𝑀

+ 𝑏𝑔
𝑁𝐿
𝑔
𝐾𝑀

+ 𝑐𝑔
𝑁𝑀

𝑔
𝐾𝐿
)
𝜕

𝜕𝜙
𝐼

𝜙
𝑁;𝐾

𝜙
𝐿;𝑀

−
𝜕

𝜕𝜙
𝐼

𝑉(𝑔
𝑁𝐾
𝜙
𝑁
𝜙
𝐾
) .

(18)

𝜙
𝐼
and 𝜕𝜙

𝐼
/𝜕𝑥𝐾 are considered as independent variables in

the Lagrangian (3). In a locally geodesic reference system
(where the Christoffel symbols together with the derivatives
𝜕𝑔
𝐼𝐾
/𝜕𝑥𝐿 are zeros) (𝜕/𝜕𝜙

𝐼
)𝜙
𝑁;𝐾

𝜙
𝐿;𝑀

= 0 and 𝜕𝐿/𝜕𝜙
𝐼
=

−2𝑉󸀠𝜙𝐼. Here

𝑉
󸀠
=

𝑑𝑉

𝑑 (𝜙
𝐿
𝜙𝐿)

. (19)

The vector field equations (16), having a covariant form

𝑎𝜙
𝐿

;𝐿;𝐼
+ 𝑏𝜙
;𝐿

𝐼;𝐿
+ 𝑐𝜙
𝐿

;𝐼;𝐿
= −𝑉
󸀠
𝜙
𝐼
, (20)

in a locally geodesic system, remain the same in all other
reference frames.

In terms of 𝐴, 𝐵, and 𝐶

𝐴𝐺
𝐿

𝐿;𝐼
+ 𝐵𝐺
𝐿

𝐼;𝐿
− 𝐶𝐹
𝐿

𝐼;𝐿
= −𝑉
󸀠
𝜙
𝐼
. (21)

There are two independent terms with the symmetric
tensor 𝐺 in (21) and one with the antisymmetric tensor 𝐹.
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The physical origin of the two symmetric terms is connected
with the curvature of space-time. It becomes clear if we set
𝐹
𝐼𝐾

= 0. Then 𝜙
𝐼;𝐾;𝐿

= 𝜙
𝐾;𝐼;𝐿

, 𝐺𝐿
𝐼;𝐿

= 𝑔𝐾𝐿𝜙
𝐾;𝐼;𝐿

= 𝜙𝐿
;𝐼;𝐿

, and
(21) reduces to

𝐴𝜙
𝐿

;𝐿;𝐼
+ 𝐵𝜙
𝐿

;𝐼;𝐿
= −𝑉
󸀠
𝜙
𝐼
. (22)

The two left terms differ by the order of differentiation. In
accordance with (9) the difference between the two terms in
(22) exists only in the curved space-time:

𝜙
𝐿

;𝐿;𝐼
− 𝜙
𝐿

;𝐼;𝐿
= 𝑅
𝐼𝐾
𝜙
𝐾
. (23)

In the flat space-time the Ricci tensor 𝑅
𝐼𝐾

= 0, and in case
𝐹
𝐼𝐾

= 0 there is no physical difference between the two left
terms in (22).

If the vector field is weak, so that the second and higher
derivatives of the potential 𝑉(𝜙

𝐿
𝜙𝐿) can be neglected, then

(20) are linear,

𝑎𝜙
𝐿

;𝐿;𝐼
+ 𝑏𝜙
;𝐿

𝐼;𝐿
+ 𝑐𝜙
𝐿

;𝐼;𝐿
= −𝑉
󸀠

0
𝜙
𝐼
, 𝑉
󸀠

0
= 𝑉
󸀠
(0) , (24)

and the principle of superposition takes place, as it should be
in the case of free (noninteracting) fields.

2.3.1. Proca Equations. In the particular case 𝑎 = 0, 𝑐 = −𝑏

the field equations (20) reduce to the Proca equations [8–11]
in the case of no sources:

(𝐹
𝐼𝐿
)
;𝐿
= −

𝑉󸀠
0

2𝑏
𝜙
𝐼
, 𝑎 = 0, 𝑐 = −𝑏. (25)

Usually 𝑚 = √−𝑉󸀠
0
/𝑏 is referred to as the “mass” of a field.

Proca equations are used to describe a free massive spin-1
particle. In the case of a massless field 𝑚 = 0 (25) reduce to
the Maxwell equations.

For any tensor 𝑄𝐼𝐿 the scalar (𝑄𝐼𝐿)
;𝐿;𝐼

is symmetric with
respect to the lower indexes. Renaming the blind indexes, in
view of the symmetric properties of the Riemann and Ricci
tensors

𝑅
𝐾𝑄𝑇𝐿

= 𝑅
𝑇𝐿𝐾𝑄

= −𝑅
𝐿𝑇𝐾𝑄

,

𝑅
𝐾𝑇

= 𝑅
𝑇𝐾
,

(26)

we have

𝑄
𝐿𝐾

;𝐿;𝐾
− 𝑄
𝐿𝐾

;𝐾;𝐿
= 𝑔
𝑄𝐿
𝑅
𝑇𝑄𝐿𝐾

𝑄
𝑇𝐾

+ 𝑔
𝑃𝐾
𝑅
𝑇𝑃𝐿𝐾

𝑄
𝐿𝑇

= (𝑅
𝐾𝑇

− 𝑅
𝑇𝐾
) 𝑄
𝑇𝐾

= 0.

(27)

The scalar

(𝐹
𝐼𝐿
)
;𝐿;𝐼

= 0, (28)

because in accordance with (27) (𝐹𝐼𝐿)
;𝐿;𝐼

= (𝐹𝐼𝐿)
;𝐼;𝐿

, while for
the antisymmetric tensor (𝐹𝐼𝐿)

;𝐿;𝐼
= −(𝐹𝐿𝐼)

;𝐿;𝐼
= −(𝐹𝐼𝐿)

;𝐼;𝐿
.

Thus, it follows from the Proca equations (25) that in the
particular case 𝑎 = 0, 𝑐 = −𝑏 the covariant divergence of the
vector 𝜙

𝐼
is zero:

𝜙
𝐼

;𝐼
= 0, 𝑎 = 0, 𝑐 = −𝑏. (29)

In electrodynamics 𝜙𝐼
;𝐼
= 0 is referred to as Lorentz gauge.

The fact that 𝜙𝐼
;𝐼
= 0 does not mean that the Proca equations

are gauge invariant. (29) is the consequence of the particular
choice 𝑎 = 0, 𝑐 = −𝑏.

If still 𝑐 = −𝑏, but 𝑎 ̸= 0, we have

𝑎(𝜙
𝐿

;𝐿
)
;𝐼

+ 2𝑏(𝐹
𝐼𝐿
)
;𝐿
= −𝑉
󸀠

0
𝜙
𝐼
. (30)

The Lorentz gauge restriction (29) would automatically
exclude the case 𝑎 ̸= 0 from the consideration. Applying ()

;𝐼

to (30), the term ∼𝑏 drops out in view of (28), and, instead
of the Lorentz condition (29), the scalar 𝜙𝐼

;𝐼
obeys the Klein-

Gordon equation

(𝜙
𝐼

;𝐼
)
;𝐿

;𝐿
≡

1

√−𝑔

𝜕

𝜕𝑥𝐿
(√−𝑔𝑔

𝐾𝐿
𝜕𝜙𝐼
;𝐼

𝜕𝑥𝐾
) = −

𝑉󸀠
0

𝑎
𝜙
𝐼

;𝐼
,

𝑎 ̸= 0, 𝑐 = −𝑏.

(31)

In plain space-time “the additional condition (29) excludes
the part of 𝜙𝐼 belonging to spin 0” [7], page 72. In general
relativity the condition (29) excludes also longitudinal vec-
tors, existing in curved space-time. As it turns out, these
longitudinal vector fields are just suitable for the description
of dark matter and energy.

In the particular case 𝑐 = −𝑏 the field equation (31) for the
divergence 𝜙𝐼

;𝐼
does not contain 𝑏. Though the scalar 𝜙𝐼

;𝐼
does

not depend on 𝑏, the field itself 𝜙
𝐼
still obeys (30) containing

𝑏.
In the most simple case

𝑎 ̸= 0, 𝑏 = 𝑐 = 0, (32)

the field equations (24) reduce to 𝜕𝜙𝐿
;𝐿
/𝜕𝑥𝐼 = 0 if 𝑉󸀠

0
= 0

(massless field) and to

𝜙
𝐼
= −

𝑎

𝑉󸀠
0

𝜕𝜙𝐿
;𝐿

𝜕𝑥𝐼
, 𝑎 ̸= 0, 𝑏 = 𝑐 = 0, (33)

if 𝑉󸀠
0

̸= 0 (massive field).
The covariant divergence 𝜙𝐿

;𝐿
of a zero-mass field remains

constant through the whole space-time:

𝜙
𝐿

;𝐿
≡ 𝜙
󸀠

0
= const, 𝑎 ̸= 0, 𝑏 = 𝑐 = 0, 𝑉

󸀠
= 0. (34)

The fact that “the gauge-fixing term exactly behaves as a
cosmological constant throughout the history of the Uni-
verse, irrespective of the background evolution” had been
mentioned by Beltran Jimenez andAntonio [23].Themassive
field 𝜙

𝐼
has a potential: it is a gradient of the scalar 𝜙𝐿

;𝐿
obeying

(31).

2.3.2. Einstein-Aether Models. Vector field 𝜙
𝐾
considered as

the gradient of a scalar field Φ, (𝜙
𝐾
= 𝜕Φ/𝜕𝑥𝐾), was used

in a scalar variant of the Einstein-aether theory; see a recent
paper by Haghani et al. [24], providing a brief comprehensive
review of the topic. Einsten-aether theories [25, 26] consider
phase transitions with spontaneous violation of Lorentz sym-
metry by a vector field whose nonzero vacuum expectation
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value plays the role of the order parameter. “Einstein-aether”
is a kind of bumblebee models oriented mainly on time-like
vector fields. It is not clear how to associate a time-like vector
field with a massive quantum particle of ordinary matter,
because there is no reference frame where such a particle
could be at rest. The word “aether” in a title reflects the
situation that a time-like vector field should correspond to
something different from the ordinary matter.

A tipical action in the Einsten-aether theory [27–30] is a
particular case of (5) with 𝐽𝐼𝐾𝐿𝑀 = 0 and

𝐾
𝐼𝐾𝐿𝑀

= 𝑐
0
𝑔
𝐼𝐾
𝑔
𝐿𝑀

+ 𝑐
1
𝑔
𝐼𝑀
𝑔
𝐾𝐿
+ 𝑐
2
𝑔
𝐼𝐿
𝑔
𝐾𝑀

+ 𝑐
3
𝜙
𝐼
𝜙
𝐾
𝑔
𝐿𝑀
.

(35)

In [24] the potential 𝑉(𝜙
𝐼
𝜙𝐼) is taken as 𝑉 = 𝜆(𝜙

𝐼
𝜙𝐼 ± 1),

where 𝜆 is a Langrange-Eiler multiplier. The sign being
chosen to enforce the vector field 𝜙

𝐼
to be time-like. Another

commonly used example for the potential is a smooth
quadratic function 𝑉 = (1/2)𝜆(𝜙

𝐼
𝜙𝐼 ± 1)

2.
If the symmetry breaking vector 𝜙

𝐼
is chosen as a gradient

of a scalar, 𝜙
𝐼
= 𝜕Φ/𝜕𝑥𝐼, then it is possible to consider the

potential 𝑉 as a function of the scalar Φ only, 𝑉 = 𝑉(Φ).
In this case a Lagrangian contains not only Φ and 𝜕Φ/𝜕𝑥𝐼,
but also second derivatives of Φ. From my point of view, a
vector field approach is more convenient than the scalar one.
The equations become more simple, while their solutions are
more general. Though, in the particular case 𝑎 ̸= 0, 𝑏 = 𝑐 = 0
the vector 𝜙

𝐼
is a gradient of a scalar (see (33)), this scalar is

a covariant divergence 𝜙𝐿
;𝐿
. The Lagrangian contains only 𝜙

𝐼

and 𝜙𝐼
;𝐾
.

In the state of broken symmetry there are 4 constants
(𝑐
0
, 𝑐
1
, 𝑐
2
, 𝑐
3
) in (35) instead of 3 constants (𝑎, 𝑏, 𝑐) in (3). If

a vector field is small compared to its vacuum expectation
value and 𝑉

󸀠

0
≡ (𝑑𝑉(𝜙

𝐾
𝜙
𝐾
)/𝑑(𝜙
𝐾
𝜙
𝐾
))|
𝜙
𝐾
𝜙𝐾=0

̸= 0, then
𝑉(𝜙𝐾𝜙

𝐾
) = 𝑉(0) + 𝑉󸀠

0
𝜙𝐾𝜙
𝐾

and the second and higher
derivatives of 𝑉(𝜙𝐾𝜙

𝐾
) can be omitted. While the field is

small, the symmetry remains unbroken, and there is no
need in the fourth term in (35). On the contrary, the full
scale bumblebeemodels, including the Einsten-aether theory,
provide a solid basis for analyzing phase transitions with
spontaneous symmetry breaking in a strongly compressed
state.

2.3.3. Nongauge Longitudinal Vector Field in Plane Geometry.
In the plain centrally symmetric metric

𝑑𝑠
2
= 𝑑𝑥
02
− 𝑑𝑟
2
− 𝑟
2
(𝑑𝜃
2
+ sin2𝜃𝑑𝜑2) ,

𝑔 = −𝑟
4sin2𝜃

(36)

𝑔𝑟𝑟 = −1, and (31) for a static longitudinal vector field,
depending only on the distance 𝑟 from the center, is

1

𝑟2
𝑑

𝑑𝑟
𝑟
2
𝑑𝜙𝐿
;𝐿

𝑑𝑟
=
𝑉
󸀠

0

𝑎
𝜙
𝐿

;𝐿
. (37)

The center 𝑟 = 0 is a singular point of the spherical
coordinate system. Like a pole on the globe, the singularity

1.0
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Figure 2: 𝜙𝑟 ∼ (1/𝑥)((1/𝑥) sin𝑥 − cos𝑥) and 𝜙𝑀
;𝑀
∼ (1/𝑥) sin𝑥.

of a coordinate system has nothing to do with physical
properties of matter. The finite, regular at 𝑟 → 0, solution
of (37)

𝜙
𝐾

;𝐾
= 𝜙
󸀠

0

sin (𝑚𝑟)
𝑚𝑟

, 𝑚 = √−
𝑉󸀠
0

𝑎
(38)

(blue curve in Figure 2) exists if

𝑉󸀠
0

𝑎
< 0. (39)

Restriction (39) is a necessary condition of regularity for a
space-like vector field.

According to (33) the nonzero component of the vector
𝜙
𝐼 is 𝜙𝑟:

𝜙
𝑟
=
𝜙󸀠
0

𝑚𝑟
[
1

𝑚𝑟
sin (𝑚𝑟) − cos (𝑚𝑟)] . (40)

Radial dependences of 𝜙𝐾
;𝐾
and 𝜙𝑟 are shown in Figure 2. The

field is space-like and longitudinal: it is directed along and
depends upon the same coordinate 𝑟.

Boundary conditions for (37), separating the regular
solution at 𝑟 → 0, are

𝜙
𝐿

;𝐿
(0) ≡ 𝜙

󸀠

0
,

𝑑𝜙𝑟

𝑑𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=0
=
1

3
𝜙
󸀠

0
. (41)

(37) is a linear uniform equation, and the constant of
integration 𝜙󸀠

0
remains arbitrary.

In plain geometry 𝑔00 = 1, and in the case of a longitu-
dinal time-like vector field the Klein-Gordon equation (31) is
simply

𝑑2𝜙𝐿
;𝐿

(𝑑𝑥0)
2
= −

𝑉󸀠
0

𝑎
𝜙
𝐿

;𝐿
. (42)

Its solution 𝜙𝐿
;𝐿
= 𝜙󸀠
0
sin(√𝑉󸀠

0
/𝑎(𝑥0 − 𝑥0

0
)) is finite if

𝑉󸀠
0

𝑎
> 0. (43)

𝜙
󸀠

0
and 𝑥0

0
are constants of integration.
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Inequality (43) is a necessary condition of regularity for a
time-likemassive vector field. It is just the opposite to the one
for a space-like massive field (39).

In plain space-time conditions of regularity determine the
sign of the ratio 𝑉󸀠

0
/𝑎, which appears different for space-like

and time-like fields. In plain space-time the specific sign of
𝑎 is not restricted by the requirement of regularity. However,
there is no reason why the sign of 𝑎 should be different for
space-like and time-like vector fields. Actually it turns out
that the sign of 𝑎,

𝑎 < 0, (44)

is restricted by the requirement of regularity in a curved
space-time see Section 4.2 below. Then, as it follows from
(39), (43), and (44), the regular solutions exist, if𝑉󸀠

0
is positive

for a space-like field and negative for a time-like one.

2.4. Energy-Momentum Tensor. Using the identity

𝛿𝑔
𝐼𝐾
= −𝑔
𝐾𝑀

𝑔
𝐼𝑁
𝛿𝑔
𝑁𝑀

, (45)

the energy-momentum tensor can be expressed as

𝑇
𝐼𝐾
=

2

√−𝑔

× [
𝜕√−𝑔𝐿

𝜕𝑔𝐼𝐾
+ 𝑔
𝑀𝐼
𝑔
𝑁𝐾

𝜕

𝜕𝑥𝐿
(√−𝑔

𝜕𝐿

𝜕 (𝜕𝑔
𝑀𝑁

/𝜕𝑥𝐿)
)] .

(46)

It differs from (94.4) in [22], where the Lagrangian is a
function of 𝑔𝐼𝐾 and 𝜕𝑔𝐼𝐾/𝜕𝑥𝐿. The form (46) is more conve-
nient when 𝑔𝐼𝐾 and 𝜕𝑔

𝐼𝐾
/𝜕𝑥𝐿 are considered as independent

variables in the Lagrangian (3). In view of

2

√−𝑔

𝜕√−𝑔

𝜕𝑔𝐼𝐾
= −𝑔
𝐼𝐾
, (47)

in a locally geodesic system (where 𝜕𝑔𝐼𝐾/𝜕𝑥𝐿 = 0) the energy-
momentum tensor can be written as follows:

𝑇
𝐼𝐾
= −𝑔
𝐼𝐾
𝐿 + 2

𝜕𝐿

𝜕𝑔𝐼𝐾
+ 2𝑔
𝑀𝐼
𝑔
𝑁𝐾
(

𝜕𝐿

𝜕 (𝜕𝑔
𝑀𝑁

/𝜕𝑥𝐿)
)
;𝐿

.

(48)

It is worth mentioning that 𝜕𝑔𝐼𝐾/𝜕𝑥𝐿 should be set to
zero after the variational differentiations 𝜕𝐿/𝜕𝑔𝐼𝐾 and
𝜕𝐿/𝜕(𝜕𝑔

𝑀𝑁
/𝜕𝑥𝐿) are done. In terms of symmetric and anti-

symmetric tensors (11) we find

𝜕𝐿

𝜕𝑔𝐼𝐾
= 2 (𝐴𝐺

𝐿

𝐿
𝐺
𝐼𝐾
+ 𝐵𝐺
𝐿

𝐾
𝐺
𝐼𝐿
+ 𝐶𝐹
𝐿

𝐼
𝐹
𝐾𝐿
) − 𝑉
󸀠
𝜙
𝐼
𝜙
𝐾
, (49)

𝜕𝐿

𝜕 (𝜕𝑔
𝑀𝑁

/𝜕𝑥𝐿)
= −𝐴𝜙

𝑃

;𝑃
(𝑔
𝐿𝑁
𝜙
𝑀
+ 𝑔
𝐿𝑀
𝜙
𝑁
− 𝑔
𝑁𝑀

𝜙
𝐿
)

−𝐵 (𝐺𝐿𝑁𝜙𝑀 + 𝐺𝐿𝑀𝜙𝑁 − 𝐺𝑀𝑁𝜙𝐿) .

(50)

The tensor (50) is presented in a symmetric form against the
indexes𝑀,𝑁.

Substituting (49) and (50) into (48), we find the following
covariant expression for the energy-momentum tensor:

𝑇
𝐼𝐾
= −𝑔
𝐼𝐾
𝐿 + 2𝑉

󸀠
𝜙
𝐾
𝜙
𝐼
+ 2𝐴𝑔

𝐼𝐾
(𝐺
𝑀

𝑀
𝜙
𝐿
)
;𝐿

+ 2𝐵 [(𝐺
𝐼𝐾
𝜙
𝐿
)
;𝐿
− 𝐺
𝐿

𝐾
𝐹
𝐼𝐿
− 𝐺
𝐿

𝐼
𝐹
𝐾𝐿
]

+ 2𝐶 (2𝐹
𝐿

𝐼
𝐹
𝐿𝐾
− 𝐹
𝐿

𝐾;𝐿
𝜙
𝐼
− 𝐹
𝐿

𝐼;𝐿
𝜙
𝐾
) .

(51)

The vector field equations (21) were used to reduce 𝑇
𝐼𝐾

to
a rather simple form (51).

2.4.1. Checking the Zero of the Covariant Divergence 𝑇𝐾
𝐼;𝐾
=0.

The correctness of the energy-momentum tensor (51) is
confirmed by demonstration that the covariant divergence

𝑇
𝐾

𝐼;𝐾
= −𝐿
;𝐼
+ 2(𝑉

󸀠
𝜙
𝐾
𝜙
𝐼
)
;𝐾
+ 2𝐴(𝐺

𝑀

𝑀
𝜙
𝐿
)
;𝐿;𝐼

+ 2𝐵[(𝐺
𝐼𝐾
𝜙
𝐿
)
;𝐿
− 𝐺
𝐿𝐾
𝐹
𝐼𝐿
− 𝐺
𝐿

𝐼
𝐹
𝐾

𝐿
]
;𝐾

+ 2𝐶(2𝐹
𝐿

𝐼
𝐹
𝐾

𝐿
− 𝐹
𝐿𝐾

;𝐿
𝜙
𝐼
− 𝐹
𝐿

𝐼;𝐿
𝜙
𝐾
)
;𝐾

(52)

is zero [31].
Using the vector field equations (21),𝑇𝐾

𝐼;𝐾
can be presented

as

𝑇
𝐾

𝐼;𝐾
= 𝐴𝑎
𝐼
+ 𝐵𝑏
𝐼
+ 𝐶𝑐
𝐼
. (53)

The coefficients𝐴, 𝐵, and𝐶 are arbitrary constants. However,
it does not mean that the three vectors 𝑎

𝐼
, 𝑏
𝐼
, and 𝑐

𝐼
in (53) are

zeros separately. These vectors are reduced to a similar form
(see [31] for details):

𝑎
𝐼
= 2(𝜙

𝐾

;𝐾;𝐼
𝜙
𝐿
− 𝜙
𝐾

;𝐾;𝐿
𝜙
𝐼
)
;𝐿

,

𝑏
𝐼
= 2(𝐺

𝐾

𝐼;𝐾
𝜙
𝐿
− 𝐺
𝐾

𝐿;𝐾
𝜙
𝐼
)
;𝐿

,

𝑐
𝐼
= 2(𝐹

𝐾

𝐿;𝐾
𝜙
𝐼
− 𝐹
𝐾

𝐼;𝐾
𝜙
𝐿
)
;𝐿

.

(54)

The covariant divergence of the energy-momentum tensor
(53) with 𝑎

𝐼
, 𝑏
𝐼
, and 𝑐

𝐼
, given by (54) is evidently zero due to

the vector field equations (21).
The covariant field equations (20) and the energy-

momentum tensor (51) describe the behavior of vector fields
in the background of any arbitrary given metric 𝑔

𝐼𝐾
[31]. If

the back reaction of the field on the curvature of space-time
is essential, then the metric obeys the Einstein equations

𝑅
𝐼𝐾
−
1

2
𝑔
𝐼𝐾
𝑅 + Λ𝑔

𝐼𝐾
= 𝜘𝑇
𝐼𝐾
, (55)

with (51) added to𝑇
𝐼𝐾
. HereΛ and𝜘 are the cosmological and

gravitational constants, respectively. With account of back
reaction the field equations (20) are not independent. They
follow from the Einstein equations (55) with 𝑇

𝐼𝐾
(51) due to

the Bianchi identities.
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2.4.2. Ordinary Matter and Dark Sector. The ordinary matter
enters the Einstein equations via the well known energy-
momentum tensor of macroscopic objects. Consider

𝑇om 𝐼𝐾 = (𝜀 + 𝑝) 𝑢𝐼𝑢𝐾 − 𝑝𝑔𝐼𝐾. (56)

The energy 𝜀, pressure 𝑝, and, generally speaking, temper-
ature 𝑇 of the ordinary matter obey the equation of state.
So far there is no evidence of any direct interaction between
dark and ordinary matter other than via gravitation. The
gravitational interaction is described by Einstein equations
(55) with

𝑇
𝐼𝐾
= 𝑇dark 𝐼𝐾 + 𝑇om 𝐼𝐾. (57)

The general expression (51) for the energy-momentum tensor
of a vector field describes (but is not limited to) the vector
particles, which are also the ordinary matter. In order to
describe the dark sector via vector fields it is reasonable to
separate from 𝑇

𝐼𝐾
(51) the part 𝑇dark 𝐼𝐾 which does not relate

to the ordinary matter.
The Proca equations (25) are associated with a spin-1

particle—a quantum of the ordinary matter. The particular
choice of the parameters 𝑏 = −𝑐 ensures the Lorentz
condition (29), which allows avoiding “the difficulties of
negative contribution to the energy” [32]. However, in curved
space-time the energy is not a scalar, and its sign is not
invariant against the arbitrary coordinate transformations. As
a result of the Lorentz gauge restriction the terms∼𝑎 drop out
from the Lagrangian (3), from the vector field equations (20)
and from the energy-momentum tensor (51).

To avoid the double contribution of particles of the
ordinary matter, it is reasonable to consider 𝑎 ̸= 0 and set
𝑏 = 𝑐 = 0. As simple a Lagrangian as possible

𝐿dark = 𝑎(𝜙
𝑀

;𝑀
)
2

− 𝑉 (𝜙
𝐿
𝜙
𝐿
) (58)

turns out to be an adequate tool for macroscopic descrip-
tion of the dark sector. Accordingly, (20) and the energy-
momentum tensor (51) reduce to

𝑎
𝜕𝜙𝑀
;𝑀

𝜕𝑥𝐼
= −𝑉
󸀠
𝜙
𝐼
, (59)

𝑇dark 𝐼𝐾 = 𝑔𝐼𝐾 [𝑎(𝜙
𝑀

;𝑀
)
2

+ 𝑉] + 2𝑉
󸀠
(𝜙
𝐼
𝜙
𝐾
− 𝑔
𝐼𝐾
𝜙
𝑀
𝜙
𝑀
) .

(60)

Gravity is currently considered the basic interaction of
cosmic objects in the scale of galaxies and larger. The three
types of vector fields (massless, massive space-like, and
massive time-like) can be of different physical nature.

The energy-momentum tensor (60) of a zero-mass (𝑉󸀠 =
0) vector field reduces to

𝑇
(0)𝐼𝐾

= 𝑔
𝐼𝐾
(𝑎𝜙
󸀠2

0
+ 𝑉
(0)
) . (61)

𝑉
(0)

is the constant value of the potential of the massless field.
𝑇
(0)𝐼𝐾

acts in the Einstein equations (55) as a simple addition
to the cosmological constant, changing Λ to

Λ̃ = Λ − 𝜘 (𝑎𝜙
󸀠2

0
+ 𝑉
0
) . (62)

𝜙
󸀠

0
is the constant divergence of the zero-mass vector field

(34).
It is convenient to consider the values 𝑉(0) of the

potentials of massive fields as already included into Λ̃:
𝑉
0
= 𝑉
(0)
+ 𝑉
(𝑠) (0) + 𝑉(𝑡) (0) , (63)

so that the power series of the potentials𝑉(𝜙𝑀𝜙
𝑀
) ofmassive

fields start with 𝑉󸀠
0
𝜙𝑀𝜙
𝑀
:

𝑉(𝜙
𝑀
𝜙
𝑀
) = 𝑉

󸀠

0
𝜙
𝑀
𝜙
𝑀
+ 𝑂((𝜙

𝑀
𝜙
𝑀
)
2

) . (64)

In the case of weak vector fields the second and higher
derivatives of the potentials 𝑉(𝜙

𝐿
𝜙𝐿) can be neglected, and

the energy-momentum tensor of a massive field is

𝑇
𝐾

dark 𝐼 = 𝑎(𝜙
𝑀

;𝑀
)
2

𝛿
𝐾

𝐼
+ 𝑉
󸀠

0
(2𝜙
𝐼
𝜙
𝐾
− 𝛿
𝐾

𝐼
𝜙
𝑀
𝜙
𝑀
) ,

𝑉
󸀠

0
≡
𝑑𝑉 (𝜙

𝑀
𝜙
𝑀
)

𝑑 (𝜙𝑀𝜙
𝑀
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜙𝑀𝜙𝑀=0

.

(65)

In general, it could be necessary to consider both inde-
pendent vectors—𝜙𝑀

(𝑠)
for a space-like and 𝜙𝑀

(𝑡)
for a time-

like—massive fields with different potentials 𝑉
(𝑠)
(𝜙
𝑀

(𝑠)
𝜙
(𝑠)𝑀

)

and 𝑉
(𝑡)
(𝜙𝑀
(𝑡)
𝜙
(𝑡)𝑀

). As far as the energy-momentum tensor
of a massless field (dark energy) is included into Λ̃ (62),
the remaining energy-momentum tensor 𝑇dark 𝐼𝐾 of massive
fields is the sum of two tensors

𝑇dark 𝐼𝐾 = 𝑇(𝑠)𝐼𝐾 + 𝑇(𝑡)𝐼𝐾, (66)

corresponding to 𝜙𝑀
(𝑠)

and 𝜙𝑀
(𝑡)
, respectively.

In the scale of a galaxy (∼10 kpc) the space-like vector
field (𝜙𝐿

(𝑠)
𝜙
(𝑠)𝐿

< 0) dominates. It is responsible for the plateau
in galaxy rotation curves; see Section 3. The time-like field
(𝜙𝐿
(𝑡)
𝜙
(𝑡)𝐿

> 0) dominates at the scales much larger than the
distance between the galaxies, where theUniverse can be con-
sidered as uniform and isotropic. The time-like field displays
the repulsive elasticity. Together with the zero-mass vector
field (dark energy) and the ordinary matter it gives rise to a
variety of possible regular scenarios of evolution of the Uni-
verse and rules out the problem of fine tuning; see Section 4.
In particular, the singular Big Bang turns into a regular
inflation-like bouncewith accelerated expansion at late times.

It would be interesting to trace how the additional
attraction of the space-like dark matter, dominating in the
galaxy scale, transforms into the elastic repulsion of the time-
like darkmatter, dominating in the scale of theUniverse. Both
types of massive fields 𝜙𝑀

(𝑠)
and 𝜙𝑀

(𝑡)
are supposed to be active

in the intermediate region, so the energy-momentum tensor
of the dark sector should be the sum (66).

The study of the structure of the Universe in the interme-
diate range (Mpc to hundred Mpcs) had been initiated in the
pioneering papers by Zel’dovich [33]. Continuous research
by his followers shows that dark energy and dark matter
significantly affect the structural dynamics of galaxies and
clusters in this range; see a review by Gurbatov et al. [34].
Utilizing the energy-momentum tensor ((66), (60)) in the
analysis of the large scale structure of the Universe would
allow avoiding unnecessary model assumptions.
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Figure 3: Rotation curve 𝑉(𝑟) of a spiral galaxy in the Ursa Major
cluster (UMa). In the New General Catalogue of Nebulae and
Clusters of Stars (NGC) [46] its number is 3769. The vertical axis
is the velocity 𝑉 in km/sec, and the horizontal axis is the distance
𝑟 from the center of the galaxy in kpc. Dots with error bars are
observations. Solid curve is fitting by empirical MOND (modified
Newton’s dynamics) [37, 41]. Dashed line is Newton’s 𝑉(𝑟) ∼ 1/√𝑟.

3. Galaxy Rotation Curves

The description of the dark sector via vector fields allows
deriving the galaxy rotation curves directly from the first
principles within the minimal Einstein’s general relativity [6].

The velocity 𝑉 of a star, orbiting around the center of
a galaxy and satisfying the balance between the centrifu-
gal 𝑉2/𝑟 and centripetal 𝐺𝑀(𝑟)/𝑟2 accelerations, should
decrease with the radius 𝑟 of its orbit as 𝑉(𝑟) ∼ 1/√𝑟 at 𝑟 →
∞. However, the numerous observed dependences 𝑉(𝑟),
named galaxy rotation curves, practically remain constant at
far periphery of a galaxy. An example is presented in Figure 3.
It was a fundamental problem, because the general relativity
reduces to Newton’s theory in the limit of nonrelativistic
velocities and weak gravitation.

3.1. Benchmarks in History. The “galaxy rotation curves”
problem appeared after Oort discovered the galactic halo, a
group of stars orbiting the Milky Way outside the main disk
[1]. In 1933, Zwicky [2] postulated “missing mass” to account
for the orbital velocities of galaxies in clusters. Persistent
investigations by Rubin and colleagues [35, 36] in seventies
practically dispelled the skepticism about the existence of
dark matter on the periphery of the galaxies.

Among numerous attempts to solve the problemof galaxy
rotation curves the most discussed one is the empirical
explanationnamedMOND(modifiedNewtonian dynamics),
proposed by Milgrom back in 1983 [37, 38]. For a relativistic
justification of MOND Bekenstein [39], Sanders [40], and
Brownstein and Moffat [41–43] introduce additional scalar,
vector, or tensor fields. Though these (and many others)
empirical improvements of MOND are able to fit a large
number of samples for about a hundred galaxies, the concern
still remains. So far we had neither self-consistent description

of the dark sector as a whole nor direct derivation of MOND
from the first principles within Einstein’s general relativity.
The survey [44] by Famaey andMcGaugh and a recent review
article [45] by Bernabei et al. reflect the current state of
research and contain the comprehensive lists of references.

3.2. Rotation Curve Driven by a Massive Vector Field. Apply-
ing general relativity to the galaxy rotation problem it is
reasonable to consider a static centrally symmetric metric

𝑑𝑠
2
= 𝑔
𝐼𝐾
𝑑𝑥
𝐼
𝑑𝑥
𝐾
= 𝑒

](𝑟)
(𝑑𝑥
0
)
2

− 𝑒
𝜆(𝑟)

𝑑𝑟
2
− 𝑟
2
𝑑Ω
2
,

(67)

with two functions ](𝑟) and 𝜆(𝑟) depending on only one
coordinate—circular radius 𝑟. Real distribution of stars and
planets in a galaxy is neither static nor centrally symmetric.
However this simplification facilitates analyzing the problem
and allows displaying the main results analytically. If a
galaxy is concentrated around a supermassive black hole, the
deviation from the central symmetry caused by the peripheral
stars is small.

In the background of the centrally symmetric metric (67)
the vector 𝜙𝐼 is longitudinal. In accordance with the field
equation (59) its only nonzero component 𝜙𝑟 depends on 𝑟.
The covariant divergence is

𝜙
𝑀

;𝑀
=

1

√−𝑔

𝜕 (√−𝑔𝜙
𝑀)

𝜕𝑥𝑀
=
𝑑𝜙𝑟

𝑑𝑟
+ (

2

𝑟
+
𝜆
󸀠 + ]󸀠

2
)𝜙
𝑟
.

(68)

In the “dust matter” approximation 𝑝 = 0 and the
only nonzero component of the energy-momentum tensor
(56) is 𝑇om 00 = 𝜀𝑔

00
. Whatever the distribution of the

ordinary matter 𝜀(𝑟) is, the covariant divergence 𝑇𝐾om 𝐼;𝐾 is
automatically zero. In the dust matter approximation the
curving of space-time by ordinary matter is taken into
account, but the back reaction of the gravitational field on the
distribution of matter is ignored. If 𝑝 = 0 the energy 𝜀(𝑟) is
considered as a given function.

In the space-time with metric (67) the energy-momen-
tum tensor (65) of a weak space-like longitudinal vector field
is

𝑇
𝐾

dark 𝐼 = 𝛿
𝐾

𝐼

{{

{{

{

𝑎(𝜙
𝑀

;𝑀
)
2

− 𝑉󸀠
0
𝑒𝜆𝜙𝑟2, 𝐼 = 𝑟,

𝑎(𝜙𝑀
;𝑀
)
2

+ 𝑉󸀠
0
𝑒𝜆𝜙𝑟2, 𝐼 ̸= 𝑟.

(69)

In the scale of galaxies the role of expansion of theUniverse as
a whole is negligible, and one can omit Λ̃ (62) in the Einstein
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equations. In the dust matter approximation the Einstein
equations are

− 𝑒
−𝜆
(
1

𝑟2
−
𝜆󸀠

𝑟
) +

1

𝑟2
= 𝜘𝑇
0

0

= 𝜘 [𝑎(𝜙
𝑀

;𝑀
)
2

+ 𝑉
󸀠

0
𝑒
𝜆
(𝜙
𝑟
)
2
+ 𝜀] ,

(70)

− 𝑒
−𝜆
(
]󸀠

𝑟
+
1

𝑟2
) +

1

𝑟2
= 𝜘𝑇
𝑟

𝑟

= 𝜘 [𝑎(𝜙
𝑀

;𝑀
)
2

− 𝑉
󸀠

0
𝑒
𝜆
(𝜙
𝑟
)
2
] ,

(71)

−
1

2
𝑒
−𝜆
(]󸀠󸀠 +

]󸀠2

2
+
]󸀠 − 𝜆󸀠

𝑟
−
]󸀠𝜆󸀠

2
)

= 𝜘 [𝑎(𝜙
𝑀

;𝑀
)
2

+ 𝑉
󸀠

0
𝑒
𝜆
(𝜙
𝑟
)
2
] , 𝐼, 𝐾 ̸= 0, 𝑟.

(72)

See [22], page 382 for the derivation of the left-hand sides.The
prime 󸀠 stands for 𝑑/𝑑𝑟, except 𝑉󸀠 = 𝑑𝑉(𝜙

𝑀
𝜙𝑀)/𝑑(𝜙

𝑀
𝜙𝑀).

Among the four equations (59), ((70)–(72)) for the unknowns
𝜙
𝑟, 𝜆, and ] any three are independent.
Extracting (71) from (70) we get a relation

]󸀠 + 𝜆󸀠 = 𝜘𝑟𝑒𝜆 [2𝑒𝜆(𝜙𝑟)2𝑉󸀠
0
+ 𝜀] . (73)

With account of (68) and (73) the vector field equation (59)
takes the form

[(𝜙
𝑟
)
󸀠
+ (

2

𝑟
+ 𝜘𝑟𝑒
2𝜆
(𝜙
𝑟
)
2
𝑉
󸀠

0
+
1

2
𝜘𝑟𝑒
𝜆
𝜀) 𝜙
𝑟
]
󸀠

=
𝑉󸀠

𝑎
𝑒
𝜆
𝜙
𝑟
.

(74)

Equations (73) and (74) are derived with no assumptions
concerning the strength of the gravitational field.

Omitting the second and higher derivatives of the poten-
tial 𝑉(𝜙

𝑀
𝜙𝑀), in the dust matter approximation (𝑝 = 0), we

get from (70) the following expression for ]󸀠:

]󸀠 = −𝑎𝜘𝑟𝑒𝜆 [𝑚2𝑒𝜆(𝜙𝑟)2 + (𝜙𝑀
;𝑀
)
2

] +
𝑒𝜆 − 1

𝑟
. (75)

Here𝑚2 = −𝑉󸀠
0
/𝑎 is the squared mass of the vector field. The

sign minus is in conjunction with the necessary condition of
regularity (39) for a space-like vector field.

In a static centrally symmetric gravitational field ]󸀠 deter-
mines the centripetal acceleration of a particle ([22], page
323). Without dark matter 𝜙𝑟 = 0 (75) gives Newton’s
attractive potential far from the center:

𝜑
𝑁 (𝑟) =

1

2
𝑐
2] (𝑟) ∼ −𝑟−1, 𝑟 󳨀→ ∞. (76)

The first term in the r.h.s. of (75) appears due to the dark
matter.

The constant 𝑎 in the Lagrangian (58) is considered the
same for any vector, be it space-like or time-like, massive
or massless. Regularity condition for a space-like vector (39)

does not determine the sign of 𝑎.Thenegative sign 𝑎 < 0 (107)
is dictated by the self-consistent requirement of regularity for
massless and massive time-like vectors acting together; see
Section 4.2 below. In view of (39) and (107) the requirement
of regularity for a space-like vector field is satisfied if 𝑉󸀠

0
is

positive:

𝑉
󸀠

0 space-like > 0. (77)

The first term with square brackets in (75) with 𝑎 < 0 is
positive, and both terms in the r.h.s. are of the same sign,
so the presence of dark matter increases the attraction to the
center.

The curvature of space-time caused by a galaxy is small. In
the linear approximation the influence of dark and ordinary
matter can be separated from one another. For 𝜆 ≪ 1 (75)
reduces to

]󸀠 = 𝜘 |𝑎| 𝑟 [𝑚2(𝜙𝑟)2 + (𝜙𝑀
;𝑀
)
2

] +
𝜆

𝑟
, (78)

where the first term does not contain 𝜀. However, the
contribution of dark matter comes from both additives. The
vector field equation (74) and the Einstein equation (70) at
𝜆 ≪ 1 are simplified:

(𝜙
𝑟
)
󸀠󸀠
+ {[

2

𝑟
+ 𝜘𝑟 (|𝑎|𝑚

2
(𝜙
𝑟
)
2
+
1

2
𝜀)] 𝜙
𝑟
}
󸀠

= −𝑚
2
𝜙
𝑟
,

(79)

𝜆
󸀠
+
𝜆

𝑟
= 𝜘𝑟 [|𝑎| (𝑚

2
𝜙
𝑟2
− 𝜙
𝑀

;𝑀

2

) + 𝜀] . (80)

The boundary conditions for these equations,

𝜙
𝑟
=
1

3
𝜙
󸀠

0
𝑟, 𝜆 =

1

3
𝜘 (𝜀
0
− |𝑎| 𝜙

󸀠2

0
) 𝑟
2
, 𝑟 󳨀→ 0, (81)

are determined by the requirement of regularity in the center.
Here 𝜀

0
= 𝜀(0), 𝜙󸀠

0
= 𝜙𝑀
;𝑀
(0).

The term (1/2)𝜘𝑟𝜀 in (79) reflects the interaction of dark
and ordinarymatter via gravitation. If the curvature of space-
time caused by the ordinary matter is small, this term is
negligible compared to 2/𝑟. The nonlinear term 𝜘𝑚

2𝑟(𝜙𝑟)
2 is

small compared to 2/𝑟 at 𝑟 → 0, but at 𝑟 → ∞, despite being
small, it decreases a little bit quicker than 2/𝑟. Neglecting
both nonlinear terms in square brackets, the field equation
(79) reduces to the one in the plane space-time. 𝜙𝑀

;𝑀
obeys

the Klein-Gordon equation (37).The regular solution is ((38),
(40)):

𝜙
𝑀

;𝑀
= 𝜙
󸀠

0

sin𝑚𝑟
𝑚𝑟

,

𝜙
𝑟
=

𝜙󸀠
0

𝑚3𝑟2
(sin𝑚𝑟 − 𝑚𝑟 cos𝑚𝑟) ,

(82)

where 𝜙󸀠
0
≡ 𝜙𝑀
;𝑀
(0).

Substitution of (82) into (78) results in

]󸀠 (𝑟) =
𝜘 |𝑎| (𝜙

󸀠

0
)
2

𝑚2𝑟
𝑓 (𝑚𝑟) +

𝜆

𝑟
, 𝜆 ≪ 1, (83)
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where

𝑓 (𝑥) = 1 −
sin 2𝑥
𝑥

+
sin2𝑥
𝑥2

. (84)

The balance of the centripetal 𝑐2]󸀠/2 and centrifugal𝑉2/𝑟
accelerations determines the velocity𝑉 of a rotating object as
a function of the radius 𝑟 of its orbit:

𝑉 (𝑟) = √𝑉2pl𝑓 (𝑚𝑟) +
𝑐2

2
𝜆 (𝑟), (85)

𝑉pl = 𝑐√
𝜘 |𝑎|

2

𝜙󸀠
0

𝑚
. (86)

𝑐 is the velocity of light. Far from the center 𝜆(𝑟) decreases
as 1/𝑟, while 𝑓(𝑚𝑟) → 1. The dependence 𝑉(𝑟) (85) turns
at 𝑟 ≳ 𝑚−1 from a linear to a plateau (86) with damping
oscillations. The plateau appears entirely due to the vector
field. At the same time the vector field contributes to 𝜆(𝑟) as
well. Substituting (82) into (80) we get a regular at 𝑟 → 0

solution for 𝜆(𝑟):

𝜆 (𝑟) = 2(
𝑉pl

𝑐
)

2

(
sin 2𝑚𝑟
2𝑚𝑟

−
sin2𝑚𝑟
𝑚2𝑟2

) +
𝜘

𝑟
∫
𝑟

0

𝜀 (𝑟) 𝑟
2
𝑑𝑟,

𝜆 ≪ 1,

(87)

where the last term in (87) gives Newton’s potential. Substi-
tuting (87) into (85) we finally have

𝑉 (𝑟) = √𝑉2pl (1 −
sin 2𝑚𝑟
2𝑚𝑟

) + 𝑐2
𝜘

2𝑟
∫
𝑟

0

𝜀 (𝑟) 𝑟2𝑑𝑟, 𝜆 ≪ 1.

(88)

Without dark matter (𝜙󸀠
0
= 0) (88) would give Newton’s

𝑉(𝑟) ∼ 1/√𝑟 at 𝑟 → ∞. In the presence of dark matter
(𝜙󸀠
0

̸= 0) the velocity of rotation 𝑉(𝑟) tends to 𝑉pl at 𝑟 → ∞

with damping oscillations. If the contribution of stars and
planets to the total mass of a galaxy is small compared to the
mass of the black hole in the center, then outside the black
hole 𝑟 ≫ 𝑟Sch

𝜘∫
𝑟

0

𝜀 (𝑟) 𝑟
2
𝑑𝑟 = 𝑟Sch, (89)

𝑟Sch is the Schwarzschild radius of a black hole. Outside a
black hole 𝑟 ≫ 𝑟Sch, and the condition 𝜆 ≪ 1 is fulfilled for
all galaxies. Far outside the Schwarzschild radius the velocity
of rotation around a black hole is

𝑉 (𝑟) = √𝑉2pl (1 −
sin 2𝑚𝑟
2𝑚𝑟

) +
𝑐
2

2

𝑟Sch
𝑟
, 𝑟 ≫ 𝑟Sch.

(90)

The deviation fromNewton’s law due to the darkmatter takes
place at 𝑟 ≳ 𝑟Sch(𝑐

2/𝑉2pl). At 𝑟 ≫ 𝑟Sch(𝑐
2/𝑉2pl) the curve

of rotation around a black hole is a universal function. In
dimensionless units there are no parameters; see Figure 4.
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Figure 4: Universal function√1 − (sin 2𝑥/2𝑥) (90).

While the contribution of dark matter to the rotation
curve is described by the universal function shown in
Figure 4 , the distribution of stars and planets, circulating
around a black hole, differs from one galaxy to another. The
rotation curves of different galaxies look different. However,
the deviation from Newton’s 𝑉(𝑟) ∼ 1/√𝑟 on the periphery
of a galaxy is their common feature. Dark matter manifests
itself most clearly in the periphery of galaxies. Therefore, in
order to compare with (90), among the numerous available
rotation curves, it is natural to choose those having the stars
outside the main disk.

Fitting the rotation curves of two such galaxies via the
universal function (90) is presented in Figure 5. These two
spiral galaxies are located in the Ursa Major cluster (UMa).
Their numbers are from “The New General Catalogue of
Nebulae and Clusters of Stars” (abbreviated as NGC). It is
a catalogue of deep-sky objects in astronomy compiled by
Dreyer in 1888 [46], as a new version of John Herschel’s
Catalogue of Nebulae and Clusters of Stars.

Agreement with the oscillations is hardly accidental.
Actually, damping oscillations of a rotation curve in the far
periphery of a galaxy can be considered as a “signature of
dark matter.” I would strongly recommend this observational
test as confirming the existence of dark matter, along with its
adequate description by a longitudinal nongauge vector field.

The fact of small deviations from the universal curve
indicates that the main contribution comes from the dark
matter. It is in agreement with the modern concept that there
is only some 5% of ordinary matter in the Universe, while
the amount of dark matter is about five times as much; see
Figure 1 .Thefitting in Figure 5 also testifies that the deviation
from the central symmetry by a disk of circulating stars and
planets is small. It confirms the existence of a heavy object,
like a black hole, in the center of a galaxy. In general, the
observed deviations of rotation curves from the universal
curve could clarify the average distribution of the ordinary
matter within other galaxies.

The contribution of darkmatter to a rotation curve (90) is
expressed via two observable parameters: the limiting plateau
value 𝑉pl and mass 𝑚. They allow restoring the value of the
parameter 𝜙󸀠

0
≡ 𝜙
𝑀

;𝑀
(0) at 𝑟 → 0 in the boundary conditions

(81): 𝜙󸀠
0
= √2/𝜘|𝑎|𝑚𝑉pl (86). As far as there is no evidence of
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Figure 5: Rotation curves of two spiral galaxies in the Ursa Major cluster (UMa). Abbreviation NGC stands for “The New General Catalogue
of Nebulae and Clusters of Stars.” The vertical axis is the velocity 𝑉 in km/sec, and the horizontal axis is the distance 𝑟 from the center of a
galaxy in kpc. Dots with error bars are observations. Solid curve is fitting by 𝑉(𝑟) = 𝑉pl√1 − (sin 2𝑚𝑟/2𝑚𝑟) (90).

any direct interaction of dark and ordinary matter, the origin
of specific values 𝜙󸀠

0
and𝑚 of a particular galaxy depends on

what happens in the center. The values 𝑉pl and𝑚 differ from
one galaxy to another. It looks like for each galaxy these values
are driven by a heavy object (may be a black hole, may be a
neutron star) located in the center and, by theway, supporting
the central symmetry of the gravitational field.

Dark matter, described by a vector field with the
Lagrangian (58), actually justifies the empirical Milgrom’s
hypothesis of MOND—the modified Newton’s dynamics
[37].Newton’s dynamics really getmodified by the vector field
so that the rotation curve flattens out at the far periphery of a
galaxy. This is because the perturbation of the gravitational
field due to a massive longitudinal vector field decreases
slower than the perturbation caused by the ordinary matter.
The empirical Milgrom’s hypothesis of MOND was a real
breakthrough in the 80s. Naturally, basing only on the
intuitive arguments, it was scarcely possible to guess that
the transition to a plateau is accompanied by damping
oscillations.

However, the question of the physical origin of dark
matter remains open. In other words, whatmakes𝜙󸀠

0
= 𝜙𝐾
;𝐾
(0)

different from zero? Solutions of the linearized Einstein equa-
tions do not answer this question. Within the approximation
of weak fields 𝜙󸀠

0
and 𝑚 remain free parameters. The energy

𝜀(𝑟) is an arbitrary function in the dustmatter approximation,
so the parameters 𝜙󸀠

0
and 𝑚 of dark matter are in no way

connected with the ordinary matter.
According to the empirical MOND prediction the limit-

ing plateau value 𝑉plMOND is connected with the mass𝑀 of a
galaxy:

𝑉plMOND = (𝜘𝑀𝑎
0
)
1/4
. (91)

Milgrom postulates the existence of a very small acceleration
𝑎
0
, and that at 𝑎 ≲ 𝑎

0
the violation of Newton’s law takes place

[37]. To answer the question “what the empirical MOND
relation (91) should be replaced by?” one has to find out the
reason why the divergence 𝜙𝐾

;𝐾
is not zero at 𝑟 = 0. The

gravitational field of a collapsing black hole is neither static
nor weak. In the close vicinity of a black hole the velocities
of circulating stars and planets are relativistic. It is necessary
to get a self-consistent solution of the nonlinear Einstein
equations. At 𝑟 ≲ 𝑟Sch strong interaction via gravitation
should affect the dynamic balance of the ordinary and dark
matter. For nonlinear equations the requirement of regularity
can impose an additional restriction on the parameters 𝜀

0

and 𝜙󸀠
0
in the boundary conditions (81). It is very likely that

it will fix the connection between 𝜀
0
and 𝜙󸀠

0
, providing the

dependence of the limiting plateau value 𝑉pl on the mass𝑀
of a galaxy.

Actually it is a revision of equilibrium [47] and collapse
[48] of supermassive bodies with the dark matter taken into
account. The ordinary matter could be still considered as
a degenerate relativistic Fermi gas (see [49], problem 3 in
the end of the paragraph 61, page 207). The dark matter
should be included into Einstein equations via the energy-
momentum tensor (66). Considering a collapsing system,
there is no reason to ignore a time-like vector. It is possible
that the repulsive ability of a time-like vector field can
dynamically balance the collapse. In this case there will be a
regular solution of Einstein’s equations describing the internal
structure of a black hole without a singularity in the center.
This is a worthy task for future.

One can trace two main trends in the literature in trying
to unravel the puzzle of a plateau in the rotation curves
of galaxies—to “improve” general relativity and to compose
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a mixture of fields able to fit the observations without a
“mysterious dark matter.”

For instance, Sanders argues that “. . . the correct theory
may well be one in which MOND reflects the influence of
cosmology on local particle dynamics and arises only in a
cosmological setting” and concludes: “It goes without saying
that this theory is not general relativity, because in the context
of general relativity local particle dynamics is immune to
the influence of cosmology” [40]. Obviously, I do not share
Sanders’ conclusion. I have presented above the complete
derivation from the Einstein equations ((70)–(72)) to the
galaxy rotation curve (85). The formulae ((88), (90)) are
derived completely within the Einstein’s theory. For the time
being, there is no need in any modifications of the general
relativity to explain the observable plateau in galaxy rotation
curves.

An example of opposing fields and dark matter is the
Moffat’s attempt of applying a mixture of scalar, vector, and
tensor fields in order “to explain the flat rotation curves of
galaxies and cluster lensing without postulating exotic dark
matter” [42, 43]. It is a question of terminology. In quantum
physics there always is a quantum particle corresponding to
the field describing a material substance. From my point of
view, the fields are convenientmathematical instruments that
we utilize to describe the physical phenomena, nomatter how
we name them.

According to observations the period of oscillations 𝜋/𝑚
(see Figure 5) is around 15 kpc. If in quantum mechanics it
is the de Broglie wavelength 𝜆 = ℎ/𝑚𝑐, then the rest energy
of a quantum particle, corresponding to the space-like vector
field, should be 𝑚𝑐2 ∼ 10−27 eV. The lightest particles as
candidates for the cosmological nonbaryonic dark matter
are discussed by Khlopov [50] in connection with sponta-
neously symmetry breaking in phase transitions in the early
Universe.

The theory predicts the oscillating features with no bary-
onic counterparts in the rotation curves of the outer regions
of galaxies. As this would be themain observational signature
of existence of the dark matter, I persistently recommend this
observational test.

The “unprecedented constraints on the stellar and dark
matter mass distribution within ourMilkyWay” are reported
by Bovy and Rix [51]. Continuous progress in the accuracy of
observations would be able to provide the values of the main
parameters 𝜙󸀠

0
and 𝑚 for Milky Way and other galaxies and

clusters.
Having the energy-momentum tensor (60), it is worth

considering a possible role of dark matter in the “pioneer
anomaly” in the scale of the solar system. It appeared
that a very small unexpected force caused an approxi-
mately constant additional acceleration of (8.74 ± 1.33) ×

10
−10m/s2 directed towards the Sun for both spacecraft

Pioneer 10 and Pioneer 11 [52, 53]. It is interesting to
trace the dependence ]󸀠(𝑟) (78) along the two spacecraft
hyperbolic orbits at distances between 20–70 astronomical
units (AU = 1.5 ⋅ 1013 cm) from the Sun. Manifestation of
dark matter on the periphery of the solar system would be
a great surprise!

4. Regular Cosmology

From the standpoint of general relativity the matter curves
the space-time, giving rise to mutual attraction between the
bodies. However, according to modern observations, the
Universe is expanding as a whole, despite the gravitational
attraction between material objects. The expanding solution
of Einstein’s equations due to the cosmological constant
belongs to De Sitter [54, 55]. The expanding solutions of
the Einstein equations without the cosmological constant
(Friedman [56], Robertson [57, 58], andWalker [59] (FRW))
inevitably contained the singularity. The unknown origin
of expansion of the Universe, containing only mutually
attracting objects, was supposed to be hidden within the
singularity. For a long time the singularity was considered a
general property of the Universe.The singular point, referred
to as “Big Bang,” is still widely recognized as the “date of birth”
of the Universe.

Discovery of the accelerated expansion of the Universe
[3, 4] shows that the source of acceleration continues to
exist for a long time after the Big Bang. Naturally, the fact
of accelerated expansion gave rise to the assumption that
the physical vacuum is not just the absence of the ordinary
matter. The existence of dark energy and dark matter, as
the unknown source of the Universe’s expansion, is widely
discussed in modern literature and Internet [60, 61].

The macroscopic approach to the theory of evolution
of the Universe driven by vector fields plays the cen-
tral role among numerous attempts to guess the riddle
of accelerated expansion. It allows avoiding unnecessary
model assumptions (like “𝑓(𝑅)”, quintessence, phantom-
like cosmologies, . . ., see a review [62]) and remains in the
classical frames of Einstein’s general relativity. Utilization of
vector fields in general relativity shows undoubtable advan-
tages in comparison with scalar fields and with multiplets
of scalar fields. The equations appear to be more simple,
while their solutions are more general. The solutions have
additional parametric freedom, allowing forgetting the fine-
tuning problem [63]. However, starting from the pioneer
paper by Dolgov [64], people consideredmostly gauge vector
fields [65–69] in applications to the dark sector. The Lorentz
gauge restriction allowed avoiding the difficulty of negative
contribution to the energy. But at the same time it does not
allow utilizing all the advantages of vector fields. In general
relativity (in curved space-time) the energy is not a scalar,
and its sign is not invariant against the arbitrary coordinate
transformations. Considering the vector fields in general
relativity, it is worth rejecting the gauge restriction, using
instead a more weak condition of regularity. Step by step,
people are now getting rid of the Lorentz gauge restrictions
[70–73].

Today it is generally accepted that among the stuff of the
Universe only 4.5% is the ordinarymatter; see Figure 1 [12]. It
is reasonable to analyze the role of vector fields in cosmology
step by step. First step—dark energy only (zero-mass field):
about 72%. Second step is adding massive vector field (dark
matter, about 23%) into consideration. The final step is to
include the ordinarymatter, after themain role of vector fields
is clarified.
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According to observations the Universe expands, and its
large scale structure remains homogeneous and isotropic.
Consider the space-time with the metric

𝑑𝑠
2
= 𝑔
𝐼𝐾
𝑑𝑥
𝐼
𝑑𝑥
𝐾
= (𝑑𝑥

0
)
2

− 𝑒
2𝐹(𝑥
0
)

3

∑
𝐼=1

(𝑑𝑥
𝐼
)
2

, (92)

depending on only one time-like coordinate 𝑥0 = 𝑐𝑡 (In
the derivations below the units with 𝑐 = 1, and ℎ = 1

are used.). The metric tensor 𝑔
𝐼𝐾

is diagonal. The uniform
and isotropic expansion is characterized by the single metric
function𝐹(𝑥0), and the rate of expansion is 𝑑𝐹/𝑑𝑥0 ≡ 𝐹󸀠.The
Ricci tensor is also diagonal:

𝑅
00
= −3 (𝐹

󸀠2
+ 𝐹
󸀠󸀠
) ,

𝑅
𝐼𝐼
= 𝑒
2𝐹
(𝐹
󸀠󸀠
+ 3𝐹
󸀠2
) , 𝐼 > 0.

(93)

4.1. Massless Field as Dark Energy. The energy-momentum
tensor (61) of a massless field acts in the Einstein equations
(55) as a simple addition to the cosmological constant (62):

𝑅
𝐼𝐾
−
1

2
𝑔
𝐼𝐾
𝑅 + Λ̃𝑔

𝐼𝐾
= 0,

Λ̃ = Λ − 𝜘 (𝑎𝜙
󸀠2

0
+ 𝑉
0
) .

(94)

The contribution of the zero-mass field to the curvature
of space-time remains constant in the process of the Uni-
verse evolution. The fact that “the gauge-fixing term exactly
behaves as a cosmological constant throughout the history of
the Universe, irrespective of the background evolution” had
been mentioned by Beltran Jimenez and Antonio [23].

The metric function

𝐹 (𝑥
0
) = ±√−

1

3
Λ̃ (𝑥
0
− 𝑥
0

0
) (95)

is the self-consistent regular solution of the Einstein equa-
tions (94), provided that

Λ̃ < 0. (96)

𝐹(𝑥0) is a linear function; 𝑥0
0
is a constant of integration. The

metric (92) with themetric function (95) is called de Sitter (or
anti-de Sitter, depending on the sign definition of the Ricci
tensor). It describes either expansion (sign +) or contraction
(sign −) of the Universe at a constant rate; see Figure 6.

In the case of sign + the rate of expansion

𝐹
󸀠
= 𝐻 = √−

Λ̃

3
(97)

is called Hubble constant.
In general relativity the requirement of regularity for a

massless field (96) replaces the artificially imposed Lorentz
gauge restriction (29) allowing to avoid the negative energy
problem [32].

The zero-mass vector field determines the constant rate
of expansion. Available today properties of the so called dark
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Figure 6: De Sitter solution𝐹󸀠(𝑥0)/𝐻 = ±1. Upper green horizontal
line is expansion, and lower blue horizontal line is compression.

energy (presently unknown form of matter providing the
major contribution to the uniform isotropic expansion of the
Universe) can be describedmacroscopically by the zero-mass
vector field with a simple Lagrangian

𝐿 = 𝑎(𝜙
𝑀

;𝑀
)
2

− 𝑉
0
. (98)

As long as the physical nature of vacuum is not known, the
“geometrical” origin of the cosmological constant Λ and the
“material” contribution to Λ̃ (62) by the zero-mass vector
field can not be separated from one another. The combined
action of the massless field and/or the cosmological constant
is described by the single parameter—Hubble constant 𝐻
(97).

4.2. Massless Field + Massive Field. Over the scales much
larger than the distances between the galaxies the Universe
is uniform and isotropic. In the scale of the whole Universe
the massive vector field is time-like and longitudinal: the
only nonzero component is 𝜙

0
, and it depends upon the time

coordinate 𝑥0.
The energy-momentum tensor (65) for the longitudinal

massive time-like field is

𝑇
0

dark 0 = 𝑎(𝜙
𝑀

;𝑀
)
2

+ 𝑉
󸀠

0
𝜙
2

0
,

𝑇
𝐾

dark 𝐼 = 𝛿
𝐾

𝐼
[𝑎(𝜙
𝑀

;𝑀
)
2

− 𝑉
󸀠

0
𝜙
2

0
] , 𝐼 > 0.

(99)

The massless field enters the Einstein equations

3𝐹
󸀠2
+ Λ̃ = 𝜘𝑎 [(𝜙

𝑀

;𝑀
)
2

+ 𝑚
2
𝜙
2

0
] , (100)

2𝐹
󸀠󸀠
+ 3𝐹
󸀠2
+ Λ̃ = 𝜘𝑎 [(𝜙

𝑀

;𝑀
)
2

− 𝑚
2
𝜙
2

0
] , (101)

only via the cosmological constant Λ̃ (62). Λ̃ remains constant
throughout the whole history of the Universe. The massive
field is described by the function 𝜙

0
(𝑥0), which enters

Einstein equations (100)-(101) directly [74]. In accordance
with the necessary condition of regularity for a time-like
massive vector field (43) 𝑉󸀠

0
/𝑎 > 0, and the squared mass



Journal of Gravity 15

of the field is 𝑚2 = 𝑉󸀠
0
/𝑎. The applicability of (100)-(101) is

restricted by the condition that the field𝜙
0
is small, so that the

second and higher derivatives of the potential𝑉(𝜙
𝐿
𝜙𝐿) can be

ignored.
The field equations (59) for a longitudinal time-like field

reduce to the only one equation

(𝜙
󸀠

0
+ 3𝐹
󸀠
𝜙
0
)
󸀠

+ 𝑚
2
𝜙
0
= 0, (102)

which is a consequence of the Einstein equations ((100),
(101)).

4.2.1. Asymptotic Behavior at Large 𝑥0. As it is confirmed
below, set (100)-(101) has regular solutions with the rate
𝐹󸀠(𝑥0) changing from 𝐹󸀠(−∞) = −𝐻 in the past to 𝐹󸀠(∞) =

𝐻 in future. Far back in the past and in the late future the
temporal evolution of the massive field is described by (102)
with 𝐹󸀠 = ∓𝐻. Its solution

𝜙
0
(𝑥
0
) = 𝐶

+
𝑒
𝜆+𝑥
0

+ 𝐶
−
𝑒
𝜆−𝑥
0

,

𝜆
±
=

{{{{{

{{{{{

{

3𝐻

2
± √(

3𝐻

2
)
2

− 𝑚2, 𝑥0 󳨀→ −∞,

−
3𝐻

2
± √(

3𝐻

2
)
2

− 𝑚2, 𝑥0 󳨀→ ∞,

(103)

is a linear combination of two functions, vanishing at 𝑥0 →
±∞.The functions aremonotonic if𝑚 < 3𝐻/2 or oscillating
with a decreasing magnitude if 𝑚 > 3𝐻/2. If 𝑚/𝐻 is small,
the field decreases very slowly:

𝜙
0
(𝑥
0
) = 𝐶

+
exp(−2𝑚

2

9𝐻2
𝑚𝑥
0
) , 𝑥

0
󳨀→ ∞,

𝑚

𝐻
≪ 1.

(104)

In the limit 𝑚/𝐻 → 0 the term with 𝐶
−
disappears as

exp(−3𝐻𝑥0), while the term with 𝐶
+
becomes indistinguish-

able from the massless field, which remains constant during
the whole process of evolution. In dimensional units the ratio
𝑚/𝐻 is𝑚𝑐2/ℎ𝐻.

4.2.2. Regular Bounce. Extracting (100) from (101), we have

𝐹
󸀠󸀠
= −𝑎𝜘𝑚

2
𝜙
2

0
. (105)

Without massive field, that is, if 𝜙
0
= 0, the second derivative

𝐹󸀠󸀠 = 0, and we return to the de Sitter metric with the
metric function (95) describing the two isolated solutions—
compression and expansion—at a constant rate 𝐹󸀠 = 𝐻 =

const (97).
The second order set of Einstein equations ((100), (101))

for the unknowns 𝐹󸀠 and 𝜙
0
looks more complicated than the

equivalent set ((102), (105)). At the same time the set (102),
(105) is of the third order. Hence, it has extra solutions. So,
working with the set (102), (105), it is necessary to eliminate
extra solutions that are not the solutions of the Einstein
equations ((100), (101)).

The time coordinate 𝑥
0 is a cyclic variable, and it is

convenient to set the origin 𝑥0 = 0 at a moment when 𝐹󸀠 =
0. Initial conditions for the Einstein equations contain only
𝜙
0
(0). The derivative 𝜙󸀠

0
(0) is strictly fixed by the solutions of

(100), (101). As for the set (102), (105), the value 𝜙󸀠
0
(0) in the

initial conditions is a free parameter, independent of 𝜙
0
(0).

The connection between 𝜙
0
(0) and 𝜙󸀠

0
(0), eliminating extra

solutions, follows from (100) at 𝑥0 = 0:

𝜙
󸀠2

0
(0) + 𝑚

2
𝜙
2

0
(0) =

Λ̃

𝜘𝑎
, 𝐹

󸀠
(0) = 0. (106)

The l.h.s. of (106) is positive. The initial conditions (106) are
self-consistent if both Λ̃ and 𝑎 are of the same sign. According
to the requirement of regularity of the de Sitter metric (96) Λ̃
is negative. Hence 𝑎 is negative too:

𝑎 < 0. (107)

Then 𝐹
󸀠󸀠 (105) is positive, 𝐹󸀠󸀠 > 0. We conclude that the

massive time-like vector field makes the rate of evolution
𝐹
󸀠(𝑥0) a monotonically growing function from −𝐻 in the

past to +𝐻 in future. The Universe contracts at 𝑥0 < 0, and
expands at 𝑥0 > 0. 𝑥0 = 0 is the moment of maximum
compression.

One of the two constants 𝜙
0
and 𝜙󸀠

0
at 𝑥0 = 0 remains

arbitrary within the initial conditions (106). The Einstein
equations ((100), (101)) are 𝑥0 → −𝑥0 invariant. In the case
𝜙󸀠
0
(0) = 0 the field 𝜙

0
(𝑥0) is a symmetric function, and if

𝜙
0
(0) = 0 it is an antisymmetric one. In both cases 𝐹󸀠(𝑥0) is

antisymmetric. If both constants 𝜙
0
and 𝜙󸀠

0
at 𝑥0 = 0 are not

zeroes, a regular solution still exists, but there is no symmetry
with respect to 𝑥0 → −𝑥0. The scale factor 𝑅 = 𝑒𝐹 decreases
with time while 𝐹󸀠 < 0, reaches its minimum, and grows
when 𝐹󸀠 becomes positive.

In the case of a small mass,

𝑚 ≪ 𝐻, (108)

(in dimensional units 𝑚𝑐2 ≪ ℎ𝐻) the compression-to-
expansion transition is described by the analytical solution
for the symmetric configuration as follows:

𝐹
󸀠
(𝑥
0
) = 𝐻 tanh (3𝐻𝑥0) , (109)

𝜙
0
(𝑥
0
) = √

Λ̃

𝜘𝑎

1

𝑚 cosh (3𝐻𝑥0)
, 𝑚 ≪ 𝐻. (110)

The rate of evolution 𝐹󸀠(𝑥0) (109) is shown in Figure 7. With
no ordinary matter the time interval of transition is of the
order of Hubble time ∼1/3𝐻. At 𝑚 ≪ 𝐻 it does not depend
on the mass𝑚 of the massive field. The scale factor is

𝑅 (𝑥
0
) = 𝑒
𝐹(𝑥
0
)
= 𝑒
𝐹0[cosh (3𝐻𝑥0)]

1/3

, 𝑚 ≪ 𝐻. (111)

The metric function enters the Einstein equations ((100),
(101)) only via the derivatives of 𝐹(𝑥0) but not directly.
Without ordinary matter 𝐹

0
= 𝐹(0) is a free parameter, and
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Figure 7: Compression-to-expansion transition. Red line is the rate
of evolution 𝐹󸀠(𝑥0)/𝐻 = tanh(3𝐻𝑥0) (109).

𝑅(𝑥0) is defined up to an arbitrary constant factor 𝑒𝐹0 . The
acceleration 𝐹󸀠󸀠 is positive:

𝐹
󸀠󸀠
(𝑥
0
) =

3𝐻2

cosh2 (3𝐻𝑥0)
> 0, 𝑚 ≪ 𝐻. (112)

Like an elastic spring, the longitudinal vector field enables
the transition from compression to expansion. The kinetic
energy of contraction completely converts at 𝑥0 = 0 into
potential energy of the compressed vector field, and at 𝑥0 > 0
the energy is being released back in the form of the kinetic
energy of expansion.

A time-like longitudinal massive vector field displays
repulsive elasticity. It can hardly be attributed to a particle of
ordinary matter, because there is no reference frame where
such particle could be at rest. However, a time-like vector
field can be associated with a topological defect, inevitably
arising in a phase transition with spontaneous symmetry
breaking [50, 72]. It is worth mentioning that in the case
(108) in the state of maximum compression the field 𝜙

0
(0)

(110) is proportional to 𝐻/𝑚 ≫ 1. Depending on the
parameters of the potential 𝑉(𝜙𝑀𝜙

𝑀
) for very small 𝑚 the

field 𝜙
0
(0) can be too big to omit the second and higher

derivatives of 𝑉(𝜙𝑀𝜙
𝑀
). Then in the state of maximum

compression a phase transition with spontaneous symmetry
breaking can take place. The idea to consider the topological
defect as aether looks nice. Spontaneous breaking of Lorentz
symmetry caused by a time-like vector field is a subject of
research entitled “Einstein-aether model;” see [24–30] and
references there in.

In the opposite case of a large mass,

𝑚 ≫ 𝐻, (113)

the field 𝜙
0
(𝑥0) is a rapidly oscillating function as compared

with 𝐹󸀠(𝑥0). The solution is

𝐹󸀠 (𝑥
0
) = 𝐻 tanh(3

2
𝐻𝑥
0
) , (114)

𝜙
0
(𝑥
0
) = √

Λ̃

𝜘𝑎

cos (𝑚𝑥0 + 𝜑)
𝑚 cosh ((3/2)𝐻𝑥0)

, 𝑚 ≫ 𝐻. (115)

1

−1

−2 −1 0 1 2

Figure 8: The rate of evolution in the case 𝑚 ≫ 𝐻. 𝐹󸀠(𝑥0)/𝐻—red
solid curve, foundnumerically for𝑚/𝐻 = 5,𝜙󸀠(0) = 0.The averaged
rate 𝐹󸀠(𝑥0)/𝐻 = tanh((3/2)𝐻𝑥0)—blue dashed line.

𝐹󸀠(𝑥0) is the rate of expansion, averaged over the rapid
oscillations.

Oscillations of𝜙
0
(𝑥0) at large𝑚 initiateweak vibrations of

the rate𝐹󸀠(𝑥0) around the averaged value𝐹󸀠(𝑥0); see Figure 8.
Red curve is the numerical solution for 𝑚/𝐻 = 5, 𝜙󸀠(0) = 0.
Blue dashed line is the analytical solution 𝐹󸀠(𝑥0) (114). The
phase 𝜑 depends on the relation between the initial values
𝜙
0
(0) and 𝜙󸀠

0
(0).

In Figures 9(a) and 9(b) 𝜙
0
(𝑥0), found numerically for

𝑚/𝐻 = 5, practically coincide with found analytically (115).
The initial condition 𝜙󸀠

0
(0) = 0 for the symmetric solution in

Figure 9(a) corresponds to 𝜑 = 0 in (115). The antisymmetric
solution in Figure 9(b) (the initial condition 𝜙

0
(0) = 0)

coincides with (115) at 𝜑 = −𝜋/2.
See [5] for the details of analytical and numerical solu-

tions.

4.2.3. Acceleration and “Acceleration Coefficient”. In modern
literature the uniform and isotropic evolution of the Universe
is described by the rate of expansion (Hubble parameter)
𝐻(𝑥
0) = 𝑅󸀠/𝑅 = 𝐹󸀠(𝑥0) and by the artificially introduced

so called “acceleration coefficient” 𝑞,

𝑞 =
𝑅
󸀠󸀠

𝑅
= 𝐹
󸀠󸀠
+ 𝐹
󸀠2
. (116)

𝑅(𝑥0) = 𝑒𝐹(𝑥
0
) is the scale factor. This way defined 𝑞 remains

positive even if the evolution goes at a constant rate 𝐹󸀠 = 𝐻 =

const (as under the action of the massless field):

𝑞 = 𝐻
2
> 0, 𝐹

󸀠󸀠
= 0. (117)

The commonly spread statement that the dark energy is the
source of accelerated expansion is based on the definition
(116). It is worth clarifying that the term “acceleration” is used
here for 𝐹󸀠󸀠—the velocity of variation of the rate 𝐹󸀠 : 𝐹󸀠󸀠 =

(𝑅󸀠/𝑅)
󸀠, not to be confused with the “acceleration coefficient”

𝑞 = 𝑅󸀠󸀠/𝑅.
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Figure 9: Symmetric 𝜑 = 0 (a) and antisymmetric 𝜑 = −𝜋/2 (b) time-like massive vector fields √𝜘𝑎/Λ̃𝜙
0
(𝑥0) (115),𝑚/𝐻 = 5.

4.3. Scenarios of Evolution of the Universe Driven by Vector
Fields and Ordinary Matter. The above analysis of the set
(102), (105) facilitates clarifying the solutions of the Einstein
equations with the ordinary matter taken into account.

Applying the general relativity to the Universe as a
whole it is natural to consider the ordinary matter (stars,
galaxies, . . .) as separate subsystems located at large distances
from one another. Averaged over the distances much larger
than the distance between the objects, the ordinary matter
can be consideredmacroscopically as a uniformly distributed
dust. In the dust matter approximation all components of the
macroscopic energy-momentum tensor (56), except 𝑇

00
=

𝜀𝑔
00
, are zeros. In the cosmological metric (92) 𝑔

00
= 1.

In the process of uniform and isotropic evolution the
average energy density of matter 𝜀 depends only on 𝑥0. Due
to Bianchi identities the covariant divergence of the energy-
momentum tensor is zero: 𝑇𝐾

𝐼;𝐾
= 𝑒−3𝐹(𝑑(𝑒3𝐹𝜀)/𝑑𝑥0)𝛿

𝐼0
= 0.

Thus 𝜀𝑒3𝐹 = const, the energy density of the ordinary matter
is inversely proportional with the cube of scale factor 𝑅 = 𝑒𝐹.
If we accept that 𝜀(𝑥0∗) = 𝜀

0
is the averaged energy density

of the ordinary matter now, then 𝜀(𝑥0) = 𝜀
0
𝑒−3𝐹(𝑥

0
), and the

present moment 𝑥0∗ is defined by

𝐹 (𝑥
0∗
) = 0. (118)

In the process of expansion the metric function is negative in
the past: 𝐹(𝑥0) < 0 at 𝑥 0 < 𝑥0∗.

4.3.1. Einstein Equations and Initial Conditions. With the
ordinary dust matter taken into account, instead of the
Einstein equation (100) we have

3𝐹
󸀠2
+ Λ̃ = 𝜘𝑎 [(𝜙

𝑀

;𝑀
)
2

+ 𝑚
2
𝜙
2

0
] + 𝜘𝜀

0
𝑒
−3𝐹

, 𝐼 = 0. (119)

The second equation (101) remains the same. The vector field
equation (102) also remains the same, and (105) is changed to

𝐹
󸀠󸀠
= 𝜘 |𝑎|𝑚

2
𝜙
2

0
−
1

2
𝜘𝜀
0
𝑒
−3𝐹

. (120)

Equation (120) resembles Newton’s law: acceleration 𝐹
󸀠󸀠 is

proportional to the “repulsing force” 𝜘|𝑎|𝑚2𝜙2
0
minus the

“attracting force” (1/2)𝜘𝜀
0
𝑒−3𝐹. Equations (102) and (120) and

the initial conditions
𝜘𝑎

Λ̃
[𝜙
󸀠2

0
(0) + 𝑚

2
𝜙
2

0
(0)] = 1 + Ω𝑒

−3𝐹0 ,

𝐹
󸀠
(0) = 0, 𝐹 (0) = 𝐹0,

Λ̃ < 0, 𝑎 < 0,

(121)

following from (119) at 𝐹󸀠 = 0, contain five dimensionless
parameters: 𝑚/𝐻, Ω, 𝐹

0
, √𝜘𝑎/Λ̃𝜙

0
(0), and √𝜘𝑎/Λ̃𝜙󸀠

0
(0). In

view of the connection (121) four of them are independent.
As usual, the parameterΩ,

Ω = −
𝜘𝜀
0

Λ̃
=
𝜘𝜀
0

3𝐻2
, (122)

denotes the ratio of today’s energy density of the ordinary
matter to the density of kinetic energy of expansion at
a constant rate 𝐻. According to the NASA’s “sliced cake”
diagram (Figure 1)

Ω ∼ 0.06. (123)

Actually the exact value of Ω becomes important in the
vicinity of Ω𝑒−3𝐹0 = 1: regular oscillating solutions appear
at Ω𝑒−3𝐹0 > 1 in addition to the cosmological ones; see
Section 4.3.3 below.

4.3.2. Regular Cosmological Solutions. Equations (102), (120)
with initial conditions (121) are easily integrated numerically.
Regular solutions are free from any fine tuning. Moreover,
the existing parametric freedom leads to a great variety of
possible regular scenarios of evolution.

Numerical analysis (see details in [5]) shows that if both
𝜙
0
(0) and 𝜙󸀠

0
(0) are not zeros at a turning point 𝐹󸀠(0) = 0,

then there can be other even more sharp turning points with
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𝜙󸀠
0
more close to zero. With the ordinary matter taken into

account the metric function 𝐹(𝑥0) enters (120) directly. The
parameter 𝐹

0
= 𝐹(0) < 0 determines the degree of maximum

compression at the turning point 𝐹󸀠(0) = 0. The peak
value of the rate of expansion grows exponentially with the
increasing negative value of 𝐹

0
, 𝐹󸀠 ∼ 𝑒−3𝐹0 , while the width of

the transition decreases exponentially. It resembles inflation,
except that there is no singularity. The regular contraction-
to-expansion transition is often referred to as “nonsingular
bounce” [75–77]. In the literature there are attempts to
construct a self-consistent model in order to explain from a
unified viewpoint the inflation in the early Universe and the
late-time accelerated expansion [78]. However, one should
keep in mind that the dust matter approximation is not
applicable until the galaxies become noninteracting systems
located at far distances from one another.

In themost interesting case of small𝑚 (108) the transition
from contraction to expansion, resembling inflation, can be
described analytically [5]. Utilizing the fact that at 𝑚 → 0

the antisymmetric term acts as a cosmological constant, it
is natural to consider its contribution as already included
into Λ̃ (94), so that at 𝑚 → 0, Λ̃ corresponds to the
observable Hubble constant 𝐻 (97), and 𝜙󸀠

0
(0) = 0 in the

initial conditions (121). At 𝑚 ≪ 𝐻 one can neglect the term
𝑚2𝜙
0
in the field equation (102) and express 𝜙

0
(𝑥0) via 𝐹(𝑥0):

𝜙
0
(𝑥
0
) = 𝜙
0 (0) exp {−3 [𝐹 (𝑥

0
) − 𝐹
0
]} , 𝑚 ≪ 𝐻. (124)

Substituting (124) into (120), we exclude the field 𝜙
0
and come

to the single equation for 𝐹:

𝐹
󸀠󸀠
= 3𝐻
2
[(𝑒
6𝐹0 + Ω𝑒

3𝐹0) 𝑒
−6𝐹

−
1

2
Ω𝑒
−3𝐹

] , 𝑚 ≪ 𝐻.

(125)

Its regular solution with initial conditions 𝐹󸀠(0) = 0, 𝐹(0) =
𝐹
0
is

𝐹 (𝑥
0
) = 𝐹
0
+
1

3
ln [(1 + Ω

2
𝑒
−3𝐹0) cosh (3𝐻𝑥0) − Ω

2
𝑒
−3𝐹0] ,

𝑚 ≪ 𝐻.

(126)

In the limit 𝑚 ≪ 𝐻 the metric function 𝐹(𝑥
0
) does not

depend on the mass 𝑚 of the vector field. 𝐹
0
= 𝐹(0) <

0 remains a free parameter. It determines the strength of
maximum compression at 𝑥0 = 0.

For the rate of evolution 𝐹󸀠(𝑥0) and for the scale factor
𝑅(𝑥0) we get

𝐹
󸀠
(𝑥
0
) = 𝐻

sinh (3𝐻𝑥0)

cosh (3𝐻𝑥0) − (1 + (2/Ω) 𝑒3𝐹0)−1
, (127)

𝑅 (𝑥
0
) = [(𝑒

3𝐹0 +
1

2
Ω) cosh (3𝐻𝑥0) − 1

2
Ω]
1/3

, 𝑚 ≪ 𝐻.

(128)

Analytical solutions (126)–(128), derived for 𝑚 ≪ 𝐻, are
as well applicable for 𝑚 ∼ 𝐻 in the vicinity of the turning

Hx0

F󳰀/H
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4

×105

−6×10

Figure 10: 𝐹󸀠/𝐻 in the vicinity of the turning point. Blue dashed
curve is the numerical result for 𝐹

0
= −10,𝑚/𝐻 = 10, andΩ = 0.06.

It coincides with the red solid curve—analytical solution (127).

point, if |𝐹
0
| ≫ 1. See Figure 10, where the variation of𝐹󸀠(𝑥0),

found numerically for Ω = 0.06, 𝑚/𝐻 = 10, and 𝐹
0
= −10,

practically coincides with (127) in the vicinity of the turning
point 𝑥0 = 0. It is because of very large negative 𝐹

0
the

width of the contraction-to-expansion transition Δ𝑥0 is very
narrow:

𝐻Δ𝑥
0
∼

2

3√Ω
𝑒
−3|𝐹0|/2, 𝐹

0
< 0,

󵄨󵄨󵄨󵄨𝐹0
󵄨󵄨󵄨󵄨 ≫ 1. (129)

In the process of compression the repulsing term ∼ 𝑒−6𝐹

in (120) increases faster than the compressing term ∼ 𝑒−3𝐹. It
is the reason why a regular bounce replaces the singularity
independent of how big the negative 𝐹

0
is. After the bounce

the repulsing term decreases faster than the compressing one,
leading to matter domination over the field at late times.

The limits of applicability of (120) are connected with the
dust matter approximation and with omitting the second and
higher derivatives of the potential 𝑉(𝜙𝐾𝜙

𝐾
). The symmetric

field at the bounce 𝜙2(0) ∼ 𝜘𝜀
0
𝑒−6𝐹0/𝑚2 can be very large, and

it should lead to a phase transition with spontaneous symme-
try breaking. Naturally, in this case the solution (127) would
be unstable. The analysis of possible symmetry breaking in
the limit𝑚/𝐻 ≪ 1 deserves a separate consideration.

According to the analysis of the Hubble space telescope
data [79], the expansion of the Universe switched from
deceleration to acceleration at about a half of the age of
the Universe. In the analytical solution (127) the second
derivative 𝐹󸀠󸀠(𝑥0) is negative on the slope of 𝐹󸀠(𝑥0) after the
peak (blue curve in Figure 11).The expansion continues (𝐹󸀠 >
0), but in the case 𝑚 ≪ 𝐻 it goes with deceleration (𝐹󸀠󸀠 < 0)
all the time after the peak.

The red solid curve in Figure 11 is the numerical solution
for 𝑚/𝐻 = 1, 𝐹

0
= −2, and Ω = 0.06. In the case 𝑚/𝐻 = 1

the expansion switches from deceleration to acceleration at
about half the time that passed from the turning point 𝑥0 = 0
to the present moment 𝐻𝑥0∗ ≈ 2 (where 𝐹(𝑥0∗) = 0; see
the “calendar” (118)). It is in accordance with the Hubble
space telescope data [79]. The particular value 𝐹

0
= −2 in

Figure 11 is taken not big for better clarity. The peak value
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Figure 11: Solid curves are the rates of evolution 𝐹󸀠/𝐻 forΩ = 0.06,
𝐹
0
= −2. Blue curve is the analytical solution (127) for m/𝐻 ≪ 1,

and the red solid curve is the numerical solution for 𝑚/𝐻 = 1.
The dashed red curve is the metric function 𝐹. Horizontal axis
is the dimensionless time 𝐻𝑥0. In accordance with the “calendar”
(118) today’s date is 𝐻𝑥0∗ ≈ 2. The moment of switching from
deceleration to acceleration (𝐹󸀠󸀠 = 0) is𝐻𝑥0 ≈ 1.

of 𝐹󸀠 grows exponentially with increasing |𝐹
0
|. However at

a fixed value 𝑚/𝐻 ≳ 1 the qualitative picture remains the
same: the transition from deceleration to acceleration does
not disappear.

4.3.3. Regular Oscillating Solutions (with Positive Λ̃). There is
an important difference between the initial conditions (106)
and (121). The relation (106) can be satisfied only if Λ̃ < 0,
provided that 𝑎 < 0. Appearance of the term Ω𝑒

−3𝐹0 in (121)
admits the solutionswith positive Λ̃. If Λ̃ changes sign, then𝐻
(97) becomes imaginary. Equations (102), (120) are invariant
against𝐻 → 𝑖𝐻, but the initial conditions (121) are not:

𝜘 |𝑎|

Λ̃
[𝜙
󸀠2

0
(0) + 𝑚

2
𝜙
2

0
(0)] = −1 + Ω𝑒

−3𝐹0 ,

𝐹
󸀠
(0) = 0, 𝐹 (0) = 𝐹0, Λ̃ > 0.

(130)

A necessary condition for regular solutions with Λ̃ > 0 is
the existence of an extremum moment (𝐹󸀠(0) = 0) with
the energy density of ordinary matter exceeding the kinetic
energy of expansion:

Ω𝑒
−3𝐹0 =

𝜘𝜀 (0)

Λ̃
> 1, 𝐹

󸀠
(0) = 0, Λ̃ > 0. (131)

In the case Λ̃ > 0, 𝑚 ≪ 𝐻 the symmetric analytical solution
of (102), (120) with the initial conditions (130) is expressed in
terms of trigonometric functions.Themetric function 𝐹(𝑥0),
the scale factor 𝑅(𝑥0), and the rate of evolution 𝐹󸀠(𝑥0),

𝐹 (𝑥
0
)

= 𝐹
0
+
1

3
ln [(1 − 1

2
Ω𝑒
−3𝐹0) cos (3𝐻𝑥0) + 1

2
Ω𝑒
−3𝐹0] ,

(132)

𝑅 (𝑥
0
) = 𝑒
𝐹0[(1 −

1

2
Ω𝑒
−3𝐹0) cos (3𝐻𝑥0) + 1

2
Ω𝑒
−3𝐹0]
1/3

,

(133)

𝐹
󸀠
(𝑥
0
) = 𝐻

sin (3𝐻𝑥0)

(1 − (2/Ω𝑒−3𝐹0))
−1
− cos (3𝐻𝑥0)

,

Λ̃ > 0, 𝑚 ≪ 𝐻,

(134)

are periodic functions with no singularity; see red curves in
Figures 12(a) and 12(b). In the case Λ̃ > 0 the origin 𝑥0 = 0 is
a point of maximum of the scale factor 𝑅(𝑥0). The points of
minimum (where cos(3𝐻𝑥0) = −1) are

𝑥
0
= 𝑥
0

𝑛
=

𝜋

3𝐻
(1 + 2𝑛) , 𝑛 = 0, ±1, ±2, . . . . (135)

For the values of the parameters 𝑚/𝐻 = 0.02 and
Ω𝑒−3𝐹0 = 1.032 (barely exceeding the boundary Ω𝑒−3𝐹0 = 1)
there is no difference in Figures 12(a) and 12(b) between the
curves found numerically and analytically.

As it follows from (130) without the massive field (𝜙
0
=

0) the solutions with positive Λ̃ are possible only if the
parameters are fine tuned:

Ω𝑒
−3𝐹0 = 1, (136)

𝐹
󸀠
(𝑥
0
) = −𝐻 tan 3𝐻𝑥

0

2
, (137)

𝑅 (𝑥
0
) = 𝑒
𝐹0(cos2 3𝐻𝑥

0

2
)

1/3

. (138)

The scale factor 𝑅/𝑅(0) (138) and the rate of expansion 𝐹󸀠/𝐻
(137) are the blue curves in Figures 12(a) and 12(b).These fine
tuned solutions have a periodic singularity at 𝑥0 = 𝑥0

𝑛
(135).

In the vicinity of each singular point 𝑥0
𝑛
, as well as at𝐻 → 0,

the Hubble constant 𝐻 drops out, and the scale factor (138)
reduces to

𝑅 (𝑥
0
) = (

3𝜘𝜀
0

4
)
1/3󵄨󵄨󵄨󵄨󵄨

𝑥
0
− 𝑥
0

𝑛

󵄨󵄨󵄨󵄨󵄨

2/3

,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥0

𝑥0
𝑛

− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≪ 1.

(139)

(139) is the scale factor of the Friedman-Robertson-Walker
[56–59] cosmology with dust matter in the plane space
geometry. The longitudinal time-like vector field 𝜙

0
̸= 0

removes the singularity; see red curves in the Figures 12(a)
and 12(b).

(a) Domain of Regular Oscillating Solutions. The maxi-
mum value 𝐹

0
of the metric function (132) corresponds to

cos(3𝐻𝑥0) = 1 and the minimum value (1/3) ln(Ω − 𝑒3𝐹0)—
to cos(3𝐻𝑥0) = −1. According to the “calendar” (118) today’s
date 𝑥0∗ is determined by 𝐹(𝑥0∗) = 0. This means that
𝐹
0
⩾ 0 and ln(Ω − 𝑒3𝐹0) ⩽ 0. Otherwise, if today’s zero

value of the metric function 𝐹 is outside the interval of its
variation, the oscillating solutions (132)–(134) are not related
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Figure 12: Scale factor 𝑅/𝑅(0) (a) and rate of evolution 𝐹󸀠/𝐻 (b). The horizontal axis is “time”𝐻𝑥0. Red curves—regular numerical solution
(coinciding with (133) and (134)) for 𝑚/𝐻 = 0.02, Ω exp(−3𝐹

0
) = 1.032. Blue curves with periodic singularity are the fine tuned solutions

(138) and (137) at the lower boundary of the area of regular oscillating solutions (with Λ̃ > 0).

to the evolution of the Universe. Hence, on the map of the
parametersΩ(𝐹

0
) the domain of regular oscillating solutions

is limited by 𝐹
0
⩾ 0, 𝑒3𝐹0 < Ω ⩽ 1 + 𝑒3𝐹0 . The oscillating

scenario of evolution is possible if Ω > 1. It is one of the
two: either the estimate (123) is understated, or the oscillating
scenario has nothing to dowith evolution of theUniverse.The
same applies to the Friedman-Robertson-Walker scenario
[56–59], existing on the lower boundaryΩ = 𝑒

3𝐹0 (136).
The positivity of the energy 𝑇

00
> 0 (see (94.10) in

[22]), supported by the Lorentz gauge restriction (29) [32],
promotes the mutual attraction between material objects and
excludes the possibility of repulsion. In thirties the dark
matter had not been taken seriously. Under the action of only
contracting forces the observed expansion of the Universe as
a whole was considered as an explosion of some extremely
small highly compressed source. Accordingly, the Friedman-
Robertson-Walker solutions [56–59] inevitably contained a
singularity and existed only under the fine-tuning restriction
(136).

The discovery of accelerated expansion confirms that
in addition to the ordinary matter there is some medium
named dark matter with repulsive properties. This source
of acceleration exists for a long time after the mysterious
big bang. The longitudinal time-like vector field with a
simple Lagrangian (58) turns out an appropriate tool for
macroscopic description of the dark matter, including its
repulsive ability. Abandoning the Lorentz gauge restrictions
we get a variety of regular solutions with no need of any fine
tuning.

The idea of oscillating Universe has been proposed earlier
by Lessner [80] as an alternative approach to cosmology.
Meanwhile, I would better call it additional, for both kinds of
regular scenarios—cosmological and oscillating—are derived
completely within the frames of the Eiler-Lagrange approach
and general relativity.

5. Summary

The nongauge vector field with the most simple Lagrangian
(58) turns out to be an appropriate tool for macroscopic
description of the dark sector.Thedark substance is described
via the covariant vector field equations (59) and the energy-
momentum tensor (60). It no longer needs to invent its
own model of dark matter for understanding each observed
astrophysical phenomenon.

In the galaxy scale 10 to 100Kpc the darkmatter, described
by the space-like (𝜙𝐾𝜙

𝐾
< 0) vector field, is responsible for a

plateau in galaxy rotation curves. In the scale of the whole
Universe the time-like (𝜙𝐾𝜙

𝐾
> 0) vector field is “the missing

link in the chain,” necessary to understand the main features
of evolution of the Universe and avoid, better say—resolve,
the Big Bang singularity. A mysterious Big Bang is no longer
the inevitable property of the Universe evolution, provided
that the dark matter is taken into account. The reason, why
the singularity was considered inevitable, is the impossibility
of such a regular solution, where mutually attracting objects
fly away from each other.

The macroscopic description of the dark sector is appli-
cable for studying the structure of the Universe in the
intermediate range Mpc to hundred Mpcs [34]. The field
equations (59) and the energy-momentum tensor (60) of dark
substance allow avoiding unnecessary model assumptions. It
would be interesting to trace how additional attraction by a
space-like field, dominating in the galaxy scale, transforms
into elastic repulsion of a time-like field, dominating in the
scale of the whole Universe. In the intermediate range all
three components of the dark sector (described by zero-mass
field, space-like field, and time-like field) should be taken into
account altogether.

Most likely, the manifestation of dark matter in the scale
of the solar system is a fantastic, but still it is worth it to trace
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the acceleration ]󸀠(𝑟) (78) along the two spacecrafts Pioneer
10 and Pioneer 11 hyperbolic orbits at distances between 20–
70AU from the Sun. Who knows?

It is rather involuntarily but the modern interpretations
of the observational data are mostly based on the idea of the
Big Bang birth of the Universe. The cosmic background radi-
ation, among other phenomena, definitely testifies that the
Universe had been strongly compressed in the past. But how
strongly? The information from the past, coming to us with
electromagnetic waves, tells us only about the phenomena
that happened after the Universe became transparent.The far
extrapolation to the Plank’s era is based on the assumption
that the singularity is an inevitable property of cosmological
solutions of Einstein equations. The discovery of accelerated
expansion strictly pointed on the existence of hidden sector,
able to resist compression. The macroscopic theory does not
restrict the strength of compression.The degree of maximum
compression is determined by the parameter 𝐹

0
. At large

negative 𝐹
0
the regular expansion after the turning point

resembles inflation. I draw attention to Figure 10, where for
𝐹
0
= −10 (𝑅 ≈ 1/22000) there is a 10-order difference in the

horizontal and vertical scales. However, one should keep in
mind that the dust matter approximation is applicable if the
galaxies are located at far distances from one another.

In accordance with the Section 4.3.2, the observed [79]
point of minimum of 𝐹󸀠, where the deceleration turns back
to acceleration, corresponds to 𝑚/𝐻 ∼ 1 (see Figure 11). A
time-like vector field can hardly be associated with a massive
quantum particle. Nevertheless it is worth it to try to detect
an extremely light quasiparticle—elementary excitation of
some nonconventional medium like “ghost condensate,” or
“aether”—with a quantum of ground energy 𝑚𝑐2 ∼ ℎ𝐻 ∼

10−33 eV.
On the contrary, for a space-like field there is a frame of

reference where 𝜙
0
= 0. The estimate for the rest energy of a

particle associated with a space-like field with the wavelength
𝜆 = ℎ/𝑚𝑐 ∼ 15 kpc (see Figure 5) is𝑚𝑐2 ∼ 10−27 eV.

Though the macroscopic theory describes the galaxy
rotation curves and various scenarios of the Universe evo-
lution, the physical origin of dark matter and dark energy
still remains unknown. There is a hope that, by applying
the energy-momentum tensor of the dark sector (60) and
considering the ordinary matter as a degenerate relativistic
Fermi gas, it would be possible not only to find the connection
between the parameters of dark an ordinary matter, but also
to describe the internal structure of a heavy black hole with
no singularity in the center.
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